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A new fuzzy iterative learning control algorithm
for single joint manipulator

MENG WANG, GUANGRONG BIAN and HONGSHENG LI

This paper present a new fuzzy iterative learning control design to solve the trajectory
tracking problem and performing repetitive tasks for rigid robot manipulators. Several times’
iterations are needed to make the system tracking error converge, especially in the first iteration
without experience. In order to solve that problem, fuzzy control and iterative learning control
are combined, where fuzzy control is used to tracking trajectory at the first learning period,
and the output of fuzzy control is recorded as the initial control inputs of ILC. The new algo-
rithm also adopts gain self-tuning by fuzzy control, in order to improve the convergence rate.
Simulations illustrate the effectiveness and convergence of the new algorithm and advantages
compared to traditional method.

Key words: iterative learning control, fuzzy control, fuzzy gain adjustment, single joint
manipulator.

1. Introduction

Iterative learning control (ILC) is widely used in the field of robot control. Most
of industrial robots repeat an identical task. It is not difficult to see the repeated error
under the same operating conditions. ILC starts from that inspiration. The main concept
of ILC is to update control inputs or desired trajectories with previous error. As a result
the tracking error of motion is reduced to be zero [1]. ILC is also a branch of intelligent
control. Because of its simplicity and efficient, ILC gets wide attention by control bound,
especially in the settlement of a class of dynamic position system with strong nonlinear
coupling and high position repeatability (such as industrial robots, CNC machine tools,
etc.), compared with other control methods which have the features and advantages of
simpler structure and better control effect [2].

Since ILC method was proposed by Uchiyama and presented as a formal theory by
Arimoto et al., this technique has been the center of interest of many researchers over the
last decades [3]. After nearly thirty years’ development, ILC has made great progress.
At the same time, other control theories are applied to ILC. Paper [4] combines fuzzy
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control with ILC with error gain self-tuning by fuzzy control. Papers [5-6] adopt adaptive
control based on ILC for the trajectory tracking in order to cope with the unknown model
parameters and disturbances.

Robot is a highly nonlinear and strongly coupled complex system. In most cases, the
kinetic model is not entirely known. This brings some difficulties to the design of con-
troller. Fuzzy control can overcome the difficulties caused by the uncertainty. However,
there exist human factors in fuzzy control, especially in the design of fuzzy rules. ILC
can provide high precision trajectory tracking for robot control, but it need several times’
iterative learning to make tracking error convergence. Before system error converging,
especially in the first iteration without experience, accuracy of trajectory tracking is low.
In view of respective characteristics of these two control method, this paper presents
a new fuzzy iterative learning control algorithm that switch between fuzzy control and
ILC. Fuzzy control is used to tracking trajectory at the first learning period, and the out-
puts of fuzzy control are recorded as the initial control inputs of ILC. In addition, fuzzy
logic system (FLS) is also used to regulate the gain matrix by adjusting learning fac-
tor according to system error information, in order to overcome disadvantage of lower
convergence rate because of fixed gain matrix.

2. Iterative learning control

ILC can improve a control task by iterative correction. The improvement scheme is
fully depends upon the algorithm part. By the proper selection and application of the
control algorithm for the ILC technique we can get the desired task to be resolved in a
faster manner [7]. A traditional P-type ILC updates the control input as a function of the
previous stored control input and the stored output error, whereas a D-type ILC updates
the control input as a function of the previous stored control input and the stored deriva-
tive of the output error [8]. In this paper, a close D type ILC is adopted, and convergence
analysis is given.

2.1. Basic principle of ILC

Given following nonlinear time-varying system:{
ẋ(t) = f (x(t),u(t), t)
y(t) = g(x(t),u(t), t).

(1)

ILC can be described as: within a finite time interval [0,T ], given expected response
yd(t) and initial state xd(t), find a control quantity uk(t) that can contribute the system to
obtaining output response yk(t) which is optimized compared to yk−1(t). If k → ∞, and
yk(t)→ yd(t) then ILC is convergent.
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Considering equation (1), using xk(t), yk(t) and uk(t) to represent state variable,
output variable and control variable, the kth iteration operation can be described as:{

ẋk(t) = f (xk(t),uk(t), t)
yk(t) = g(xk(t),uk(t), t).

(2)

The control input is updated iteratively in a certain way by using the error measurements
in the previous operation [9]:

uk+1(t) = L(uk(t),ek(t), t) (3)

where
ek(t) = yd(t)− yk(t). (4)

This may cause that the system output yk(t) gradually approaches the given reference
trajectory yd(t) . That is lim

k→∞
yk(t) = yd(t).

The function of ILC has much to do with iterative learning law that is composed of
control input and output error. The basic iterative learning law can be expressed as:

uk+1(t) = uk(t)+L(ek(t), t). (5)

The common forms of the learning law are: D type with learning law uk+1(t) = uk(t)+
Γėk(t), P type with learning law uk+1(t) = uk(t)+Γek(t) and other forms, such as PD
type, PI type and PID type.

Equation (5) is open loop iterative learning law, which uses the control input and
output deviation of kth iteration to conduct control input of (k+1) iteration. While close
loop iterative learning law uses the control input of kth iteration and output deviation of
(k+1) iteration to conduct control input of (k+1) iteration. So the close type iterative
learning law of equation (5) can be wrote as:

uk+1(t) = uk(t)+L(ek+1(t), t). (6)

2.2. Convergence analysis of ILC

In this paper, ILC for nonlinear systems is studied. Consider the following nonlinear
system: {

ẋk(t) = f (t,xk(t)+B(t)uk(t)
yk(t) =C(t)xk(t.)

(7)

According to the given system, control target is to design a nonlinear ILC that make the
system continuous operating according to the iterative learning law. When k → ∞, the
system has uk(t)→ ud(t) and yk(t)→ yd(t).

In this paper, we adopt close D type iterative learning law that is described as:

uk+1(t) = uk(t)+Γėk+1(t). (8)
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In order to realize above control target, the following assumes are given to restrict ILC
system of equation (7) (8) [10]:

Assumption 1 Function f is globally uniformly Lipschiz condition in x on [0,T ] in the
sense of ∥ f (t,x1)− f (t,x2)∥6 M(∥x1 − x2∥), ∀t,x1,x2 where M is a positive constant.

Assumption 2 Expected trajectory is continuous for all t ∈ [0,T ].

Assumption 3 B(t) and C(t) are bounded for all t ∈ [0,T ]. There exist Ċ(t) and it is
bounded.

Assumption 4 There exists one and only one ud(t) that makes system state become and
system output become expected value.

Assumption 5 Matrix (I +Γ(t)C(t)B(t)) is invertible for all t ∈ [0,T ].

A system that meets the above assumptions is consistent with ILC design premise.
On the basis of the above assumptions, the convergence of the control is proved. When
the nonlinear system satisfies the above hypothesis, the following theorems and lemma
are established.

Lemma 1 If the operator Q : Cr[0,T ]→Cr[0,T ] satisfied the following conditions:

∥Q(x)(t)∥6 M(q+
t∫

0

∥x(s)∥ds), ∀x ∈Cr[0,T ], t ∈ [0,T ]

and

∥Q(x)(t)−Q(y)(t)∥6 M
t∫

0

∥x(s)− y(s)∥ds), ∀x,y ∈Cr[0,T ], t ∈ [0,T ]

where M and q are non negative constant, then we get that there exist one and only one
x(t) which make the equation x(t)+Q(t) = y(t), t ∈ [0,T ] set up for all y ∈Cr[0,T ].

Lemma 2 Suppose

(a) Serial {bk}k>0(bk > 0) converges to zero.

(b) Operator Q : Cr[0,T ]→Cr[0,T ] satisfies ∥Q(u)(t)∥6M(bk+
∫ t

0 ∥u(s)∥ds) where
constants M ­ 1.

(c) Operator P : Cr[0,T ]→Cr[0,T ] is defined as P(u)(t) = P(t)U(t), where P(t) is
r× r matrix of continuous functions.
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(d) ρ(P(t))6 1, ∀t ∈ [0,T ].

Then equation lim
n→∞

(P+Qn)(P+Qn−1) · · · (P+Q0)(u)(t) = 0 holds consistently for all

t ∈ [0,T ].

Theorem 5 Consider the nonlinear system described by equation (7), and it satisfies
the assumption conditions that discussed above. Choose equation (8) as closed loop D-
type Iterative learning law. If there exist Γ that makes ρ[(I +Γ(t)C(t))−1]< 1, t ∈ [0,T ]
hold, then the system has lim

n→∞
yk(t) = yd(t).

Proof Let
δxk(t) = xd(t)− xk(t)
δyk(t) = yd(t)− yk(t)
δuk(t) = ud(t)−uk(t)

and f1(t,x) = f (t,xd(t))− f (t,xd(t)− x(t)).

According to the kth iteration operation, we have:
δẋk(t) = f1(t,δxk(t))+B(t)δuk(t)
δẏk(t) =C(t)δxk(t)
δuk+1(t) = δuk(t)−Γ(t)δẏk+1(t).

(9)

According to equation (9), there is

δẏk(t) =C(t)δẋk(t)+Ċ(t)δxk(t)

=C(t) f1(t,δxk(t))+C(t)B(t)δuk(t)+Ċ(t)δxk(t)
(10)

so we can get

δẏk+1 = Ċ(t)δxk+1(t)+C(t) f1(t,δxk+1(t))+C(t)B(t)δuk+1(t). (11)

From equation (9) (10) (11), we can get

δuk+1(t) = δuk(t)−Γ(t)C(t)B(t)δuk+1(t)−Γ(t)Ċ(t)δuk+1(t)−Γ(t)C(t) f1(t,δxk+1(t))

= (I −Γ(t)C(t)B(t))−1δuk(t)− (I +Γ(t)C(t)B(t))−1(Γ(t)Ċ(t)δuk+1(t)
+Γ(t)C(t) f1(t,δxk+1(t))).

(12)
Define operator Gk : Cr[0,T ]→Cr[0,T ] as

Gk+1(δu)(t) = (I +Γ(t)C(t)B(t))−1(Γ(t)Ċ(t)δuk+1(t)+Γ(t)C(t) f1(t,δxk+1(t))). (13)

Define P(t) = (I +Γ(t)C(t)B(t))−1 as the solution of xk(t) based on dynamic equation.
Then equation (12) can turn into

δuk+1(t) = P(t)δuk(t)−Gk+1(δuk+1)(t). (14)
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According to Assumption (1) and equation (9), we have

∥x(t)∥6

∥∥∥∥∥∥x(0)+
t∫

0

f1(τ,x(τ))dτ+
t∫

0

B(τ)uk(τ)dτ)

∥∥∥∥∥∥
6 ∥x(0)∥+K f 1

t∫
0

∥x(τ)∥dτ)+
t∫

0

∥B(τ)uk(τ)∥dτ

(15)

where K f 1 > 0.
According to Bellman-Gronwall lemma and equation (15), there exist K f 2 > 0, such

that

∥x(t)∥6 K f 2(∥x(0)∥+
t∫

0

∥B(τ)uk(τ)∥dτ). (16)

Due to equation (13) (16), and Assumption 3, we can get ∥Gk(u)(t)∥ 6 K f 3(∥x(0)∥+∫ t
0 ∥uk(τ)∥dτ). Furthermore, we can get

∥Gk+1(δu)(t)∥6 K f 3(∥δxk+1(0)∥+
t∫

0

∥δu(τ)∥dτ). (17)

Supposing xw and xv are the solution of equation (7) when u = uw and u = uv separately,
from equation (13), we can obtain

∥Gk+1(δuw)(t)−Gk+1(δuv)(t)∥
=
∥∥P(t)Γ(t)Ċ(t)(δxw(t)−δxv(t))+P(t)Γ(t)C(t)( f1(t,δxw(t))− f1(t,δxv(t)))

∥∥
6
∥∥P(t)Γ(t)Ċ(t)

∥∥ · ∥δxw(t)−δxv(t)∥+∥P(t)Γ(t)C(t)∥ · ∥ f1(t,δxw(t))− f1(t,δxv(t))∥ .
(18)

From equation (15), we can get

∥xw(t)− xv(t)∥6

∥∥∥∥∥∥
t∫

0

( f1(τ,xw(τ))− f1(τ,xv(τ)))dτ

∥∥∥∥∥∥
+

t∫
0

∥B(τ)∥ ·
∥∥uw(k+1)(τ)−uv(k+1)(τ)

∥∥dτ).

(19)

According to Bellman-Gronwall lemma, equation (15), and Assumption 3, we can get

∥xw(t)− xv(t)∥6 K f 4

t∫
0

∥∥uw(k+1)(τ)−uv(k+1)(τ)
∥∥dτ). (20)
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Considering (18) and (20), there exists K f , such that

∥Gk+1(δuw)(t)−Gk+1(δuv)(t)∥6 K f

t∫
0

∥∥uw(k+1)(τ)−uv(k+1)(τ)
∥∥dτ. (21)

Because equation (17) (21) satisfied Lemma 1 and Lemma 2, there exist Gk+1, such that

δuk+1(t) = P(t)δuk(t)−Gk+1(Pδuk+1)(t) (22)

where Gk+1 satisfied
∥∥Gk+1(δu(t))

∥∥6 K f 5(∥δxk+1(0)∥+
∫ t

0 ∥δu(τ)∥dτ), K f 5 > 0.
Define operators Qk+1 : Cr[0,T ] → Cr[0,T ] as Qk+1(δuk+1)(t) =

−Gk+1(Pδuk+1)(t), so we can rewrite equation (22) as δuk+1(t) = (P+Qk+1)(δuk)(t) =
(P+Qk+1)(P+Qk) · · · (P+Q1)(δu0)(t).

When ρ(P(t)) < 1, δuk(t) → 0 holds for all t ∈ [0,T ]. So lim
k→∞

∥δẏk+1(t)∥ = 0 and

lim
k→∞

yk(t) = yd(t).

3. Fuzzy iterative learning control

High precision trajectory tracking of ILC method provides an effective method for
robot control. However, it needs several iterations to obtain convergence of tracking er-
ror, and tracking accuracy is not very high before convergence. Fuzzy control is another
intelligent control technology that does not need to establish the precise mathematical
model of the controlled object. Fuzzy control has good robustness and makes it pos-
sible to overcome the adverse effects of uncertain factors brought to the system, such
as variations and nonlinear model. Considering the characteristics of fuzzy control and
closed-loop ILC, we combine these two kinds of control method, and conduct fuzzy iter-
ative learning control. Before iterative learning, the system switches to fuzzy controller
and stores its control output that will be provide as the initial control quantity of ILC.
Structure of fuzzy iterative learning hybrid control is shown in Fig. 1.

3.1. Structure of fuzzy logic system

The basic configuration of a fuzzy logic system consists of a fuzzifier, fuzzy IF-
THEN rules, a fuzzy inference engine and a defuzzifier as shown in Fig. 2. Fuzzifier,
which is the fuzzy quantizer of the inputs, allows the conversion of the inputs variables
which are physical quantities, in fuzzy quantities, or linguistic variables. Defuzzifier is
the inverse operation of the fuzzifier. It consists in transforming the linguistic variables
into real or digital variables [11].

The fuzzy inference engine uses the fuzzy IF-THEN rules to perform a mapping
from an input vector xT = [x1,x2, · · · ,xn] ∈ Rn to an output f̂ ∈ R. The ith fuzzy rule is
written as R(i) : If x1 is A1

i and . . . and xn is Ai
n then f̂ is f i where Ai

1, Ai
2, . . . and Ai

n are
fuzzy sets and f i is the fuzzy singleton for output in the ith rule. By using the singleton
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Figure 1: Fuzzy iterative learning control.

Figure 2: Fuzzy logic system.

product inference, and center-average defuzzifier, the output of the fuzzy system can be
expressed as follows:

∧
f (x) =

∑m
i=1 f i(Πn

j=1 µ
Ai

j
(x j))

∑m
i=1 (Πn

j=1 µ
Ai

j
(x j))

= θT ψ(x) (23)

where µ
Ai

j
(x j) is the degree of membership of x j to Ai

j, m is the number of fuzzy rules,

θT = [ f 1, f 2, · · ·, f m] is the adjustable parameter vector (composed of consequent param-
eters), and ψT = [ψ1,ψ2, · · ·,ψm] with

ψi(x) =
Πn

j=1 µ
Ai

j
(x j)

∑m
i=1 (Πn

j=1 µ
Ai

j
(x j))

(24)

being the fuzzy basis function[12].

3.2. Fuzzy control for single joint manipulator

In this paper, fuzzy controller is designed to track motion trajectory of robot. The
input values are e and ec in accordance with error signal of joint angular displacement
and its variation. In order to be convenient for analysis, e ∈ [−6,6] and ec ∈ [−6,6] are
regarded as the normalized input sample values of error and its variation. u ∈ [−1,1] is
regarded as the normalized output sample values of control quantity.
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The linguistic terms of each value (e, ec and u) is divided into seven fuzzy sets.
These are characterized by the following standard designations: negative big (NB), neg-
ative middle (NM), negative small (NS), zero (Z), positive small (PS), positive middle
(PM), and positive big (PB). For convenience, membership functions (MFs) of inputs
and output are chosen as triangle-shaped MF. Figs. 3 and 4 show the MFs for the error
signal, change of error signal, and output respectively.

Figure 3: FMFs of inputs.

Figure 4: MFs of output.

The basis of the rules represents the strategy of control and the desired aim is de-
termined by the linguistic control rules [13]. Considering the characteristics of robot
motion, the control rules are established as Tab. 1. After the fuzzy output is calculated,
it will be transformed into a numeric value which can be regard as control input of the
control plant. In this work, the method of center-average defuzzification previously in-
troduced is applied.

3.3. Fuzzy gain ILC for single joint manipulator

Considering equation (8), the fixed learning gain matrix Γ can’t adapt to the changes
of system operating state. Gain matrix is the same at any time, which ignores the speci-
ficity of different control states [4]. In order to improving the convergence rate, we utilize
FLS to regulate the gain matrix of ILC.

Because of the influence of gain matrix on convergence rate, FLS is set up to regu-
late gain matrix factor, so as to regulate gain matrix on time. FLS adopts single input and
single output form.

∫ t
0 |ek(τ)|dτ is designed input of FLS that reflect the error degree of

iterative process, and k is adjustment factor of gain matrix. Thus gain matrix can auto-
matically adapt to error information of each iteration. We design the fuzzy set of input as
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Table 6: Control rules.

DU
EC E

NB NM NS Z PS PM PB
NB NB NB NB NM NS PS PM

NM NB NB NM NM Z PS PM

NS NB NB NS NS Z PM PM

Z NB NM NS Z PS PM PB

PS NM NM Z PS PS PB PB

PM NM NS Z PM PM PB PB

PB NM NS PS PM PB PB PB

{Z PS PM PB PVB}, the actual domain of input as [0,E], where E =
∫ t

0 |ek(τ)|dτ, k = 0.
Fuzzy set of output is designed as {Z S M B}, and actual domain of output is [0,1]. By
this means, the membership functions of input and output variables are designed as Figs.
(5) and (6).

Figure 5: MFs of output.

Figure 6: MFs of output.

The principle of adjustment is: in the initial stage of the control process, the error
of the system is often large, so the main purpose of adjustment is to speed up the con-
vergence rate and eliminate errors; in the late stage of the control process, the error of
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Table 7: Fuzzy rules of gain adjustment.∫ t
0 |ek(τ)|dτ Z PS PM PB PVB

k Z S M M B

the system is usually small, and the main purpose of the adjustment is to improve the
stability. According to this principle, fuzzy rules are designed as Tab. 2.

4. Simulations

Based on the traditional fuzzy control and ILC method, fuzzy iterative learning con-
trol method is proposed and applied to trajectory tracking control for single joint robot.
The dynamic model of a single joint robot system is given as follow:

Iθ̈k +dθ̇k +mgl cosθk = τk (25)

where θ̈k, θ̇k and θk represent acceleration, velocity and displacement of angular at kth
iteration, I = 4

3 ml2 represents rotary inertia, d is viscous friction coefficient, and τk is
control input.

Parameters of single joint manipulator system are chosen as: m = 2kg, l = 0.25m,
d = 2, and g = 9.8m/s2. Desired trajectory is yd(t) = sin(t).

Firstly, applying close D-type ILC and fuzzy control, the results are shown in Fig.
7 and 8. From Fig. 7, we can see that the real trajectory almost follows the desired
trajectory after 20 times’ learning iterations. It is clearly seen that the tracking errors of
first few iterations are obviously too big compared to fuzzy control as shown in Fig.8.

Figure 7: Close D-type ILC.

Then, applying fuzzy ILC method proposed in this paper, as shown in Fig. 9, the
tacking errors of the first few iterations are much smaller than simple ILC, and the track-
ing errors monotonically decrease with the increase of the iteration number.
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Figure 8: Fuzzy control.

Figure 9: Fuzzy ILC for robot.

Figure 10: Fuzzy gain ILC.

At last, we utilize FLS to regulate the gain matrix of ILC, in order to improving the
convergence rate. The simulation result is show in Fig.10. Comparing with Fig. 9, by
using fuzzy gain, the convergence rate is further improved.
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5. Conclusion

A new Fuzzy ILC scheme is proposed for the position tracking problem of single
joint manipulator. The proposed controller is based upon fuzzy control and fuzzy gain
ILC to cope with the problem of slow convergence at the beginning of iteration and
the problem of fixed learning gain. The proposed method is applied to a single joint
manipulator model, which indicates that the error can be obviously reduced in a short
time, and a better convergence rate is obtained than simple fuzzy control and ILC.
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