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Stabilization of a certain class of fuzzy control systems
with uncertainties

NIZAR HADJ TAIEB, MOHAMED ALI HAMMAMI and FRANÇOIS DELMOTTE

In this paper, we investigate the global uniform practical exponential stability for a class
of uncertain Takagi-Sugeno fuzzy systems. The uncertainties are supposed uniformly to be
bounded by some known integrable functions to obtain an exponential convergence toward a
neighborhood of the origin. Therefore, we use common quadratic Lyapunov function (CQLF)
and parallel distributed compensation (PDC) controller techniques to show the global uniform
practical exponential stability of the closed-loop system. Numeric simulations are given to val-
idate the proposed approach.

Key words: Takagi-Sugeno fuzzy systems, PDC controller, global uniform practical expo-
nential stability, Lyapunov stability, parametric uncertainty.

1. Introduction

It is well known that most plants in industry show significant nonlinearities, which
usually make the analysis and controller design difficult. In order to overcome such dif-
ficulties, various schemes have been developed in the past two decades, among which a
successful approach is the fuzzy control ( [20], [22], [23], [30]). In recent years, Takagi-
Sugeno (T-S) fuzzy models [22] have become a useful tool to deal with a class of non-
linear systems. The models can be described by a set of ”if-then” rules which gives local
linear approximations of an underlying system.

The stability analysis and control design for T-S fuzzy systems keep attracting re-
searchers for decades ( [1], [6], [7], [26], [27], [31]). The Lyapunov stability theory is
the main approach for these kinds of problems. Among them, the simplest approaches
consists in looking for a common quadratic Lyapunov function (CQLF) by using the con-
cept of the parallel distributed compensation (PDC) technique ( [19], [26], [27], [29]) to
design a stabilizing controller. However, another important issue in stability analysis of
nonlinear systems may be how to study the behavior of the solutions in the case when
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they converge to a small neighborhood of the origin. To deal with these situation, the
concept of practical stability ( [12], [13], [16]), which is derived from the so called, fi-
nite time stability, is more useful. Indeed, the practical stability for nonlinear systems
has been widely investigated in mathematical theory. In these studies, the origin was not
supposed to be an equilibrium point of the system. So, we can no longer expect to design
a controller that guarantees the stability of the origin as an equilibrium point. In [3], [17]
and [18], some controllers are constructed to guarantee exponential stability of a ball
containing the origin of the state space where the radius of this ball can be made arbi-
trary small. The authors in [33], introduced the notion of input to state practical stability
to design of robust adaptive controllers for nonlinear systems with dynamic uncertain-
ties. In [32], the concept of input to state practical stability is extended to stochastic case
and an output feedback controller is proposed for a class of stochastic nonlinear systems
with uncertain nonlinear functions. By using the fuzzy approach the authors in [14], have
investigated the practical stability of a class of uncertain T-S fuzzy systems where the
uncertainties satisfy the so called matching conditions.

In this paper, we deal with the uniform ultimate boundedness for a class of Takagi-
Sugeno fuzzy systems in presence of external disturbances. The objective is to guarantee,
no matter how we select the uncertain external disturbances, that the state will eventually
end up and remain within some pre-specified region. When this region is a small neigh-
borhood about the origin, the concept of uniform ultimate boundedness is equivalent to
practical stability. Therefore, we are interested in studying the global uniform practical
exponential stability for a class of uncertain Takagi-Sugeno fuzzy systems in term of
convergence toward a neighborhood of the origin. The main novelty of this paper relies
on the fact that the proposed approach for stability analysis allows for the computation of
the bound which characterize the exponential rate of convergence of the solutions. The
common quadratic Lyapunov function and parallel distributed compensation controller
are used to show the ultimate boundedness of the solutions of the uncertain T-S fuzzy
systems, even when the origin is not an equilibrium point of the system, provided that
the uncertainties are supposed uniformly bounded by known integrable functions. Com-
pared to classical LMIs conditions, the new LMIs are a little bit more severe in order to
handle the uncertainties. Then, it is possible to prove systems performance by adjusting
the practical stability conditions.

The remainder of this paper is organized as follows: section 2 reviews the conven-
tional T-S fuzzy model and issues about stability. Section 3 presents the global uniform
practical exponential stability for T-S fuzzy uncertain systems in term of convergence
toward a neighborhood of the origin, furthermore new LMIs are presented in order to
handel the uncertainties. Section 4 presents the numerical examples.
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2. Takagi-Sugeno fuzzy systems

Consider a class of the continuous-time T-S fuzzy control system which can be de-
scribed by the following fuzzy rules,

Rule i : If z1(t) is Mi1 and z2(t) is Mi2 ... and zp(t) is Mip, then

ẋ(t) = Aix(t)+Biu(t), i = 1,2, ...,r,

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, Ai ∈ Rn×n and
Bi ∈ Rn×m are the system matrix input matrix, i = 1, ...,r is the number of fuzzy rules,
Mi j are the inputs fuzzy sets, z(t) = [z1(t), ...,zp(t)]T are measurable variables, i.e., the
premise variables. Using weighted average defuzzifiers, the aggregated fuzzy model is
given by

ẋ(t) =

r

∑
i=1

wi(z)
(
Aix(t)+Biu(t)

)
r

∑
i=1

wi(z)
,

where

wi(z) =
r

∏
i=1

Mi j(z j).

Let µi(z) be the membership functions that belong to class C 1, i,e., they are continu-
ous differentiable and defined as

µi(z) =
wi(z)

r

∑
i=1

wi(z)
.

Then the fuzzy system has the state-space form

ẋ(t) =
r

∑
i=1

µi(z)
(
Aix(t)+Biu(t)

)
. (1)

µi are such that µi(z)­ 0 for i = 1,2, ...,r and
r

∑
i=1

µi(z) = 1.

Many published results, concerning the control of the fuzzy system, are based on
the PDC principle. The design of the fuzzy controller shares the same antecedent as the
fuzzy system and employs a linear state feedback control in the consequent part. For
each local dynamics the controller is defined as

Rule i : If z1(t) is Mi1 and z2(t) is Mi2 ... and zp(t) is Mip, then

u(t) =−Kix(t), i = 1,2, ...,r, (2)
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where Ki is the local state feedback gain. Consequently, the defuzzified result is

u(t) =−
r

∑
i=1

µi(z)Kix(t). (3)

The system (1) in closed-loop with the fuzzy controller (3) yields the following fuzzy
system,

ẋ(t) =
r

∑
i=1

r

∑
j=1

µi(z)µ j(z)
(
Ai −BiK j

)
x(t). (4)

A sufficient condition for the stability is deduced using Lyapunov’s direct method. Sup-
pose that a common positive definite matrix P exists, so that the following conditions are
satisfied [9].

(Ai −BiKi)
T P+P(Ai −BiKi)< 0, i = 1,2, ...,r,

and
1
2
(Ai −BiK j +A j −B jKi)

T P+
1
2

P(Ai −BiK j +A j −B jKi)< 0, 1¬ i < j ¬ r.

When these conditions are satisfied, the fuzzy system (4) is asymptotically stable. The
design work can be transformed into a convex problem [8], which is efficiently solved
by linear matrix inequalities optimization. If the solution is feasible, meaning that the
stabilization constraints are met, then local state feedback gains are obtained. Relaxed
results on stabilization and state feedback H∞ Control conditions for T-S Fuzzy systems
were given in [24].

3. Control of uncertain fuzzy systems

Motivated by the results of the above section concerning the control of fuzzy-model,
we will extend the T-S fuzzy system with the presence of external disturbances [21].
Consider the following T-S fuzzy uncertain model,

Rule i : If z1(t) is Mi1 and z2(t) is Mi2 ... and zp(t) is Mip, then

ẋ(t) = Aix(t)+Biu(t)+ fi(t,x(t)), i = 1,2, ...,r. (5)

The fuzzy system is then inferred to be

ẋ(t) =
r

∑
i=1

µi(z)
(

Aix(t)+Biu(t)+ fi(t,x(t))
)
. (6)

The function fi represent the uncertain external disturbance of each fuzzy subsystem and
are time-varying satisfying the following inequality,

∥ fi(t,x(t))∥¬ αi(t)∥x(t)∥+βi(t), i = 1,2, ...,r, (7)

for all t ­ 0 and x ∈ Rn, where αi and βi are known nonnegative continuous functions.
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Remark 2 Inequality (7) means that the time-varying function fi may be bounded
and/or unbounded on time. For the knowledge of the authors, this is new.

Suppose the following assumption,

(H1) The pairs (Ai,Bi), i = 1, ...,r, are controllable, that is each nominal local model is
controllable.

The fuzzy control rule is defined as above and we will consider the fuzzy uncertain
system (6) Therefore, the closed-loop system with respect the fuzzy control (2 - 3) is
given by

ẋ(t) =
r

∑
i=1

r

∑
j=1

µi(z)µ j(z)
(
Ai −BiK j

)
x(t)+

r

∑
i=1

µi(z) fi(t,x(t)). (8)

Thus,

ẋ(t) =
r

∑
i=1

µ2
i Giix(t)+2

r

∑
i< j

µiµ jGi jx(t)+
r

∑
i=1

µi fi(t,x(t)),

where
Gii = Ai −BiKi

and
Gi j =

1
2
(Ai −BiK j +A j −B jKi).

The controller synthesis initially considers the stability of the local fuzzy dynamics. That
is, the stable feedback gains are determined for every subsystem. Suppose that there exist
positive symmetric and definite matrices P, Qi, and Qi j (i < j), and some matrices Ki,
i = 1, ...,r, such that the following inequalities [15] hold,

GT
ii P+PGii <−Qi, i = 1,2, ...,r, (9)

and
GT

i jP+PGi j <−Qi j, 1¬ i < j ¬ r. (10)

Based on this assumption, each nominal local model is controllable and a suitable feed-
back gain can be obtained.

As a first step, we need to recall what is meant by uniformly ultimately bounded
and uniform global practical exponential stability of dynamic systems ( [2], [4], [5]).
Consider a system described by

ẋ = F(t,x) (11)

with t ∈ R+ is the time and x ∈ Rn is the state.

Definition 1 The system (11) is said uniformly ultimately bounded if there exists R > 0,
such that for all R1 > 0, there exists a T = T (R1)> 0 such that

∥x(t0)∥¬ R1 ⇒∥x(t)∥¬ R for all t ­ t0 +T and t0 ­ 0.
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Definition 2 The system (11) is said uniformly globally practically exponentially stable,
if there exists a ball

Bη = {x ∈ Rn / ∥x∥¬ η},
such that Bη is uniformly globally practically exponentially stable, it means that, there
exists η > 0 such that, for all ε > η, there exists ε = ε(ε) > 0 such that, for all t0 ­ 0,
∥x(t0)∥¬ ε, we have

∥x(t)∥¬ γ∥x(t0)∥e−υ(t−t0)+η, for all t ­ t0, (12)

with γ > 0, υ > 0.

The inequality (12) implies that x(t) will be bounded by a small bound η > 0, that
is, ∥x(t)∥ will be small for sufficiently large t. It means that (11) will be uniformly
ultimately bounded for sufficiently large t. If in (12) η can be replaced by a smooth map
η(t) as a function of t which tends to zero as t tends to +∞, then the ultimate bound
approaches to zero.

Remark 3 The goal of this paper is to find some conditions on the functions αi(t) and
βi(t) such that the fuzzy system (8) is globally uniformly practically exponentially stable.
If βi(t) = 0, for all i = 1, ...,r, the fuzzy uncertain system (8) has an equilibrium point at
the origin. In this case, we can analyze the stability of the closed-loop system behavior
for the origin as an equilibrium point. If βi(t) ̸= 0, for some i = 1, ...,r, then the origin
can will not be an equilibrium point of the fuzzy uncertain system (8). In this case, we
study the convergence of the solutions toward a neighborhood of the origin.

Let

α(t) :=

(
r

∑
i=1

αi(t)2

) 1
2

,

such that α is bounded and to satisfy: there exists Mα a positive scalar constant satisfy,
+∞∫
0

α(t)dt ¬Mα <+∞.

In the first part, let consider the following assumption,

(H2) There exists Mβ a positive scalar constant satisfy,

+∞∫
0

β2(t)dt ¬Mβ <+∞,

where

β(t) :=

(
r

∑
i=1

βi(t)2

) 1
2

.
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To find an estimation as in (12), we will impose a restriction on the upper bound of the
uncertain term formulated in the following condition,

(H3)

α(t)<
1
2

λ0

λmax(P)
(13)

where λ0 = inf{(λmin(Qi); i = 1, ...,r);(λmin(Qi j);1¬ i < j ¬ r)}, λmin(max) denotes the
smallest (largest) eigenvalue of the matrix.

Remark 4 The inequality (13) is equivalent to the following LMIs,

P <
1

2α(t)
Qi, i = 1, ...,r, (14)

and
P <

1
2α(t)

Qi j, 1¬ i < j ¬ r. (15)

Compared to classical LMI conditions, the new LMIs are a little bit more sever in order
to handle the time varying uncertain term.

Remark 5 The matrices P, Qi, Qi j (i < j) and Ki can be obtained using the following
LMIs,

X > 0,

X <
1

2α(t)
XQiX , i = 1, ...,r,

X <
1

2α(t)
XQi jX , 1¬ i < j ¬ r,

XAT
i +AiX −MT

i BT
i −BiMi <−XQiX , i = 1, ...,r,

XAT
i +AiX +XAT

j +A jX −MT
j BT

i −MT
i BT

j −BiM j −B jMi <−2XQi jX , 1¬ i < j ¬ r,

and 
Q1 Q12 . . . Q1r

Q12 Q22
...

...
. . . Qr(r−1)

Q1r . . . Qr(r−1) Qr

> 0,

where X = P−1, Ki = MiP.

Now, one can state the following theorem.
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Theorem 3 Suppose that the assumptions (H1), (H2) and (H3) hold and there exist a
common positive definite matrix P and some feedback gain matrices Ki, i = 1, ...,r, such
that the stability conditions (9-10) are satisfied, then the fuzzy closed-loop system (8)
with the control laws (2-3) is guaranteed to be globally uniformly practically exponen-
tially stable.

Proof. Consider the Lyapunov function candidate V (t,x) = xT Px. It’s derivative with
respect to time is given by,

V̇ (t,x) =
r

∑
i=1

µ2
i xT (GT

ii P+PGii)x+2
r

∑
i< j

µiµ jxT (GT
i jP+PGi j)x+2xT P

r

∑
i=1

µi fi(t,x(t)).

The first two terms on the right-hand side constitute the derivative of the Lyapunov
function V (x) with respect the nominal system, while the third term is the effect of the
perturbation. On the one hand, we have

xT (GT
ii P+PGii)x¬−λmin(Qi)∥x∥2, i = 1,2, ...,r,

and
xT (GT

i jP+PGi j)x¬−λmin(Qi j)∥x∥2, 1¬ i < j ¬ r.

It follows that,

V̇ (t,x)¬−
r

∑
i=1

µ2
i λmin(Qi)∥x∥2 −2

r

∑
i< j

µiµ jλmin(Qi j)∥x∥2 +2xT P
r

∑
i=1

µi fi(t,x(t)).

Thus,

V̇ (t,x)¬−
( r

∑
i=1

µ2
i λmin(Qi)+2

r

∑
i< j

µiµ jλmin(Qi j)
)
∥x∥2 +2xT P

r

∑
i=1

µi fi(t,x(t)).

Then, one gets

V̇ (t,x)¬−λ0∥x∥2
r

∑
i=1

r

∑
i=1

µiµ j +2xT P
r

∑
i=1

µi fi(t,x(t)).

Since,
r

∑
i=1

r

∑
j=1

µiµ j = 1,

then, we have

V̇ (t,x)¬−λ0∥x∥2 +2xT P
r

∑
i=1

µi fi(t,x(t)).

On the other hand, we have

∥
r

∑
i=1

µi fi(t,x(t))∥¬
r

∑
i=1

µi(αi(t)∥x∥+βi(t)).



STABILIZATION OF A CERTAIN CLASS
OF FUZZY CONTROL SYSTEMS WITH UNCERTAINTIES 461

Taking into account the above expressions, it follows that

V̇ (t,x)¬−λ0∥x∥2 +2∥x∥∥P∥
r

∑
i=1

µi(αi(t)∥x∥+βi(t)).

Thus, by using the Cauchy-Schwartz inequality, one has

V̇ (t,x)¬−λ0∥x∥2 +2∥x∥∥P∥
(
(

r

∑
i=1

µ2
i )

1
2 (

r

∑
i=1

αi(t)2)
1
2 ∥x∥+(

r

∑
i=1

µ2
i )

1
2 (

r

∑
i=1

βi(t)2)
1
2
)
.

It follows that,

V̇ (t,x)¬−λ0∥x∥2 +2∥P∥(
r

∑
i=1

αi(t)2)
1
2 ∥x∥2 +2∥P∥(

r

∑
i=1

βi(t)2)
1
2 ∥x∥.

Hence,

V̇ (t,x)¬−
(

λ0 −2∥P∥(
r

∑
i=1

αi(t)2)
1
2

)
∥x∥2 +2∥P∥(

r

∑
i=1

βi(t)2)
1
2 ∥x∥.

Since,
λmin(P)∥x∥2 ¬V (t,x) = xT Px¬ λmax(P)∥x∥2,

then, by taking ∥P∥= λmax(P), yields

V̇ (t,x)¬− 1
λmax(P)

(
λ0 −2λmax(P)α(t)

)
V (t,x)+2

λmax(P)

λ
1
2
min(P)

β(t)V (t,x)
1
2 .

Let,

a(t) =
1

λmax(P)

(
λ0 −2λmax(P)α(t)

)
,

b(t) = 2
λmax(P)

λ
1
2
min(P)

β(t).

With the previous notations, it follows that

V̇ (t,x)¬−a(t)V (t,x)+b(t)V (t,x)
1
2 .

In the last expression, we make the following change of variable, w(t) = V (t,x)
1
2 . The

derivative with respect to time is given by

ẇ(t) =
V̇ (t,x)

2V (t,x)
1
2
.
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This implies that,

ẇ(t)¬−1
2

a(t)w(t)+
1
2

b(t).

Letting
z(t) = w(t)e

1
2
∫ t

t0
a(s)ds

it follows that,

ż(t) =
(
ẇ(t)+

1
2

a(t)w(t)
)
e

1
2
∫ t

t0
a(s)ds ¬ 1

2
b(t)e

1
2
∫ t

t0
a(s)ds

.

Integrating between t0 and t, one obtains for all t ­ t0,

z(t)¬ z(t0)+
1
2

t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds.

By the fact that z(t) = w(t)e
1
2
∫ t

t0
a(s)ds

, we obtain

w(t)¬ w(t0)e
− 1

2
∫ t

t0
a(s)ds

+
1
2

 t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds

e−
1
2
∫ t

t0
a(s)ds

. (16)

Using the forms of a(t) and b(t), we first compute −1
2
∫ t

t0 a(s)ds.

−1
2

t∫
t0

a(s)ds =−1
2

λ0

λmax(P)
(t − t0)+

t∫
t0

α(s)ds¬−1
2

λ0

λmax(P)
(t − t0)+Mα.

It follows that, the first term on the right-hand side of (3.12) satisfies,

e

−1
2

t∫
t0

a(s)ds

¬ eMαe−
1
2

λ0
λmax(P)

(t−t0). (17)

Next, consider the second term on the right-hand side of (3.12). We have,

1
2

 t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds

e−
1
2
∫ t

t0
a(s)ds

=

 t∫
t0

λmax(P)

λ
1
2
min(P)

β(s)e
1
2

λ0
λmax(P)

(s−t0)−
∫ s

t0
α(ξ)dξds

eMαe−
1
2

λ0
λmax(P)

(t−t0).
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Note that, since α(t)­ 0 for all t ­ 0, then it is clear that

e

−
t∫

t0

α(ξ)dξ

¬ 1.

Thus,

1
2

 t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds

e−
1
2
∫ t

t0
a(s)ds¬

 t∫
t0

λmax(P)

λ
1
2
min(P)

β(s)e
1
2

λ0
λmax(P)

(s−t0)ds

eMαe−
1
2

λ0
λmax(P)

(t−t0)

¬ λmax(P)

λ
1
2
min(P)

eMαe−
1
2

λ0
λmax(P)

(t−t0)

 t∫
t0

(β(s))2ds

 1
2
 t∫

t0

e
λ0

λmax(P)
(s−t0)ds

 1
2

.

Hence,

1
2

 t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds

e−
1
2
∫ t

t0
a(s)ds ¬M

1
2
β eMα

λ
3
2
max(P)

λ
1
2
min(P)λ

1
2
0

. (18)

The inequality (16) in conjunction with (17) and (18), yields

w(t)¬ w(t0)eMαe−
1
2

λ0
λmax(P)

(t−t0)+M
1
2
β eMα

λ
3
2
max(P)

λ
1
2
min(P)λ

1
2
0

.

It follows that,

V (t,x)
1
2 ¬V (t0,x(t0))

1
2 eMαe−

1
2

λ0
λmax(P)

(t−t0)+M
1
2
β eMα

λ
3
2
max(P)

λ
1
2
min(P)λ

1
2
0

.

Therefore,

∥x(t)∥¬ λ
1
2
max(P)

λ
1
2
min(P)

eMα∥x(t0)∥e−
1
2

λ0
λmax(P)

(t−t0)+M
1
2
β eMα

λ
3
2
max(P)

λmin(P)λ
1
2
0

.

Hence, we obtain an estimation as in (12) with

γ =
λ

1
2
max(P)

λ
1
2
min(P)

eMα ,

υ =
1
2

λ0

λmax(P)
,
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and

η f = M
1
2
β eMα

λ
3
2
max(P)

λmin(P)λ
1
2
0

.

Therefore, Bη f is globally uniformly practically exponentially stable.

Remark 6 This bound can be minimized by solving the following optimization prob-
lem: Find P, Qi, Qi j i < j and Ki, i, j = 1, ...,r, and maximize ε1, ε2, ε3, ε4, ε5 and ε6
subject to:

P = PT > 0, P > ε1I, −P >−ε2I,

P <
1

2α(t)
Qi − ε3I, i = 1, ...,r,

P <
1

2α(t)
Qi j − ε4I, 1¬ i < j ¬ r,

GT
ii P+PGii <−Qi − ε5I, i = 1, ...,r,

GT
i jP+PGi j <−Qi j − ε6I, 1¬ i < j ¬ r,

and 
Q1 Q12 . . . Q1r

Q12 Q22
...

...
. . . Qr(r−1)

Q1r . . . Qr(r−1) Qr

> 0.

Where I is the matrix identity.

Remark 7 Compared to the existing results, such as the input-output methods and slack
matrix method as in ( [10], [11], [25]), in this work the quadratic Lyapunov function
and the PDC controller techniques can be used to show the ultimate boundedness of the
solutions of the uncertain T-S fuzzy systems, even when the origin is not an equilibrium
point of the system. Therefore, we can study the convergence of the solutions toward a
neighborhood of the origin and this is what we mean by practical stability.

In the second part, we suppose the following assumption.

(H ′
2)

δ(t)¬Mδ, for all i = 1,2, ...,r and t ­ 0, (19)

where

δ(t) :=
r

∑
i=1

µiβi(t)

and Mδ is a positive constant.
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Theorem 4 Suppose that the assumptions (H1), (H ′
2) and (H3) hold and there exist

a common positive definite matrix P and some feedback gain matrices Ki, i = 1, ...,r,
such that the stability conditions (9 - 10) are satisfied, then the fuzzy closed-loop sys-
tem (8) with the control laws (2 - 3) is guaranteed to be globally uniformly practically
exponentially stable.

Proof. Let consider the Lyapunov function candidate V (t,x) = xT Px. It’s derivative with
respect to time is given by,

V̇ (t,x) =
r

∑
i=1

µ2
i xT (GT

ii P+PGii)x+2
r

∑
i< j

µiµ jxT (GT
i jP+PGi j)x+2xT P

r

∑
i=1

µi fi(t,x(t)),

then, we have

V̇ (t,x)¬−λ0∥x∥2 +2xT P
r

∑
i=1

µi fi(t,x(t)).

Thus, by using the following inequality,

∥ fi(t,x(t))∥¬ αi(t)∥x∥+βi(t),

one has

V̇ (t,x)¬−
(

λ0 −2∥P∥(
r

∑
i=1

αi(t)2)
1
2

)
∥x∥2 +2Mδ∥P∥∥x∥.

Then, by taking ∥P∥= λmax(P), yields

V̇ (t,x)¬− 1
λmax(P)

(
λ0 −2λmax(P)α(t)

)
V (t,x)+2Mδ

λmax(P)

λ
1
2
min(P)

V (t,x)
1
2 .

By using the same idea as in the proof of theorem 1, we obtain the following estimation

∥x(t)∥¬ λ
1
2
max(P)

λ
1
2
min(P)

∥x(t0)∥eMαe−
1
2

λ0
λmax(P)

(t−t0)+2MδeMα
λ2

max(P)
λmin(P)λ0

.

It follows that,

Bη = {x ∈ Rn / ∥x∥¬ η = 2MδeMα
λ2

max(P)
λmin(P)λ0

},

is globally uniformly practically exponentially stable.

Motivated by the above results, the design principle can be extended to the T-S fuzzy
system with parametric uncertainties. Indeed, one can consider the following T-S fuzzy
uncertain model,

Rule i : If z1(t) is Mi1 and z2(t) is Mi2 ... and zp(t) is Mip, then

ẋ(t) = (Ai +∆Ai)x(t)+Biu(t)+ fi(t,x(t)), i = 1,2, ...,r. (20)
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Notably, the model is almost the same as (5) except for the term ∆Ai which stand for the
parametric uncertainties for each subsystem and time-varying with appropriate dimen-
sions. The fuzzy system is then inferred to be

ẋ(t) =
r

∑
i=1

µi(z)
(
(Ai +∆Ai)x(t)+Biu(t)+ fi(t,x(t))

)
. (21)

Then, let us consider the following assumptions.

(H4) The parametric uncertainties ∆Ai is norm bounded and structured, in the form

∆Ai = ρi(t)DiEi(t)Fi,

where Di, and Fi are known real constant matrices with appropriate dimensions, Ei(t), is
unknown matrix function which satisfy,

ET
i (t)Ei(t)¬ I, and Ei(t)ET

i (t)¬ I for all t ­ 0,

and ρi(t) is a known continuous nonnegative scalar function and I is the identity matrix
of appropriate dimension. Let

ρ(t) :=

(
r

∑
i=1

ρ2
i (t)

) 1
2

such that, there exists Mρ a positive scalar constant satisfy,

+∞∫
0

ρ(t)dt ¬Mρ <+∞.

(H5) We suppose that ρ(t) satisfies the following restriction,(
λ0 −2σ1(λ2

max(P)+σ2)ρ(t)−2λmax(P)α(t)
)
> 0, for all t ­ 0, (22)

where λ0 = inf{(λmin(Qi); i = 1, ...,r),(λmin(Qi j);1 < i¬ j < r)}, σ1 = max(∥Di∥2, i =
1, ...,r) and σ2 = max(∥Fi∥2, i = 1, ...,r).

Remark 8 The inequality (22) is equivalent to the following LMIs,

P <
1

2σρ(t)
Qi, i = 1, ...,r, (23)

P <
1

2α(t)
Qi, i = 1, ...,r, (24)
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P <
1

2σρ(t)
Qi j, 1¬ i < j ¬ r, (25)

and
P <

1
2α(t)

Qi j, 1¬ i < j ¬ r, (26)

where σ = inf(σ1,σ2).

Remark 9 Similar to the remark (8), in this case the matrices P, Qi, Qi j (i < j) and Ki
can be obtained using the following LMIs,

X > 0,

X <
1

2α(t)
XQiX , i = 1, ...,r,

X <
1

2σρ(t)
XQiX , i = 1, ...,r,

X <
1

2α(t)
XQi jX , 1¬ i < j ¬ r,

X <
1

2σρ(t)
XQi jX , 1¬ i < j ¬ r,

XAT
i +AiX −MT

i BT
i −BiMi <−XQiX , i = 1, ...,r,

XAT
i +AiX +XAT

j +A jX −MT
j BT

i −MT
i BT

j −BiM j −B jMi <−2XQi jX , 1¬ i < j ¬ r,

and 
Q1 Q12 . . . Q1r

Q12 Q22
...

...
. . . Qr(r−1)

Q1r . . . Qr(r−1) Qr

> 0,

where X = P−1, Ki = MiP.

Then, let consider the following theorem.

Theorem 5 Suppose that the assumptions (H1), (H2), (H4) and (H5) hold and there ex-
ist a common positive definite matrix P and some feedback gain matrices Ki, i = 1, ...,r,
such that the stability conditions (9-10) are satisfied, then the fuzzy closed-loop system
(21) with the control laws (2-3) is guaranteed to be globally uniformly practically expo-
nentially stable.
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Proof. Consider the Lyapunov function candidate V (t,x) = xT Px. It’s derivative with
respect to time is given by,

V̇ (t,x) =
r

∑
i=1

µ2
i xT (GT

ii P+PGii)x+2
r

∑
i< j

µiµ jxT (GT
i jP+PGi j)x+2xT

r

∑
i=1

µiP∆Aix

+2xT P
r

∑
i=1

µi fi(t,x(t)).

By the fact that,

2xT P∆Aix = xT (∆AT
i P+P∆Ai)x

2xT P∆Aix¬ ρi(t)xT PDiDT
i Px+ρi(t)FT

i Fix

¬ ρi(t)xT (PDiDT
i P+FT

i Fi)x.

we have

V̇ (t,x)¬−λ0∥x∥2 +2
r

∑
i=1

µiρi(t)∥P∥2∥Di∥2∥x∥2 +2
r

∑
i=1

µiρi(t)∥Fi∥2∥x∥2

+2λmax(P)α(t)∥x∥2 +2λmax(P)β(t)∥x∥.

Then,

V̇ (t,x)¬−λ0∥x∥2 +2σ1λ2
max(P)

r

∑
i=1

µiρi(t)∥x∥2 +2σ2

r

∑
i=1

µiρi(t)∥x∥2

+2λmax(P)α(t)∥x∥2 +2λmax(P)β(t)∥x∥.

By using the Cauchy-Schwartz inequality, one has

V̇ (t,x)¬−λ0∥x∥2 +2σ1λ2
max(P)ρ(t)∥x∥2 +2σ2ρ(t)∥x∥2 +2λmax(P)α(t)∥x∥2

+2λmax(P)β(t)∥x∥.

It follows that,

V̇ (t,x)¬−
(

λ0 −2
(
σ1λ2

max(P)+σ2
)
ρ(t)−2λmax(P)α(t)

)
∥x∥2

+2λmax(P)β(t)∥x∥.

Then,

V̇ (t,x)¬− 1
λmax(P)

(
λ0 −2

(
σ1λ2

max(P)+σ2
)
ρ(t)−2λmax(P)α(t)

)
V (t,x)

+2
λmax(P)

λ
1
2
min(P)

β(t)V (t,x)
1
2 .
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Let,

a(t) =
1

λmax(P)

(
λ0 −2

(
σ1λ2

max(P)+σ2
)
ρ(t)−2λmax(P)α(t)

)
,

b(t) = 2
λmax(P)

λ
1
2
min(P)

β(t).

It follows that
V̇ (t,x)¬−a(t)V (t,x)+b(t)V (t,x)

1
2 .

Using the same idea as in the proofs of theorems 1 and 2 we obtain the following esti-
mation of the state,

∥x(t)∥¬ λ
1
2
max(P)

λ
1
2
min(P)

eρMρeMα∥x(t0)∥e−
1
2

λ0
λmax(P)

(t−t0)+M
1
2
β eρMρeMα

λ
3
2
max(P)

λmin(P)λ
1
2
0

,

where

ρ =
σ1λ2

max(P)+σ2

λmax(P)
.

Here, we obtain an estimation as in (12) with

γ =
λ

1
2
max(P)

λ
1
2
min(P)

eρMρeMα ,

υ =
1
2

λ0

λmax(P)
,

and

ηρα = M
1
2
β eρMρeMα

λ
3
2
max(P)

λmin(P)λ
1
2
0

.

So, Bηρα is uniformly globally practically exponentially stable.

Corollary 1 If we suppose that the assumptions (H1), (H ′
2), (H4) and (H5) hold and

there exist a common positive definite matrix P and some feedback gain matrices Ki, i =
1, ...,r, such that the stability conditions (9-10) are satisfied, then the fuzzy closed-loop
system (21) with the control laws (2-3) is guaranteed to be uniformly globally practically
exponentially stable such that the ball ,

Bηρα = {x ∈ Rn / ∥x∥¬ η = 2MδeρMρeMα
λ2

max(P)
λmin(P)λ0

},

is globally uniformly practically exponentially stable.
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According to the above analysis, the design procedure for uncertain Takagi-Sugeno
fuzzy systems is summarized as follows.

Step 1: Confirm that assumption (H1) is satisfied for the designed system.
Step 2: Verify that the functions α(t), ρ(t) and β(t) satisfy the assumptions of integra-
bility.
Step 3: Solve the LMI problem indicated in remark 3.8 and obtain P, Qi, Qi j (i < j), and
Ki, i = 1, ...,r.
Step 4: Simulate the system in order to plot its trajectories.

4. Simulation examples

To illustrate the proposed fuzzy control approach we propose the following exam-
ples.

Example 1 Consider a flexible-joint robot arm. The system is described by the following
equations ( [28]):

I1θ̈1(t)+mglsin(θ1)+ k(θ1 −θ2) = 0, (27)

I2θ̈2(t)+ k(θ2 −θ1) = u. (28)

where u is the torque input, I1 is the link inertia, I2 is the motor inertia, m is the mass,
g is the gravity constant, l is the link length, k is the stiffness, θ1 and θ2 are the angular
positions of the first and second joints respectively. Let x1 = θ1, x2 = θ̇1, x3(t) = θ2,
x4 = θ̇2. The dynamic equations (27) and (28) can be rewritten as

ẋ1(t) = x2(t)
ẋ2(t) = I−1

1 (−mglsin(x1(t))+ kx3(t)− kx1(t))
ẋ3(t) = x4(t)
ẋ4(t) = I−1

2

(
k(x1 − x3)+u(t)

)
,

where x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
, is the state vector. One can represent

exactly the system by the following two-rule fuzzy model:

Rule 1 : If x1 is M11 then
ẋ(t) = A1x(t)+B1u(t)

Rule 2 : If x1 is M21 then
ẋ(t) = A2x(t)+B2u(t),
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where

A1 =


0 1 0 0

(mgl − k)I−1
1 0 kI−1

1 0
0 0 0 1

kI−1
2 0 −kI−1

2 0

 , B1 =


0
0
0

I−1
2

 ,

A2 =


0 1 0 0

(−mgl − k)I−1
1 0 kI−1

1 0
0 0 0 1

kI−1
2 0 −kI−1

2 0

 , B2 =


0
0
0

I−1
2

 .
The membership functions for rule 1 and 2 are respectively:

µ1(x1) =


1
2
− sin(x1)

2x1
if x1 ̸= 0

0 if x1 = 0
and µ2(x1) = 1−µ1(x1).

In this simulation, we choose I1 = I2 = 1kgm2, m = 0.01kg, k = 0.05Nm/rad, l = 1m,
g = 9.8ms−2. Using an LMI optimisation algorithm, we obtain:

P =


0.0439 0.1845 0.0155 0.0081
0.1845 0.8899 0.0754 0.0424
0.0155 0.0754 0.0067 0.0037
0.0081 0.0424 0.0037 0.0026

 ,
the following feedback gains:

K1 =
[
26.2016 131.2200 11.7453 6.7109

]
and

K2 =
[
17.7564 90.4835 8.2953 4.7677

]
.

and the following positive definite matrices:

Q1 =


46.8501 −23.1530 11.5634 −0.2938
−23.1530 13.6945 −12.3291 0.1252
11.5634 −12.3291 228.6668 0.8527
−0.2938 0.1252 0.8527 292.7310

 ,
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Q2 =


46.8501 −2.8481 11.5634 −0.2282
−2.8481 2.4814 −8.6590 −0.0128
11.5634 −8.6590 228.6668 0.8683
−0.2282 −0.0128 0.8683 292.7303

 ,
and

Q12 =


416.0678 21.4119 −4.9959 −2.3294
21.4119 482.9281 9.8489 1.4868
−4.9959 9.8489 297.6419 1.3142
−2.3294 1.4868 1.3142 292.7490

 .
It can be easily shown that the following stability conditions are satisfied:

GT
ii P+PGii <−Qi, i = 1,2,

and
GT

12P+PG12 <−Q12.

Then, we have
λmin(P) = 0.0003, λmax(P) = ∥P∥= 0.9367

and
λ0 = inf{(λmin(Qi); i = 1,2),(λmin(Q12))}= 1.6513.

The resulting PDC control law is as follows:

Rule 1: If x1 is M11 then
u(t) =−K1x(t)

Rule 2: If x1 is M21 then
u(t) =−K2x(t).

That is,
u(t) =−µ1(x1(t))K1x(t)−µ2(x1(t))K2x(t).

This nonlinear control law guarantees the stability of the fuzzy control system (fuzzy
model + PDC control). Fig. 1 shows the response of the system using fuzzy model with
the PDC control for initial condition x1 = 1, x2 = 0, x3 = 0 and x4 = 0.

Now, we introduce the external disturbances and we approximate the system by the
following two-rule fuzzy model:
Rule 1 : If x1 is M11 then

ẋ(t) = A1x(t)+B1u(t)+ f1(t,x(t))

Rule 2 : If x1 is M21 then

ẋ(t) = A2x(t)+B2u(t)+ f2(t,x(t)),
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Figure 1: The state of the controlled system
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where

f1(t,x(t)) = f2(t,x(t)) =


0
0

λ0

4λmax(P)(1+ t2)
x2 +

1
2− sin(t)2

0

 .
We can see that

∥ f1(t,x)∥= ∥ f2(t,x)∥¬
λ0

4λmax(P)(1+ t2)
∥x∥+ 1

2− sin(t)2 , for all t ­ 0.

Therefore, we can choose

α1(t) = α2(t) =
λ0

4λmax(P)(1+ t2)
,

and
β1(t) = β2(t) =

1
2− sin(t)2 .

It follows that,
α(t) = (2)

1
2 α1(t), and δ(t) = β1(t).

Since
+∞∫
0

α(s)ds =
λ0π

2λmax(P)
, and δ(t)¬ 1,

then we can choose Mα =
λ0π

2λmax(P)
and Mδ = 1. Thus, by using theorem 1 the trajec-

tories of the system are globally uniformly exponentially convergent to the following
ball,

Bη = {x ∈ R2 / ∥x∥¬ η = 2MδeMα
λ2

max(P)
λmin(P)λ0

= 56479}.

Fig. 2 shows the response of the flexible-joint robot arm system for initial condition
x1 = 1, x2 = 0, x3 = 0 and x4 = 0. Also, it shows that the trajectories of the system are
globally uniformly ultimately bounded and they converge toward a neighborhood of the
origin, under external disturbances.
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Figure 2: The state of the controlled system under external disturbances
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Example 2 Consider the following nonlinear fuzzy planar system,

ẋ1 =−2x1 + sin(x1)u (29)
ẋ2 = x1 sin(x1)+u, (30)

where x(t) = [x1(t) x2(t)]T ∈ R2 is the state vector and u(t) is the input vector.
One can represent exactly the system by the following two-rule fuzzy model:

Rule 1 : If x1 is M11 then
ẋ(t) = A1x(t)+B1u(t)

Rule 2 : If x1 is M21 then
ẋ(t) = A2x(t)+B2u(t)

where

A1 =

[
−2 0
−1 0

]
, B1 =

[
−1
1

]
,

A2 =

[
−2 0
1 0

]
, B2 =

[
1
1

]
,

We define the membership functions as

µ1(x1(t)) =
1− sin(x1(t))

2
and µ2(x1(t)) =

sin(x1(t))+1
2

.

Using an LMI optimisation algorithm, yields

P =

[
0.0377 0.0000
0.0000 0.0183

]
,

the following feedback gains:

K1 =
[
−0.0452 0.7962

]
and K2 =

[
0.0452 0.7962

]
,

and the matrices:

Q1 =

[
0.0771 −0.0063
−0.0063 0.0145

]
, Q2 =

[
0.0771 0.0063
0.0063 0.0145

]
and Q12 =

[
0.1024 0.0000
0.0000 0.0196

]
.

Then, we have
λmin(P) = 0.0183, λmax(P) = ∥P∥= 0.0377

and
λ0 = inf{(λmin(Qi); i = 1,2),(λmin(Q12))}= 0.0139.
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Figure 3: The state responses of the system

Fig. 3 shows the stability of the fuzzy control system (4.1) and (4.2) (fuzzy model +
PDC control) with x1 = 1 and x2 = 0 as initial condition.

Now, we introduce parametric uncertainties and external disturbances and we
approximate the system by the following two-rule fuzzy models:

Rule 1 : If x1 is M11 then

ẋ(t) = (A1 +∆A1)x(t)+B1u(t)+ f1(t,x(t))

Rule 2 : If x1 is M21 then

ẋ(t) = (A2 +∆A2)x(t)+B2u(t)+ f2(t,x(t))

where
∆A1 = ρ1(t)FT

1 E1(t)F1,

∆A2 = ρ2(t)FT
2 E2(t)F2,

with

F1 = F2 =
[
0.1 0.1

]
and ρ1(t) = ρ2(t) =

λ0

4(2)
1
2 (∥F∥2λ2

max(P)+∥F∥2)(1+ t2)
,

and

f1(t,x(t)) = f2(t,x(t)) =

[
µ1 +µ2

0

]
On the one hand, we can see that

ρ(t) =
( r

∑
i=1

ρi(t)2) 1
2=

λ0

4(∥F1∥2λ2
max(P)+∥F1∥2)(1+ t2)

,
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also

+∞∫
0

ρ(s)ds =
λ0

4(∥F1∥2λ2
max(P)+∥F1∥2)

+∞∫
0

1
(1+ s2)

ds

=
πλ0

8(∥F1∥2λ2
max(P)+∥F1∥2)

,

therefore, we can get

Mρ =
πλ0

8(∥F1∥2λ2
max(P)+∥F1∥2)

.

On the other hand, we have

∥ f1(t,x(t))∥= ∥ f2(t,x(t))∥¬ 1,

then we can get

α1(t) = α2(t) = 0, β1(t) = β2(t) = 1 and δ(t) =
2

∑
i=1

µiβi(t) = 1,

therefore, we can choose Mα = 0 and Mδ = 1. Thus, by using Corollary (3.4), it follows
that, the system is uniformly globally exponentially converge to the following ball,

Bηρα = {x ∈ R2 / ∥x∥¬ η = 2MδeρMρeMα
λ2

max(P)
λmin(P)λ0

= 11.2365}.

where ρ = ∥F1∥2λ2
max(P)+ ∥F1∥2. The simulation results with initial conditions x1 = 1

and x2 = 0 are shown in figure 4. It shows that the trajectories of the system converge
toward a neighborhood of the origin, under parametric uncertainties and external distur-
bances.
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Figure 4: The state responses of the system under parametric uncertainties and external
disturbances
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5. Conclusion

In this paper, we have studied the global uniform practical exponential stability for
a class of uncertain T-S fuzzy systems in term of convergence toward a neighborhood of
the origin. The uncertainties are supposed uniformly to be bounded by known integrable
functions. We have used quadratic Lyapunov function and parallel distributed compen-
sation (PDC) controller techniques to show the global uniform practical exponential
stability of the closed-loop system. Therefore, new LMIs are obtained for the controller
in order to handel the uncertainties. Then, systems’ performance is proved by adjusting
the practical stability conditions. The effectiveness of the proposed theory is illustrated
by computer simulation of a flexible-joint robot arm and a planar systems.
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