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Equitable coloring of graphs. Recent theoretical results
and new practical algorithms

HANNA FURMAŃCZYK, ANDRZEJ JASTRZĘBSKI and MAREK KUBALE

In many applications in sequencing and scheduling it is desirable to have an underlaying
graph as equitably colored as possible. In this paper we survey recent theoretical results con-
cerning conditions for equitable colorability of some graphs and recent theoretical results con-
cerning the complexity of equitable coloring problem. Next, since the general coloring problem
is strongly NP-hard, we report on practical experiments with some efficient polynomial-time
algorithms for approximate equitable coloring of general graphs.

Key words: computer experiments, corona graph, equitable chromatic number, equitable
coloring conjectures, NP-hardness, polynomial heuristics.

1. Introduction

All graphs considered in this paper are finite and simple, i.e. undirected, loopless and
without multiple edges.

If the set of vertices of a graph G can be partitioned into k (possibly empty) classes
V1,V2, . . . ,Vk such that each Vi is an independent set and the condition ||Vi| − |Vj|| ¬ 1
holds for every pair (i, j), then G is said to be equitably k-colorable. The smallest integer
k for which G is equitably k-colorable is known as the equitable chromatic number of
G and is denoted by χ=(G) [30]. Since equitable coloring is a proper coloring with an
additional constraint, we have χ(G)¬ χ=(G) for any graph G.

This model of graph coloring has many practical applications. Every time when we
have to divide a system with binary conflict relations into equal or almost equal conflict-
free subsystems we can model this situation by means of equitable graph coloring. One
motivation for equitable coloring suggested by Meyer [30] concerns scheduling prob-
lems. In this application, the vertices of a graph represent a collection of tasks to be
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performed, and an edge connects two tasks that should not be performed at the same
time because they use the same nonsharable resource. A coloring of this graph repre-
sents a partition of tasks into subsets that may be performed simultaneously. Due to load
balancing considerations, it is desirable to perform equal or nearly-equal numbers of
tasks in each time slot, and this balancing is exactly what an equitable coloring achieves.
Furmańczyk [11] mentions a specific application of this type of scheduling problem,
namely assigning university courses to time slots in a way that avoids scheduling in-
compatible pairs of courses at the same time and spreads the courses evenly among the
available time slots, since then the usage of scarce additional resources (e.g. rooms) is
maximalized (for an alternative chromatic model see [25]).

There are very few papers on the complexity of equitable coloring. First of all, a
straightforward reduction from graph coloring to equitable coloring by adding suffi-
ciently many isolated vertices to a graph, proves that it is NP-complete to test whether
a general graph has an equitable coloring with a given number of colors (greater than
two). Secondly, Bodleander and Fomin [2] showed that equitable coloring can be solved
to optimality in polynomial time for trees (the fact previously known due to Chen and
Lih [3]) and outerplanar graphs. A polynomial time algorithm is also known for equi-
table coloring of split graphs [6].

This paper consists of two parts. In the first part (Section 2) we survey recent theo-
rems and conjectures concerning sufficient conditions under which a graph is equitably
r-colorable. In addition to this we survey recent theorems and conjectures concerning
the complexity of optimal equitable coloring of certain simplified families of graphs. In
the second part (Section 3) we report on practical experiments with some heuristics for
optimal equitable coloring of general graphs. On the basis of these experiments we claim
that the best results are obtained by using the SLF coloring algorithm with the FJK bal-
ancing procedure. We state a conjecture that this heuristic algorithm produces solutions
which are almost surely not worse than (2+ ε)χ=(G) for any ε > 0.

2. Recent results and conjectures

The notion of equitable colorability was introduced by Meyer [30]. However, an
earlier work of Hajnal and Szemerédi [17] showed that a graph G with maximal degree ∆
is equitably k-colorable if k­ ∆+1. In the same paper [30] he formulated the following
conjecture:

Conjecture 1 (Equitable Coloring Conjecture (ECC)) For any connected graph G,
other than complete graph or odd cycle, χ=(G)¬ ∆.

This conjecture has been verified for all graphs on six or fewer vertices. Lih and
Wu [27] proved that the Equitable Coloring Conjecture is true for all bipartite graphs.
Wang and Zhang [33] considered a broader class of graphs, namely r-partite graphs.
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They proved that Meyer’s conjecture is true for complete graphs from this class. In 1994,
Chen et al. [5] proposed another conjecture.

Conjecture 2 (Equitable ∆-Coloring Conjecture (E∆CC)) Let G be a connected
graph. If G is different from the complete graph, odd cycle or the complete bipartite
graph K∆,∆, then G is equitably ∆-colorable.

The conjecture was confirmed for outerplanar graphs [35] and planar graphs with
maximum degree at least 13 [36]. The last result was improved by Nakprasit [31]. She
proved that the E∆CC Conjecture holds for every planar graph with maximum degree
at least 9. Earlier, Zhu and Bu [37] proved that the Conjecture 2 holds for every C3-free
planar graph with maximum degree at least 8 and for every planar graph without C4 and
C5 with maximum degree at least 7. The last result was improved in [32].

Theorem 1 [32] Each C3-free planar graph G with maximum degree ∆ ­ 6 has an
equitable ∆-coloring.

Theorem 2 [32] Each C4-free planar graph G with maximum degree ∆ ­ 7 has an
equitable ∆-coloring.

Moreover, they proved that the conjecture holds for every planar graph of girth at
least 6 with maximum degree at least 5.

In 1964 Erdös [8] conjectured that any graph G with maximum degree ∆¬ k has an
equitable (k+1)-coloring. This conjecture was proved in 1970 by Hajnal and Szemerédi
[17] with a long and complicated proof. Kierstead et al. [23] found a polynomial-time
algorithm of complexity O(∆|V (G)|2) for such a coloring. Kierstead and Kostochka [21]
gave a short proof of this theorem, and presented another polynomial-time algorithm
for such a coloring. Hajnal-Szemerédi’s bound has interesting applications in extremal
combinatorial and probabilistic problems, see e.g. [1, 18].

Hajnal-Szemerédi’s bound, also named Dirac-type result was extended in [20]. They
proved the following Ore-type theorem.

Theorem 3 [20] Every graph satisfying deg(x)+deg(y)¬ 2r+1 for every edge {x,y},
has an equitable (r+1)-coloring.

Above theorem, like the Hajnal-Szemerédi theorem, is tight. Of course, these graphs
for which the Hajnal-Szemerédi Theorem is tight simultaneously show that Theorem 3
is tight. However, there are more graphs for which this theorem is tight. For example,
for every odd n < ∆+1, the graph Kn,2∆+2−n satisfies the inequality deg(x)+deg(y) ¬
2∆+2 for every edge {x,y} and has no equitable (∆+1)-coloring. The authors of [20]
conjectured the following hypothesis:

Conjecture 3 [20] Let r ­ 3. If G is a graph satisfying deg(x)+deg(y)¬ 2r for every
edge {x,y}, and G has no equitable r-coloring, then G contains either Kr+1 or Kn,2r−n
for some odd n.
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The conjecture was proved for r = 3 [20].
It is natural to ask which graphs G with ∆ = r ­ 3 have equitable r-colorings. Cer-

tainly such graphs are r-colorable and do not contain Kr+1.
Chen and Yen [4] gave necessary conditions for a graph G (not necessarily con-

nected) with ∆­ χ(G) to be equitably ∆-colorable and proved that those necessary con-
ditions become sufficent when G is a bipartite graph, or G satisfies ∆­ |V (G)|/3+1, or
G satisfies ∆¬ 3. They supposed that the following is true.

Conjecture 4 [4] Let G be a graph with ∆­ χ(G). Then G is equitably ∆-colorable if
and only if at least one of the following statements holds.

1. ∆ is even.

2. No component or at least two components of G are isomorphic to K∆,∆.

3. Only one component of G is isomorphic to K∆,∆ and α(G − K∆,∆) > |V (G −
K∆,∆)|/∆ > 0.

Kierstead and Kostochka [22] introduced the notion of an r-equitable graph, as fol-
lows

Definition 1 Graph G is r-equitable if

1. |V (G)| is divisible by r

2. G is r-colorable

3. Every r-coloring of G is equitable.

For example, Kr is r-equitable.

Conjecture 5 [22] Let graph G satisfy ∆ = r ­ χ(G). Then G has no equitable r-
coloring if and only if r is odd, G has a subgraph H isomorphic to Kr,r and G−H is
r-equitable.

Kierstead and Kostochka [22] proved that Conjecture 5 and Conjecture 2 are equiv-
alent.

Definition 2 An r-equitable graph G is r-reducible if V (G) has a partition {V1, . . . ,Vt}
into at least two parts such that the induced subgraph G[Vi] is r-equitable for each 1 ¬
i¬ t; otherwise G is r-irreducible.

Of course, Kr is r-irreducible. Kierstead and Kostochka [22] identified ten other r-
irreducible graphs (r = 3,4,5) (see Fig. 1). They named them r-basic graphs.

An r-decomposition of G is a partition {V1, . . . ,Vt} of V (G) such that each G[Vi] is
r-basic. The graph G is r-decomposable if it has an r-decomposition.

It turns out that terms r-equitable and r-decomposable are equivalent for graphs G,
where ∆ = r and r divides |V (G)|.
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Figure 1: r-basic graphs; F1 : r = 5; F2,F3,F4 : r = 4; F5, . . .F10 : r = 3.
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Conjecture 6 [22] Suppose that ∆ = r ­ 3 and G is an r-colorable graph. Then G is
not equitably r-colorable if and only if the following conditions hold.

1. r is odd.

2. G has a subgraph H = Kr,r.

3. G−H is r-decomposable.

It was proved [7, 22] that Kierstead-Kostochka’s Conjecture 6 is equivalent to the
E∆CC Conjecture and may help to prove it by induction.

Another research path in equitable coloring is determining exact values of equi-
table chromatic numbers and equitable thresholds for some specific graph classes, e.g.
trees [3], complete multipartite graphs [26], Kneser graphs [9] and graph products. The
last were intensively studied in [10, 11, 29] – Cartesian products, [11, 28, 34] – cross
(Kronecker) products and in [12, 13, 14, 19] – corona products.

Among new results concerning corona products one deserves special attention. In
[12] the problem for coronas of cubic graphs was considered. A cubical corona G ◦H
is a corona obtained by taking a cubic graph G as the center graph and |V (G)| copies
of a cubic graph H as the outer graphs. The smallest cubical corona is shown in Fig. 2.
Although the problem of ordinary coloring of coronas of cubic graphs is solvable in
polynomial time, the problem of equitable coloring becomes intractable for these graphs.
There have been given polynomially solvable cases of coronas of cubic graphs and the
general problem of colorability of cubical coronas has been proved to be NP-hard. In this
way the authors established a first class of graphs for which equitable coloring problem
is harder than ordinary coloring.

It is obvious that
2¬ χ=(G)¬ 4,

for any cubic graph G. For each k = 2,3,4 let Cubk be the class of equitably k-chromatic
cubic graphs. Let us notice that Cub4 = {K4}. Let Cubu,v,w

3 ⊂ Cub3 be the class of 3-
partite graphs with color classes of cardinalities u, v and w, respectively. We have

Theorem 4 [12] The problem of deciding whether χ=(K3,3 ◦H) = 4 is NP-hard even if
H ∈Cuby,y,y

3 and y is divisible by 10.

The authors of [12] fixed all the cases of coronas of cubic graphs for which 3 colors
suffice for equitable coloring. In the remaining cases they proved that 5 colors are enough
for equitable coloring. These results are summarized in Tab. 1.

Moreover, a simple linear time algorithm for equitable coloring of such graphs which
uses χ=(G ◦H) or χ=(G ◦H)+ 1 colors was obtained. This algorithm is best possible,
unless P=NP.
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Figure 2: Corona K4 ◦K4.

Table 1: Possible values of the equitable chromatic number of coronas G◦H.

PPPPPPPPG
H

Cub2 Cub3 Cub4

Cub2 3 or 4 1 4¬ χ= ¬ 5 2 5

Cub3 3 or 4 1 4¬ χ= ¬ 5 2 5

Cub4 4 4 5
1 : by this we mean that all cases when χ= = 3 or χ= = 4 are determined,

2 : deciding which value (4 or 5) is exact is NP-hard.

3. Computer experiments

In this section we consider two heuristics leading to an equitable coloring of a given
graph. Both of them are based on heuristics for classical coloring: Greedy coloring,
LF, SL, SLF [24], and in both cases our algorithms transform classical coloring into an
equitable coloring. Our algorithms are based on two heuristics given in [10]. The first of
them, called Naive, relies on the principle of swapping colors of vertices colored with
the most and the least frequently used colors. If this failed, a new color is introduced.
This algorithm has been improved by checking all possible pairs of colors of vertices
colored with the most and the least frequently used colors. The new improved version,
called FJK, outperforms its predecessor.
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algorithm FJK(G);
begin

calculate frequency of colors;
while coloring is not equitable do begin

find vertices colored with
the colors of maximal frequency;

if it is possible to change the color of a vertex colored
with the color of maximal frequency
to color of minimal frequency then do it

else assign a new color to some vertex colored
with color of maximal frequency;

end
end;

To estimate the complexity of FJK we first show that the number of recolorings in
this algorithm is O(n logn). Let us consider any color class Vk. After each step of the
algorithm the cardinality of Vk may increase by 1 or decrease by 1. The cardinality is
increased if Vk is the smallest color class. The cardinality is decreased if Vk is the largest
color class. Let sequence (ak

1,a
k
2, . . . ,a

k
s) denote the cardinalities of the color class Vk

during the course of the algorithm. It is easy to see that there exists sk such that for all
i < sk we have ak

i ¬ ak
i+1 and for all i­ sk we have ak

i ­ ak
i+1. For each i there cannot be

more than i color classes of size n
i . Therefore the maximal number of recolorings is less

than
n
2

∑
k=2

n
k
= O(n logn)

It is easy to see that the estimation is very rough because we are not considering the
graph structure neither the primary coloring. Since each recoloring takes time O(n2), so
the overall complexity of the algorithm is O(n3 logn).

The second heuristic, CreateSubgraph2, is based on CreateSubgraph from [10]
and relies on the idea of swapping colors in entire subgraphs induced by vertices col-
ored with the most and the least frequently used colors. The former algorithm has been
improved by checking all possible pairs of color classes with the most and the least
frequently used colors. The algorithm swaps 2-colored subgraphs optimaly, i.e. the dif-
ference between the number of vertices colored with the first color and the number of
vertices with the second color is as small as possible. We skip a detailed description of
CreateSubgraph2, since its results appeared worse than those of FJK.

Those two balancing procedures followed the four above-mentioned classical algo-
rithms (in this way we obtained 8 particular algorithms). We tested them on random
graphs of order n = 100,200, . . . ,1000 and densities d = 0.1, . . . ,0.9. For each fixed or-
der n and fixed density d we generated 100 graphs at random. For each graph we tested
each combination of the algorithms (72000 runs altogether). The tests were performed
on AMD Athlon 64 X2 5000+ with 2GB of RAM. Because of the size of the evidence
we present herein only part of the results.
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Table 2: Average numbers of colors used by: O - Greedy coloring, A - Greedy+ FJK
algorithm and B - Greedy+CreateSubgraph2 algorithm.

@
@@d
n 100 200 300 400 500 600 700 800 900 1000

0.1
O 6.25 9.99 13.08 15.81 18.52 21.08 23.58 25.78 28.20 30.52
A 6.26 10.08 13.14 16.02 18.82 21.40 24.24 26.15 29.02 30.85
B 6.30 10.10 13.38 16.20 19.14 21.67 24.39 26.38 29.21 31.23

0.2
O 9.68 15.98 21.32 26.36 31.10 35.67 39.97 44.41 48.62 52.68
A 10.08 16.31 22.19 26.82 31.99 36.45 41.05 45.35 50.03 53.70
B 10.02 16.46 22.03 27.16 31.88 36.51 41.34 45.70 50.26 54.27

0.3
O 13.16 21.80 29.63 36.81 43.62 50.24 56.75 62.99 69.20 75.20
A 13.56 22.48 30.54 38.02 45.00 51.58 58.50 64.64 70.86 77.10
B 13.49 22.63 30.85 38.07 45.38 52.29 59.26 65.38 71.57 77.97

0.4
O 16.55 28.07 38.13 47.78 57.21 65.92 74.52 82.96 90.76 99.15
A 17.27 29.03 39.29 49.53 58.55 67.97 77.15 85.04 93.19 101.68
B 17.14 29.20 39.86 50.00 59.05 68.66 78.05 86.50 94.55 103.15

0.5
O 20.49 34.50 47.56 59.97 71.46 82.79 94.08 104.71 115.14 125.39
A 21.11 35.56 49.51 61.28 73.46 86.20 97.69 107.14 117.96 128.94
B 21.16 35.70 50.05 62.24 73.86 87.28 98.53 109.40 120.03 130.68

0.6
O 24.76 42.27 58.34 73.57 88.43 102.57 116.33 129.89 143.23 156.01
A 25.66 43.34 60.94 76.30 90.18 105.30 119.92 134.93 150.39 163.47
B 25.62 43.83 61.34 76.93 92.10 107.02 121.18 136.76 152.38 164.96

0.7
O 29.48 51.67 71.44 89.92 108.39 126.19 143.12 160.34 176.77 193.45
A 30.34 53.09 75.31 91.82 110.31 129.60 146.71 164.81 183.46 202.44
B 30.38 53.35 75.91 92.43 111.42 130.56 147.74 166.51 185.71 205.28

0.8
O 35.60 62.85 88.19 112.09 135.00 157.35 179.08 200.73 221.43 242.53
A 36.37 66.22 89.87 113.56 137.73 160.65 183.17 206.44 229.93 254.01
B 36.45 66.14 89.94 114.06 138.82 161.40 184.35 208.61 232.59 256.98

0.9
O 45.87 81.61 114.48 145.69 176.52 205.99 235.06 264.19 291.76 319.83
A 47.63 81.84 115.66 147.67 179.20 210.14 241.69 273.55 305.92 338.21
B 47.37 81.84 115.99 147.53 179.91 211.30 243.59 276.47 309.24 342.05

In Tabs. 2 and 3 we present average number of colors obtained by the algorithms.
The main classical coloring is denoted by O, the FJK algorithm by A and the Create-
Subgraph2 algorithm by B. As one can see, in most cases, the second algorithm does
not give better result and, moreover, it runs in a longer time (cf. Tab. 4). Therefore,
we consider only the FJK algorithm in the further part of this section. Moreover, the
best results were obtained when the balancing procedure followed the SLF algorithm.
Therefore, in Tab. 3 we report on computational results involving SLF.
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Table 3: Average numbers of colors used by: O - SLF algorithm, A - SLF+FJK algo-
rithm and B - SLF+CreateSubgraph2 algorithm.

@
@@d
n 100 200 300 400 500 600 700 800 900 1000

0.1
O 4.64 7.43 10.05 12.38 14.82 17.03 19.12 21.21 23.23 25.37
A 4.93 7.92 10.83 13.41 15.80 18.61 20.92 23.08 25.69 28.01
B 5.07 8.28 11.28 13.64 16.43 19.10 21.30 23.79 26.23 27.92

0.2
O 7.77 12.71 17.56 21.96 26.25 30.43 34.46 38.30 42.21 45.93
A 8.39 13.83 19.59 24.37 29.13 33.42 37.50 41.50 45.63 49.58
B 8.61 14.03 19.80 24.78 29.44 33.88 38.16 42.88 47.04 51.16

0.3
O 10.56 18.15 25.10 31.72 37.98 43.98 49.92 55.64 61.33 67.02
A 11.39 19.98 27.20 34.25 41.01 47.24 53.50 59.56 65.63 71.93
B 11.73 20.48 28.01 35.51 42.12 49.12 55.45 61.72 68.24 74.14

0.4
O 13.85 23.83 33.12 41.90 50.26 58.37 66.52 74.39 81.93 89.43
A 15.11 25.67 35.48 44.90 53.88 62.15 71.59 79.83 87.49 94.29
B 15.43 26.77 36.85 46.46 55.95 65.45 73.12 82.10 90.62 98.55

0.5
O 17.19 30.11 41.92 53.20 64.10 74.63 85.01 94.98 104.93 114.60
A 18.56 32.31 44.50 57.32 68.39 78.86 89.63 101.45 113.20 122.74
B 18.59 33.17 45.98 58.29 70.72 82.53 92.48 103.82 116.27 127.22

0.6
O 21.26 37.25 52.08 66.18 79.97 93.16 105.81 118.89 131.19 143.63
A 22.61 40.16 54.83 69.65 85.17 100.97 114.24 126.13 138.30 150.84
B 22.74 41.09 56.23 70.95 86.90 103.20 117.53 131.08 143.23 154.96

0.7
O 25.71 45.81 64.38 82.17 99.25 115.32 131.66 147.68 163.76 179.16
A 26.75 49.45 67.26 85.68 103.83 122.88 142.37 160.55 174.93 191.44
B 26.95 50.46 68.50 86.92 106.05 125.45 145.06 163.65 181.05 196.94

0.8
O 31.88 56.89 80.33 102.71 124.37 145.23 165.43 186.23 206.10 225.88
A 33.94 58.30 82.50 106.17 129.95 153.84 178.55 201.37 222.34 240.67
B 34.29 58.63 83.52 107.47 131.94 156.79 181.15 205.22 225.75 243.74

0.9
O 41.45 74.80 105.01 133.89 162.75 190.99 219.52 246.72 273.96 300.87
A 41.63 75.89 107.44 139.25 171.71 204.44 236.16 263.28 284.75 308.47
B 41.63 76.07 107.98 141.13 174.37 207.94 239.92 265.71 284.55 307.00

Also, we compared results obtained by Greedy (classical coloring) and SLF+FJK
(equitable coloring) algorithms. The results are summarized in Tab. 5 and two columns
of it (d = 0.1 and d = 0.5) are shown in Fig. 3. We have chosen these graph densities
because graphs encountered in real-life applications are rather sparse. In 88% of cases
the number of colors used by the latter is not greater than those by Greedy coloring.
In the remaining 12% cases the number of colors used by SLF+FJK exceeds that of
Greedy coloring by at most 20%, and the average is 3,8%.
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Table 4: Average computation time [ms] of: O - SLF algorithm, A - SLF+FJK algorithm
and B - SLF+CreateSubgraph2 algorithm.

@
@@d
n 100 200 300 400 500 600 700 800 900 1000

0.1
A 0 1 3 4 8 13 21 29 47 60
B 5 21 49 81 140 237 329 464 657 770

0.2
A 0 1 5 10 19 30 43 65 89 118
B 8 28 99 198 334 529 787 1195 1639 2128

0.3
A 0 2 7 14 24 42 64 89 131 179
B 10 53 144 301 550 945 1358 1991 2784 3637

0.4
A 0 2 8 17 33 50 92 130 178 199
B 12 76 198 406 778 1411 1981 2876 3973 5069

0.5
A 1 3 8 23 40 56 84 156 254 323
B 13 86 241 546 996 1715 2382 3876 6023 8046

0.6
A 0 4 8 19 44 100 152 168 199 238
B 13 112 246 561 1300 2726 3965 5023 6544 7128

0.7
A 0 4 9 16 34 92 171 281 341 452
B 12 131 259 558 1514 3500 6169 8638 11724 14324

0.8
A 0 2 6 13 33 89 180 302 432 526
B 20 53 214 770 2243 4996 8966 13122 16575 16852

0.9
A 0 1 3 14 41 108 184 281 283 290
B 5 58 385 1552 4013 8142 11963 14308 11196 7356

It is known that algorithm Greedy is practically 2-approximate. More precisely,
Grimmet and McDiarmid [16] showed that the Greedy algorithm when applied to a
random ordering of the vertices yields a Greedy(G)-coloring for any ε > 0, where

Greedy(G)¬ (2+ ε)χ(G)

for all but a vanishingly small fraction of graphs as the number of vertices tends to
infinity.

On the basis of experimental results in general and Fig. 3 in particular we conjecture
that our FJK algorithm yields the same guarantee.

Conjecture 7
SLF+FJK(G)¬ (2+ ε)χ=(G)

for almost every graph G.

All the algorithms used in tests can be found in the KOALA library [15].
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Table 5: Greedy vs SLF+FJK algorithm. The notation X/Y/Z denotes that in X cases
Greedy algorithm used fewer colors, in Y cases the both algorithms used the same
number of colors and in Z cases the algorithm SLF+FJK was better.

@
@@n
d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100 1/8/91 6/14/80 4/ 8/ 88 11/10/79 7/15/78 14/ 7/79 1/ 5/94 12/11/77 1/ 1/ 98
200 0/3/97 8/ 3/89 5/ 8/ 87 5/ 4/91 7/20/73 5/18/77 12/14/74 9/ 0/91 0/ 0/100
300 0/6/94 5/11/84 3/ 4/ 93 7/12/81 2/ 2/96 14/ 4/82 13/ 0/87 2/ 1/97 0/ 0/100
400 5/6/89 2/ 8/90 4/ 3/ 93 2/ 0/98 4/ 5/91 1/ 3/96 4/ 1/95 1/ 1/98 2/ 0/ 98
500 0/4/96 3/15/82 1/ 6/ 93 4/10/86 21/ 8/71 3/ 5/92 2/ 0/98 0/ 3/97 2/ 2/ 96
600 2/7/91 4/ 5/91 1/ 7/ 92 9/ 1/90 9/ 0/91 13/21/66 1/ 4/95 2/ 7/91 24/10/ 66
700 0/5/95 0/ 9/91 0/ 0/100 8/ 3/89 1/ 1/98 48/ 8/44 22/27/51 37/13/50 74/ 8/ 18
800 4/7/89 0/ 4/96 0/11/ 89 3/ 6/91 6/ 4/90 31/ 0/69 69/10/21 67/ 6/27 68/ 0/ 32
900 5/4/91 0/ 3/97 3/ 9/ 88 10/17/73 4/17/79 15/ 1/84 56/ 0/44 73/ 0/27 34/ 0/ 66
1000 1/3/96 5/ 2/93 5/ 2/ 93 9/ 0/91 35/14/51 5/ 1/94 46/ 0/54 51/ 0/49 19/ 0/ 81

Figure 3: Greedy vs SLF+FJK algorithms - avarage numbers of colors used.

4. Final remarks

An important branch of scheduling theory is chromatic scheduling. In this model
we have a number of identical tasks represented by graph vertices on one hand and a
number of conflicts between tasks modeled by graph edges, on the other. Our aim is to
assign tasks to time slots, i.e. to construct a legal schedule of length as small as possible.
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This aim can be accomplished by coloring the vertices of underlying graph, since such
a coloring represents a partition of tasks into subsets that can be performed simultane-
ously. However, because of load balancing constraints, it is necessary to perform equal
or nearly-equal numbers of tasks in each time slot. In other words, our solution must
be not only frugal with colors but equitable as well. We know that efficient constructing
such a solution is difficult, since the problem is intractable. However, if we relax our
scheduling problem by allowing more colors than the equitable chromatic number and
apply the SLF+FJK heuristic algorithm then we will be almost sure to know that our
solution is not worse than twice C∗

max, where C∗
max is the length of an optimal schedule.
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