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Membership functions for fuzzy focal elements

SEBASTIAN PORĘBSKI and EWA STRASZECKA

The paper presents a study on data-driven diagnostic rules, which are easy to interpret by
human experts. To this end, the Dempster-Shafer theory extended for fuzzy focal elements is
used. Premises of the rules (fuzzy focal elements) are provided by membership functions which
shapes are changing according to input symptoms. The main aim of the present study is to
evaluate common membership function shapes and to introduce a rule elimination algorithm.
Proposed methods are first illustrated with the popular Iris data set. Next experiments with
five medical benchmark databases are performed. Results of the experiments show that various
membership function shapes provide different inference efficiency but the extracted rule sets are
close to each other. Thus indications for determining rules with possible heuristic interpretation
can be formulated.

Key words: diagnostic rule extraction, medical diagnosis support, fuzzy focal elements,
membership functions, Dempster-Shafer theory.

1. Introduction

The Dempster-Shafer theory (DST) and the fuzzy set theory (FST) are often used
together to represent both uncertainty and imprecision of a problem. The key concepts
of the DST are focal elements and their basic probability assignment [7], [22], while FST
employs a membership function of a fuzzy set. Several authors suggest fuzzyfying the
basic probability assignment so the membership value is related to a focal element [35]
or linking random set variables to fuzzy sets [9], as well as considering a fuzzy measure
as a unifying structure that represents an uncertain variable [34]. These approaches allow
for transitions between uncertainty and imprecision. However, sometimes the two kinds
of measures have to represent different types of vagueness. In medical diagnosis a fuzzy
set may stand for the strength of a symptom (e.g. high blood pressure) while the value
of the basic probability determines a disease, given the symptom (a risk of an infarct
given a hypertension). Therefore, the present paper suggests a different approach, useful
in solving diagnosis support problems.

The basic probability assignment can be considered as a measure of uncertainty of
focal elements that are diagnostic symptoms. Yet, the symptoms are usually formulated
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396 S. PORĘBSKI, E. STRASZECKA

with some imprecision. The imprecision measure can be the membership function of the
fuzzy set. This approach is introduced in [29, 30] and shares Bezdek’s conviction [2] that
probability is something different from a membership and each of the measures should
be individually interpreted. The method is convenient for applications, particularly when
the diagnosis support requires combining data driven and human expert knowledge. Yet,
it involves designing membership functions and determining their crucial parameters
that are decisive for reasoning [3], [16].

Methods of designing membership functions differ according to a purpose of their
use. They can be found from training examples [20], in an identification process [31], by
means of neural networks [23] or evolutionary algorithms [6]. Still, membership func-
tions of medical symptoms have to meet specific constraints of this domain. For instance,
they should be related to population data [3]. Hence, it would be valuable for the knowl-
edge engineer to know how to find functions which are preferable for suggested method
of the diagnosis support.

In the present work, various shapes of membership functions are investigated. Thor-
ough designing of the functions allow for correct reasoning with a limited number of
rules. Thus, a rule elimination algorithm is introduced. Experiments are performed for
several medical benchmark databases. Results show that membership functions influence
a quality of inference. The most advantageous shapes of the functions are indicated. It is
demonstrated that both a reduction of a rule set and a more accurate inference is possible
with the suggested approach, in comparison to existing methods. As the result limited
number of rules with premises that are easy to interpret by humans are determined.

2. The Dempster-Shafer theory in the diagnosis support

Let us assume a diagnostic problem with p symptoms: x1 ..., xp. The membership
function µ(rl)

j of a fuzzy set A(rl)
j is assigned to each of the p variables ( j = 1, ..., p)

that characterizes a linguistic value of the symptom in the r-th rule corresponding the Dl
diagnosis. Thus, the rl-th diagnostic rule is of the form:

IF X j is A(rl)
j ∧ ...∧Xk is A(rl)

k THEN Dl, j,k ∈ {1, ..., p}, j ̸= k. (1)

The premise of the rule (1) includes a subset of all possible combinations of the symptom
set. The complete set of premises for Dl is denoted by Sl . Then the maximum number of
rules is |Sl|= 2p −1. Each premise can be considered as the s(rl) focal element. Hence,
Sl = {s(rl)}, rl = 1, ... , n(rl), and the greatest possible value of n(rl) is |Sl|. For such focal
elements the basic probability assignment (BPA) can be defined as [7]:

ml( f ) = 0, ∑
s(rl )∈Sl

ml(s(rl)) = 1. (2)

In this way uncertainty of the r-th rule is given by ml(s(rl)). The imprecision of the
premise is separately represented by the membership functions of the fuzzy sets A(rl)

j in
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rule (1). The µ(rl)
j membership function describes one condition in (1). The imprecision

of the whole premise can be determined according to possibility theory as the matching
level [30]:

η(rl)
i = min

1¬ j¬K(rl )
µ(rl)

j (x j), (3)

where K(rl) is the number of conditions in the rl-th rule.
The membership functions as well as the BPA can be determined for training data.

Since determination of the former is one of the main topics of this paper, let us leave it
to next sections and let as describe the latter first.

The theoretical background of the BPA calculation is given in [29]. Here only a brief
summary of the algorithm is mentioned with an introduction of notations. Let us assume
the data set XXX l = {xxx1, ..., xxxi, ..., xxxnl} of p-dimensional vectors, which are cases assigned
to the l-th diagnosis. The BPA can be calculated in the following way:

1. Choose an acceptable threshold of uncertainty ηBPA for BPA calculation.

2. Count how many objects xxxi (i = 1, ..., nl) is conformed with the rl-th fuzzy focal
element s(rl) at least to the determined ηBPA threshold, i.e.:

η(rl)
i > ηBPA, i = 1, ..., nl (4)

for each xxxi data case the matching level to rl-th rule calculated as:

η(rl)
i = min

sk∈s(rl )
µ(l)k (xki), (5)

where µ(rl)
k is the membership function in s(rl) fuzzy focal element which corre-

spond to the k-th variable and l-th diagnosis and xki is the value of the k-th variable
given by the k-th element of xxxi vector.

3. The obtained number of satisfactory matching objects γ(rl)
i divided by the total sum

of data objects conformed with all fuzzy focal elements makes the BPA value:

ml(s(rl)) =

nl

∑
i=1

γ(rl)
i

n(l)

∑
rl=1

(
nl

∑
i=1

γ(rl)
i

) (6)

where

γ(rl)
i =

{
1, η(rl)

i > ηBPA

0, η(rl)
i ¬ ηBPA.

(7)
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The ηBPA threshold value can be changed (ηBPA ∈ (0,1]). The higher is the ηBPA the
smaller is number of data cases conformed with focal elements. If so, the BPA value
allows for different rule evaluation.

The belief (Bel) and plausibility (Pl) measures described in the Dempster-Shafer the-
ory [22] are also useful for evaluation of a diagnosis [30]. Particularly the Bel value can
be used to choose the best supported diagnosis among l = 1, ..., C diagnostic hypotheses
for the investigated xxx data case. This measure is calculated as:

Bell(xxx) = ∑
η(rl )>ηT
1¬rl¬n(l)

ml(s(rl)), (8)

The belief measure (8) provides that patient symptoms matching the fuzzy focal ele-
ments are counted for the final diagnosis. The conformation of symptoms with the focal
element is evaluated by the ηT threshold (ηT ∈ (0,1]) individually assumed for the di-
agnosis.

When Bel1(xxx), ..., BelC(xxx) values for all diagnoses (l = 1, ..., C) are known then
the final conclusion is stated by their comparison. The diagnostic hypothesis with the
greatest belief value wins. If the greatest value occurs for more than one diagnosis, the
decision cannot be made and it is interpreted as the error of inference.

The number of focal elements (rules) can be lowered when for some rl
nl

∑
i=1

γ(rl)
i = 0.

This may happen if membership functions and thresholds ensures the most effective of
inference and in consequence redundant conditions are neglected.

3. The design of membership functions

Fuzzy focal elements are defined by membership functions. The membership func-
tions should provide proper interpretation of symptoms. Statistical investigation helps to
determine characteristics of processing data. Let us define xxx jl = [x j1, ...,x ji, ...,x jnl ]

T

as the vector of the j-th feature values corresponding to the l-th class. The following
statistical parameters are important for a fuzzy membership function shape:

• mean value of the j-th feature of the l-th class:

x̄ jl =
1
nl

nl

∑
i=1

x ji, (9)

• standard deviation:

σ jl =

√
1

nl −1

nl

∑
i=1

x ji − x̄ jl, (10)
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• lower quartile Q1 j as maximal x ji value for which:

∣∣X∗
j

∣∣¬ 1
4

nl. (11)

where X∗
j =

{
x ji ¬ Q1 j

}
.

• upper quartile Q3 j as minimal x ji value for which:

∣∣X∗∗
j

∣∣­ 1
4

nl. (12)

where X∗∗
j =

{
x ji ­ Q3 j

}
.

Moreover, distributions of data for different diagnoses should be investigated. The
two neighbouring normal distributions defined by the probability density functions P1(x)
and P2(x) always have at least one point of intersection xcross. It could be calculated when
the mean values (x̄1 and x̄2) and the standard deviations (σ1 and σ2) are known. The xcross
value is the solution of the equation:

P1(x) = P2(x), (13)

where

P1(x) =
1

σ1
√

2Π
· exp

(
−(x− x̄1)

2

2σ2
1

)
and

P2(x) =
1

σ2
√

2Π
· exp

(
−(x− x̄2)

2

2σ2
2

)
.

If x̄1 ̸= x̄2 two values x01 and x02 are the solution of the equation (13). The xcross point is
the one of the roots which fulfil the condition:

xcross = {x}|x ∈ [x̄1, x̄2]. (14)

However, it may happen that (14) does not occur, for instance if the distributions have
similar means and different variances. In this case, equivalent xcross is calculated as x̄1+x̄2

2
and used to membership function design. Fig. 1 shows the characteristic values calcu-
lated for the data with normal distribution.

Among a number of different membership function shapes triangular, trapezoidal,
Gaussian combination and generalized bell are considered in this paper. Since the shapes
should be illustrated by examples, the benchmark Iris data set [12] is chosen to depict
the functions. This set obviously is not a diagnostic base, but it is a popular benchmark,
well-known and easy to handle, so it makes an illustrative example of the presented
method. The base include 150 objects, which are a numerical data about three species
of the Iris flowers named Iris Setosa, Iris Versicolour and Iris Virginica. Every data case
has five parameters: four of them provide metrical dimensions of sepal and petal. Hence,
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Figure 1: Mean x̄1, lower quartile Q1 , upper quartile Q3 for normal distribution density
function P1(x) and intersection xcross of the two neighbouring distributions P1(x) and
P2(x)

the number of features in the set equals four (p = 4). The fifth parameter is the class
label. The values contained in the Iris data set satisfy the central limit theorem and could
be considered as normally distributed. Hence, it is possible to use mentioned data set
characteristic values to construct the fuzzy membership functions.

3.1. Triangular and trapezoidal membership functions

A triangular membership function µT (x, [a,b,c]) is defined as follows:

µT (x, [a,b,c]) =


0, x¬ a,
x−a
b−a , a < x¬ b,
c−x
c−b , b < x¬ c,
0, x > c,

(15)

where a, b and c are determined as in Fig. 2.
The Iris data set includes cases which are classified into three classes (C = 3). Hence

it is desired to design three membership functions for every variable. The intersection
points are calculated between the neighbouring classes when the x̄ jl and σ jl pairs (l =
1, ..., C) are sorted in ascending order of the x̄ jl . The intersection point x(l)cross is calcu-
lated between l-th and (l +1)-th class (1¬ l ¬C−1). If we keep the later definition of
xxx jl = [x j1, ...,x ji, ...,x jnl ]

T as the vector of the j-th feature values corresponding to the
l-th class, the a, b and c values are equal:
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Figure 2: The example of a triangular membership function µT (x, [a,b,c]) for a = 0.1,
b = 0.3 and c = 0.7

• a =

0.01 · min
1¬i¬nl

(x ji) for l = 1,

x̄ jl −2(x̄ jl − x(l−1)
cross ) for 1 < l ¬C,

• b = x̄ jl ,

• c =

x̄ jl +2(x(l)cross − x̄ jl) for 1¬ l <C,

100 · max
1¬i¬nl

(x ji) for l =C.

The values a for the first (l=1) class and c for the last (l=C) class provide a full
membership for the min

1¬i¬nl
(x ji) and max

1¬i¬nl
(x ji) values, respectively. The 0.01 and 100

coefficients are introduced to extend the support of the membership function in case
test data have smaller (or greater) values than training data. In the other cases the a and
b values provide a half membership function for data located in the intersection point
xcross between two neighbouring classes. Designed triangular membership functions for
the Iris data set with the intersection points are shown in Fig. 3.

A trapezoidal membership function can be interpreted as a generalization of a tri-
angular function. The function has four characteristic parameters and is defined in the
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Figure 3: The triangular membership functions for p = 4 features and C = 3 classes of
the Iris data set representing the fuzzy sets A(rl)

j

following way:

µT R(x, [a,b,c,d]) =



0, x¬ a,
x−a
b−a , a < x¬ b,
1, b < x¬ c,
d−x
d−c , c < x¬ d,
0, x > d,

(16)

where the a, b, c and d are located as it is shown in Fig. 4.
Trapezoidal membership functions are created similarly to the triangular yet with

more constraints. For instance:

• the class with the lowest value of the x̄ jl (l = 1):

{ a = 0.01 · min
1¬i¬nl

(x ji),

{ b = min
1¬i¬nl

(x ji),

{ c = Q3 jl +α
∣∣∣x(l)cross −Q3 jl

∣∣∣,
{ d = c+2(x(l)cross − c).

• The classes with the intermediate values of the x̄ jl (1 < l <C):

{ b = Q1 jl −α
∣∣∣Q1 jl − x(l−1)

cross

∣∣∣,
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Figure 4: The example of a trapezoidal membership function µT R(x, [a,b,c,d]) for
a = 0.1, b = 0.4, c = 0.7 and d = 0.9

{ a = b−2(b− x(l−1)
cross ),

{ c = Q3 jl +α
∣∣∣x(l)cross −Q1 jl

∣∣∣,
{ d = c+2(x(l)cross − c).

• The class with the highest value of the x̄ jl (l =C):

{ b = Q1 jl −α
∣∣∣Q1 jl − x(l−1)

cross

∣∣∣,
{ a = b−2(b− x(l−1)

cross ),

{ c = max
1¬i¬nl

(x ji),

{ d = 100 · max
1¬i¬nl

(x ji).

where the α parameter (α ∈ (−1,1)) provides different gradient of the trapezoid slopes
while maintaining the condition of a half membership value for intersection points x(l)cross.
The α value can be tuned according to training data. However, if lower or upper quartile
extends beyond suitable x(l)cross point, a correction of points location by making functionŠs
slopes almost vertical is necessary [30]:

• if b¬ x(l−1)
cross (1 < l ¬C):

a = 0.99 · x(l−1)
cross ,
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b = 1.01 · x(l−1)
cross .

• if c­ x(l)cross (1¬ l <C):

c = 0.99 · x(l)cross,

d = 1.01 · x(l)cross.

The a, b parameters for l = 1 and the c, d parameters for l =C provide full member-
ship value for the smallest and the greatest possible values of data j-th feature, respec-
tively. In other cases the b and c parameters are located between the proper couple of the
quartiles and intersection points. Trapezoidal membership functions determined for the
Iris data set with intersection points are shown in Fig. 5.
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Figure 5: The trapezoidal membership functions for p = 4 features and C = 3 classes of
the Iris data set representing the fuzzy sets A(rl)

j

3.2. Generalized bell membership function

The generalized bell is another membership function shape and it is defined as:

µB(x, [a,b,c]) =
1

1+
∣∣ x−c

a

∣∣2b , (17)

where c defines middle value of the membership function (mean value of the data), a
affects function’s width and b influences function’s slope. The example of a generalized
bell membership function is shown in Fig. 6.

The a and c values are calculated in the following way :
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Figure 6: The example of a generalized-bell-shaped membership function µB(x, [a,b,c])
for a = 0.2, b = 4 and c = 0.5

• a =


1
2 · ( min

1¬i¬nl
(x ji)+ x(l)cross) for l = 1,

1
2 · (x

(l−1)
cross + x(l)cross) for 1 < l <C,

1
2 · (x

(l−1)
cross + max

1¬i¬nl
(x ji)) for l =C,

• c =


1
2 · (x

(1)
cross − min

1¬i¬nl
(x ji)) for l = 1,

1
2 · (x

(l)
cross − x(l−1)

cross ) for 1 < l <C,
1
2 · ( max

1¬i¬nl
(x ji)− x(l−1)

cross ) for l =C.

The b parameter is assumed to 4 because it provides proper slopes and significantly
wide interval of big values of the function. The generalized bell membership functions
designed for the Iris data set with their intersection points are shown in Fig. 7.

3.3. Gaussian combination membership function

This shape is defined as combination of the two Gaussian membership functions
defined as:

µG(x, [σ,c]) = e
−(x−c)2

2σ2 , (18)

where c and σ are determined mean and standard deviation values.
The Gaussian combination membership function can be used instead of the classi-

cal Gaussian, because it provides possibility to design independently two slopes of the
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Figure 7: The generalized bell membership functions for p= 4 features and C = 3 classes
of the Iris data set representing the fuzzy sets A( jl)

function. The aim of such a design is to maintain maximum membership value for the
mean value and half membership value for data located near suitable x(l)cross points. The
Gaussian combination membership function can be defined as:

µΓ(x, [σ1,c1,σ2,c2]) =


µG(x, [σ1,c1]), x < c1,

1, c1 ¬ x¬ c2,

µG(x, [σ2,c2]), x > c2,

(19)

The example of the Gaussian combination membership function is shown in Fig. 8.
In our approach c1 and c2 coefficients are determined commonly (c1 = c2). This choice
ensures smooth change of functions as their derivatives are equal in the point of mean
value of the l-th class. Moreover, fuzzy sets defined by the membership functions for the
first class (l = 1) and the last class (l = C) are left- and right-open, respectively. Hence,
our Gaussian combination membership functions are defined three-fold:

• for the class with the lowest value of the x̄ jl (l = 1):

µΓ(x, [σ1,c1,σ2,c2]) =

{
1 x¬ x̄ jl ,

µG(x, [σ2,c2]), x > x̄ jl ,
(20)
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Figure 8: The example of a Gaussian combination membership function
µΓ(x, [σ1,c1,σ2,c2]) for σ1 = 0.3, c1 = 0.65, σ2 = 0.1 and c2 = 0.7

• for the classes with the intermediate values of the x̄ jl (1 < l <C):

µΓ(x, [σ1,c1,σ2,c2]) =


µG(x, [σ1,c1]), x < x̄ jl ,

1 x = x̄ jl ,

µG(x, [σ2,c2]), x > x̄ jl ,

(21)

• for the class with the highest value of the x̄ jl (l =C):

µΓ(x, [σ1,c1,σ2,c2]) =

{
µG(x, [σ1,c1]), x < x̄ jl ,

1 x­ x̄ jl ,
(22)

where coefficients σ1, c1 and σ2, c2 are determined as:

• σ1 =

√
(x(l−1)

cross −x̄ jl)2

2ln0.5 ,

• c1 = x̄ jl ,

• σ2 =

√
(x(l)cross−x̄ jl)2

2ln0.5 ,

• c2 = x̄ jl .

to provide µΓ(x̄ jl) = 1 and µΓ(x
(l)
cross) = 0.5 as it has been mentioned. The Gaussian

combination membership functions designed for the Iris data set with their intersection
points are shown in Fig. 9.
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Figure 9: The Gaussian combination membership functions for p = 4 features and C = 3
classes of the Iris data set representing the fuzzy sets A( jl)

4. The rule elimination algorithm

The algorithm described in [28] makes it possible to determine thresholds ηBPA and
ηT to ensure the best accuracy of a diagnosis. The algorithm with some changes can be
also used to proceed iterative elimination of rules from a full rule set. In every step of the
algorithm the fuzzy focal element s(rl) which has the lowest basic probability value (so
it fits to the fewest l-th class objects) is deleted. The procedure is finished if the error of
an inference grows up or only one rule for some class remains. The improved algorithm
of rule elimination used now in experiments could be described as follows:

1. For training data xxxiii = {x1, ..., x j, ..., xp, Dl}, i = 1, ..., N, l = 1, ..., C design
membership functions µl(x j), j = 1, ..., p.

2. Create the focal element sets Sl as maximal sets (then n(l) = 2p −1) or according
to an expert opinion.

3. Calculate ml according to the algorithm given in section 2

4. Choose the ηT threshold for the inference.

5. Calculate Bell(xxxi), l = 1, ..., C, i = 1, ..., N according to (8) and determine the final
diagnosis by the comparison of the belief values.

6. If the final diagnosis cannot be determined or it is different from the training class
Dl then note an error of inference.
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7. Find ml∗ = min(ml(s(rl))).

8. Compare n(l), l = 1, ..., C. If number of rules for diagnoses are approximately
equal then eliminate all rules for which ml(s(rl)) = ml∗ . Otherwise eliminate rules
of the diagnosis with maximal n(l).

9. Repeat steps 3÷8. Continue until the error is increased in two succeeding elimi-
nations and choose solution with the minimal error.

In the 8. step of the algorithm the elimination is limited when the number of rules
for diagnoses significantly differ. In practice the acceptable ratio of rules is assumed
as greater than 2

3 . This limitation should secure the algorithm against a convergence to
a local minimum solution with few rules of several diagnoses and one diagnosis with
multiple rules. The example in the next section illustrates this algorithm in details. It
also presents methods of its verification.

5. Example

The mentioned method is illustrated with the Iris data set. Four features (p = 4)
create |Sl|= 15 different fuzzy focal elements for the l-th class. The Sl focal element set
includes the following premises for each diagnosis:

s(1): X1 is A(1)
1

s(2): X2 is A(2)
2

s(3): X3 is A(3)
3

s(4): X4 is A(4)
4

s(5): X1 is A(5)
1 ∧ X2 is A(5)

2

s(6): X1 is A(6)
1 ∧ X3 is A(6)

3
...
s(15): X1 is A(15)

1 ∧ X2 is A(15)
2 ∧ X3 is A(15)

3 ∧ X4 is A(15)
4

In the present solution it is assumed that only one membership function is made for
the chosen variable and diagnoses, so e.g. A(1)

1 , A(5)
1 , ..., A(15)

1 are the same linguistic
variables defined by the µ(l)1 (x1) membership functions. The initial (full) set of focal
elements is the same for each diagnosis, but A(rl)

k and µ(l)k which is assigned to it (l = 1,
..., C) change according to the diagnosis. The index of diagnosis for A(rl)

k is omitted for
the simplification of notations.

The rule elimination algorithm is executed with the entire data set for the ηBPA and
ηT thresholds in range 0.05 to 0.95 with step 0.05. In such a way thresholds that en-
sure the best performance are found. Four described membership function shapes were
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checked in the premises of the rules. Let us assume the inference efficiency as:

E = (1− ε
N
) ·100%, (23)

where ε is the number of misclassified cases and N is the number of data cases. The
results of the rule elimination algorithm are shown in Tab. 13.

Table 13: The results of the rule elimination algorithm for the Iris data set, different
membership functions and ηT , ηBPA thresholds

membership function E [%] rule set size ηBPA ηT

triangular (µT ) 98.00 [1 3 2] 0.5 0.6
trapezoidal (µT R) 98.00 [1 3 2] 0.5 0.3

generalized bell (µB) 98.00 [1 3 3] 0.5 0.3
Gaussian combination (µΓ) 98.00 [1 3 2] 0.5 0.3

The lowest error obtained for the rule elimination algorithm equals three mistaken
classifications. It corresponds to 98% efficiency. It occurs for all considered function
shapes. The fuzzy focal element set generated for the triangular membership function
shape is presented in Tab. 14.

Table 14: The rule set created for the Iris data with triangular membership functions in
fuzzy focal elements

fuzzy focal element s(rl) m1(s(r1)) m2(s(r2)) m3(s(r3))

rl = 3 : X3 is A(3)
3 0 0.3378 0.5

rl = 4 : X4 is A(4)
4 0 0.3311 0.5

rl = 10 : X3 is A(10)
3 ∧ X4 is A(10)

4 1 0.3311 0

The number of extracted rules is small for every class. Only one fuzzy focal element
is necessary to classify Iris Setosa (l = 1) properly:

s(10) : X3 is A(10)
3 ∧X4 is A(10)

4 , m1(s(10)) = 1.

Other classes cannot be so easily separated, but still fuzzy focal elements are related
to the third and fourth data parameters. Required number of rules for the second and
third class is three and two, respectively. It is interesting that the extracted rule set is
the same or similar for all considered function shapes (see Fig. 10). In this figure points
are labelled by variables which membership functions are used in focal elements (rules).
It could be suspected that the algorithm always extract the best rules regardless of the
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Figure 10: Extracted fuzzy focal elements for the Iris data set (”Iris Versicolor” class)
for different membership function shapes. Points represent rules including membership
functions of variables which numbers are denoted on axes.

membership function shape. This phenomenon is checked with medical benchmarks in
next section.

The cross-validation procedure was introduced to investigate an efficiency of the al-
gorithm for separable training and testing data sets. In the cross-validation done for the
Iris data set, 50 training XU and testing XT subsets were randomly created with condi-
tion that XU ∩XT =Ø. Every training and testing subset contained 75 data cases. Original
percentage content of class cases in training and testing subsets is maintained. For ev-
ery training subset the ηBPA and ηT thresholds are searched individually. The ηBPA are
changed between 0.05 and 0.95 with step 0.05. The ηT is matched to ηBPA according to
three following conditions suggested in [27]:

ηT = 0.5+
(

ηBPA −0.5
0.5

)3

+0.5, (24)

ηT = ηBPA, (25)

ηT = 0.5+
(

ηBPA −0.5
0.5

) 1
3

+0.5. (26)

Mean testing efficiency is calculated according to formula:

ET =
1
K

K

∑
i=1

Eti, (27)

where the Eti is the efficiency (23) obtained for the i-th testing subset and K is the number
of the subsets.
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Table 15: The results of the cross-validation for the Iris data set for different membership
function shapes

membership function ET [%] rule set size (mean) rule set size (median)

µT 97.55 [2 2 2] [3 3 3]
µT R 97.33 [3 3 3] [3 3 3]
µB 97.55 [3 3 3] [3 3 3]
µΓ 97.76 [2 2 3] [3 3 3]

The average efficiencies and sizes of rule sets are shown in Tab. 15. The highest av-
erage testing inference efficiency is obtained for the Gaussian combination membership
function. It equals 97.76% which means two misclassified cases out of 75 in XT set.
Slightly worse result is obtained for the triangular shapes with one rule less in the S3 set.
Fig. 16a shows average testing efficiency represented by box-and-whiskers diagrams.
The best result (97.76% testing efficiency for the Gaussian combination membership
function) is better than 90% efficiency mentioned in LS-SVM approach [15], and better
than neural network based approach presented and referenced in [36]. Total number (i.e.
the number for altogether classes) of Gaussian combination membership function based
rules generated for i-th subset of data are shown in Fig. 17a. As we can see the mean
number of rules is nine for all data subsets for three classes. The most frequent number
of rules is not greater than nine and only six data subsets generated a greater rule set.

6. Experiments

In this section research made for five databases which are well-known medical di-
agnosis benchmarks is performed. The aim is to find out if an optimal shape of the
membership function can be indicated and how efficient can be the algorithm of rule
elimination.

6.1. Thyroid Gland

The data set refers to the study of thyroid gland functionality [5]. It contains 215
cases, which are divided to 3 diagnoses:

• normal thyroid functioning – 150 cases,

• hyperthyroidism – 35 cases,

• hypothyroidism – 30 cases.

Every data case is described by six parameters. Five of them provide numerical in-
formation about medical test results. The last parameter is the diagnosis label (l = 1, 2,
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3). It is possible to create Sl which includes |Sl| = 31 fuzzy focal elements for every
diagnosis (l = 1, 2, 3). Results of the rule elimination algorithm executed for the entire
data set are shown in Tab. 16.

Table 16: The results of the rule elimination algorithm for the Thyroid Gland data set,
different membership functions and ηT , ηBPA thresholds

membership function E [%] rule set size ηBPA ηT

µT 98.14 [19 19 19] 0.3 0.4
µT R 98.14 [5 5 4] 0.3 0.15
µB 97.67 [8 5 8] 0.5 0.05
µΓ 97.21 [6 3 7] 0.25 0.35

The inference efficiency (when the entire data set is considered) equals 98.14% for
the triangular and trapezoidal membership functions. Trapezoidal membership functions
provide significant reduction of the achieved rule number: five rules for the ”normal thy-
roid activity” and ”hyperthyroidism”, four for the ”hypothyroidism” diagnosis. This re-
sult means four wrong diagnoses out of 215 cases. Fuzzy focal elements extracted for
trapezoidal membership function are subsets of much greater sets of 19 focal elements
when the triangular membership functions are used. The remaining results for the gen-
eralized bell and Gaussian combination shapes are also the subsets of the same fuzzy
focal element sets. Every detailed elimination provides quite similar focal element sets
independently of chosen membership function shape. This observation can be noticed in
Fig. 11 where focal element set (i.e. S1) extracted for four different function shapes is
presented.

6.2. Wisconsin Breast Cancer (Original)

This data set contains 699 instances [33], which correspond to two possible diag-
noses: the benign or the malignant type of a breast cancer. Every instance of the data
set has 10 attributes. Nine of them are nominal values which give information about
character of the patient cells examined in the laboratory test. Every of the mentioned
attributes gets integer value from 1 to 10. The tenth attribute is the diagnosis label (2 for
the benign, 4 for the malignant). Thus, the full rule set size is 511. The results of the rule
elimination algorithm are shown in Tab. 17.

The best inference efficiency equals 97.57% and is achieved for the Gaussian com-
bination membership functions. It is related to total 9 rules. The algorithm eliminates
99.4% from the set of 511 rules. The extracted fuzzy focal element sets are also the
subsets of bigger sets extracted for methods with worse results. It is shown also in the
pseudo-3D diagram in Fig. 12. There are three fuzzy focal elements related to the ’ma-
lignant’ diagnosis:

s(2) : IF X2 is A(2)
2 ,



414 S. PORĘBSKI, E. STRASZECKA

0
1

2
3

4
5

012345

 

{x5}
{x4}

{x3}
{x2}

{x1}

{x1, x2}

{x1, x2, x3}

{x1, x2, x5}

{x2, x3}

{x2, x3, x5}

{x1, x3}

{x1, x3, x5}

{x4, x5}

{x2, x4}

{x3, x5}

{x1, x4}

{x2, x5}
{x1, x5}

 

triangular
trapezoidal
generalized bell
Gaussian combination

Figure 11: Extracted fuzzy focal elements for the Thyroid Gland data set (”normal thy-
roid functioning” diagnosis) for different membership function shapes. Points represent
rules including membership functions of variables which numbers are denoted on axes.
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Figure 12: Extracted fuzzy focal elements for the Breast Cancer data set (”benign” diag-
nosis) for different membership function shapes. Points represent rules including mem-
bership functions of variables which numbers are denoted on axes.

s(3) : IF X3 is A(3)
3 ,

s(6) : IF X6 is A(6)
6 ,
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Table 17: The results of the rule elimination algorithm for the Wisconsin Breast Cancer
data set, different membership functions and ηT , ηBPA thresholds

membership function E [%] rule set size ηBPA ηT

(µT ) 97.00 [6 6] 0.5 0.3
(µT R) 96.42 [3 3] 0.5 0.05
(µB) 97.00 [7 8] 0.15 0.05
(µΓ) 97.57 [4 5] 0.95 0.25

which occur for every considered membership function shape. Additionally, two com-
plex fuzzy focal elements:

s(18) : IF X2 is A(18)
2 and X3 is A(18)

3 ,

and
s(21) : IF X2 is A(21)

2 and X6 is A(21)
6

are needed to provide the best efficiency when the Gaussian combination shapes are
used.

6.3. Cleveland Heart Disease

The Cleveland Heart Disease [8] is another medical data set. Every instance has
76 attributes, but only 14 of them are used in published experiments [4, 10, 11]. The
entire data set contains 303 instances. Every instance has 13 numerical attributes of
various origin which are considered in heart disease diagnosis. The 14-th attribute is the
diagnosis label. Its value equal to 0 stands for the absence of heart disease and 1, 2, 3,
4 for the presence of heart disease with different severity. Hence, classification could be
reduced to two diagnoses problem: diagnosis of absence and presence of a heart disease.
If 13 attributes are considered, it is possible to create 8191 rules for every diagnosis. The
results of the rule elimination algorithm are shown in Tab. 18.

Table 18: The results of the rule elimination algorithm for the Cleveland Heart Disease
data set, different membership functions and ηT , ηBPA thresholds

membership function E [%] rule set size ηBPA ηT

µT 82.84 [6 6] 0.2 0.9
µT R 79.87 [2 3] 0.05 0.7
µB 81.19 [6 6] 0.3 0.2
µΓ 82.51 [6 5] 0.65 0.35

The best efficiency obtained for the entire set of Heart Disease data is 82.84% for
the triangular membership functions. The required number of rules equals six for the
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”absence of heart disease” and ”presence of heart disease” diagnosis. This is the biggest
number of rules when different shapes are considered. Extracted focal element sets are
similar for considered shapes (see Fig. 13). Some rules are built as superposition of
attributes occurred in elements extracted for other shapes.
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Figure 13: Extracted fuzzy focal elements for the Heart Disease data set (”heart dis-
ease absent” diagnosis) for different membership function shapes. Points represent rules
including membership functions of variables which numbers are denoted on axes.

6.4. Appendicitis

The data set [32] contains 106 instances. The whole set is corresponded to the ap-
pendix diagnosis. Proportion of the diagnoses in data set is as follows:

• acute appendicitis – 88 cases,

• other medical problem – 18 cases.

Every data case is a vector of eight parameters. Seven of them are numerical result of
some medical tests. The last parameter is the diagnosis label (l = 1, 2). It is possible to
create 127 rule premises for single diagnosis. The results of rule elimination algorithm
for the entire data set are shown in Tab. 19.

The best efficiency is obtained for three focal elements regardless of the membership
function shapes. It is demonstrated in Fig. 14 where fuzzy focal element sets created
for the ”acute appendicitis” diagnosis are compared. The same efficiency of 88.68% is
obtained for the triangular and the Gaussian combination shapes. Since extracted rules
are the same and the optimal thresholds are almost equal it can be stated that the shapes
of the triangular and the Gaussian combination function have quite similar character.
Since for this database the fuzzy focal element set generated for all shapes is the same
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Table 19: The results of the rule elimination algorithm for the Appendicitis data set,
different membership functions and ηT , ηBPA thresholds

membership function E [%] rule set size ηBPA ηT

µT 88.68 [3 3] 0.5 0.15
µT R 84.91 [3 3] 0.45 0.35
µB 87.74 [3 3] 0.2 0.05
µΓ 88.68 [3 3] 0.5 0.05
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Figure 14: Extracted fuzzy focal elements for the Appendicitis data set (”not acute ap-
pendicitis” diagnosis) for different membership function shapes. Points represent rules
including membership functions of variables which numbers are denoted on axes. Points
represent rules including membership functions of variables which numbers are denoted
on axes.

and the set sizes are small, let us demonstrate all obtained fuzzy focal elements with
Gaussian combination membership function for the both diagnoses:

• S1 = {s(2),s(3),s(6)}:

s(2) : IF X2 is A(2)
2 , THEN D1, m1(s(2)) = 0.34,

s(3) : IF X3 is A(3)
3 , THEN D1, m1(s(3) = 0.32,

s(6) : IF X6 is A(6)
6 , THEN D1, m1(s(6)) = 0.34.
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• S2 = {s(4),s(5),s(23)}:

s(4) : IF X4 is A(4)
4 , THEN D1, m2(s(4)) = 0.33,

s(5) : IF X5 is A(5)
5 , THEN D1, m2(s(5)) = 0.34,

s(23) : IF X4 is A(23)
4 ∧X5 is A(23)

5 , THEN D1, m2(s(23)) = 0.33.

Above Xk is A(rl)
k conditions are described by suitable µ(l)k membership functions.

Basic probability values for all extracted focal elements is approximately 0.33. Hence,
conformation of rl-th rule with the single data case increases the l-th diagnosis belief by
0.33 for it.

6.5. Pima Diabetes

The data set [24] refers to the study of Pima Indians diabetes diagnosis and contains
768 instances divided into two diagnoses: 268 instances are labelled as "tested positive
for diabetes" and 500 otherwise. Every instance is nine-dimensional vector (eight at-
tributes and the diagnosis label). All of the attributes are numerical values. It is possible
to create full rule set of 255 focal elements for every diagnosis. The results of the rule
elimination algorithm for the entire data set are shown in Tab. 20 and in Fig. 15.
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Figure 15: Extracted fuzzy focal elements for the Pima Diabetes data set (”diabetes”
diagnosis) for different membership function shapes. Points represent rules including
membership functions of variables which numbers are denoted on axes.

As we can see the greatest efficiency is obtained for the generalized bell function.
Nevertheless, it is related to the great number of rules: 13 for both diagnoses. The result
obtained for the triangular shape is related to the least rule number, with only 1.5%
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Table 20: The results of the rule elimination algorithm for the Pima Diabetes data set,
different membership functions and ηT , ηBPA thresholds

membership function E [%] rule set size ηBPA ηT

µT 76.04 [5 5] 0.55 0.2
µT R 74.74 [4 4] 0.2 0.6
µB 77.34 [13 13] 0.6 0.1
µΓ 74.87 [57 56] 0.35 0.05

efficiency lowering. Moreover it can be noticed again that the rule sets extracted for the
less effective shapes are subsets of that created when the best shape (i.e generalized bell)
is used.

7. Cross-validation

The cross-validation is executed in the same way as it has been done for the Iris
data set (section 5). When the rule elimination algorithm is finished with the training
data set, testing procedure with different data set is done. The statistical results of cross-
validation with 50 subsets are shown in Tab. 21. Moreover, obtained testing efficiencies
are presented by box-and-whiskers diagrams in Fig. 16.

The greatest efficiencies reached in testing for the cross-validation is thrice related
to the same membership functions which were indicated for the whole data sets (Tab.
16÷20). A conformity is observed for the Heart Disease, Pima Diabetes and Breast
Cancer data, though in the last case the maximum efficiency is achieved at the cost of
great rule number. Size of a rule set is often large when the elimination algorithm fails
to extract a suitable small focal element set i.e. at some step a rule is wrongly elimi-
nated. Nevertheless, some regularities to the results obtained for the entire data set can
be noticed. The average rule set numbers are often increased by the training subsets, for
which the algorithm was not able to extract suitably small focal element set (see Fig.
17). This phenomenon can be noticed especially for the Breast Cancer and Appendicitis
data set. Total rule number which are extracted for every training subset for mentioned
data sets are shown in Fig. 17c and 17e, respectively. The median indicates the rule num-
ber neglecting of a few outlying results. This may suggest that the solutions of the best
efficiency sometimes lack generalization and that the number of rules should be equally
important criterion for the ultimate choice of the focal element set, i.e. membership func-
tions and rules.
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Figure 16: Testing efficiency of the inference in cross-validation procedure represented
by box-and-whiskers diagrams. The ”box height” is determined by interquartile range,
the maximum ”whiskers length” is specified as one and half interquartile range. Outlying
results are denoted with ’+’. Dot inside circle represents median in each ”box”.

8. Discussion

Let us summarize results from the point of view of membership function shapes that
could be advised in application trials. In Tab. 22 and Tab. 23 the membership function
which provides the best efficiency for the chosen data is denoted as „I”, the second best
as „II” etc.

Some regularities in the tables are noticeable. The generalized bell and trapezoidal
shapes are noted with ”III” and ”IV” most frequently. The triangular membership func-
tions shapes are by far the highest evaluated since they are noted with ”I” for two bench-
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Table 21: The results of the cross-validation for all data sets for different membership
function shapes

data set
membership

ET [%] rule set size (mean) rule set size (median)
function

Thyroid Gland

µT 97.91 [11 11 10] [11 11 7]
µT R 97.93 [13 12 12] [12 11 10]
µB 97.91 [15 14 14] [15 12 11]
µΓ 97.94 [11 10 10] [11 9 8]

Breast Cancer

µT 96.78 [17 18] [7 7]
µT R 96.47 [14 14] [7 7]
µB 96.45 [28 28] [7 7]
µΓ 97.00 [36 36] [14 14]

Heart Disease

µT 82.50 [8 8] [6 6]
µT R 81.09 [6 6] [5 5]
µB 81.38 [14 14] [6 6]
µΓ 82.67 [10 10] [6 6]

Appendicitis

µT 88.33 [14 12] [11 5]
µT R 85.83 [10 10] [10 10]
µB 90.17 [21 19] [17 17]
µΓ 89.67 [18 18] [17 17]

Pima Indians

µT 74.23 [4 4] [3 3]
µT R 71.34 [3 3] [3 3]
µB 75.04 [4 4] [3 3]
µΓ 73.70 [6 6] [4 4]

mark data sets (Heart Disease and Appendicitis) and with ’II’ for the others. The Gaus-
sian combination shape is chosen as the best for two databases, too. Hence it seems that
the two distinguished shapes should be preferred for further research in diagnostic rule
extraction issues.

The cross-validation procedure shows us that the membership function shapes are
thrice evaluated by the same notes as for the entire data sets. Moreover, the trapezoidal
and generalized bell shapes again receive most often the ”III” and ”IV” note, respec-
tively. The best noted shape seems to be the Gaussian combination this time. It obtains
the first note for two data sets (Thyroid Gland and Breast Cancer) and the second note
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(a) The Iris data set
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(b) The Thyroid Gland data set
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(c) The Wisconsin Breast Cancer data set
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(d) The Cleveland Heart Disease data set
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(e) The Appendicitis data set
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(f) The Pima Diabetes data set

Figure 17: Total number of the fuzzy focal elements in every data subset of the cross-
validation. Horizontal dotted line and dashed line represent mean and median number of
the total rule number for all subsets, respectively.

Table 22: Comparison of the best methods chosen for the benchmark data sets (when the
entire data set is processed)

Methods
triangular trapezoidal generalized bell Gaussian combination

Thyroid Gland II I III IV
Breast Cancer II IV III I
Heart Disease I IV III II
Appendicitis I III IV I

Pima Diabetes II IV I III
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Table 23: Comparison of the best methods chosen for the benchmark data sets (cross-
validation procedure)

Methods

triangular trapezoidal generalized bell Gaussian combination

Thyroid Gland III II III I
Breast Cancer II IV III I
Heart Disease I IV III II
Appendicitis III IV I II

Pima Diabetes II IV I III

for the other two data sets (Heart Disease and Appendicitis). The results of the triangu-
lar shape are slightly worse if compared with results presented in Tab. 22. Anyway, they
are still not worse that results obtained for the trapezoidal and generalized bell shapes.
Taking into account similarity of Gaussian and triangular shapes and possibility of con-
verting the one shape into another [26] we can confirm the usefulness of such functions.

The second remarkable issue is so-called ”trade-off” between the efficiency of the
diagnosis and the complexity of the fuzzy focal element (rule) set. The most significant
example of this phenomenon is observed for the Cleveland Heart Disease data set, where
the algorithm eliminates rules from 8191 rule set. Few percentage decrease of mistaken
diagnoses is achieved at the cost of the increase at several dozen (or hundreds) rules.

The obtained results seem to be valuable while comparing to the references. When
the Iris data set is considered, efficiency results could be compared to number of ap-
proaches. Efficiency obtained for the entire data set (98.00%) is higher than approaches
presented in [1] or [14] where it was 95 and 94.67%, respectively. The approach based on
SSV method proposed in [10] provides two rules per class. Approaches presented in [17]
are based on fuzzy clustering and fuzzy based classification method. They provide 98%
efficiency with about three rules per class. The results obtained for the Thyroid Gland
data set (98.14 and 97.94% for the entire data set and cross-validation, respectively) are
better than results presented in [13, 18] and competitive to approach presented in [21]
where so-called interval-valued fuzzy reasoning model is introduced. Wisconsin Breast
Cancer data set is not such popular, but our results can be compared to approaches (92-
99%) presented and referenced in [10] for different rule set sizes. Although the efficiency
results for the Heart Disease and Appendicitis data sets are not enough satisfactory, they
are better or competitive to approaches presented and referenced in [19, 25].
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9. Conclusions

The paper focuses on extraction of diagnostic rules from databases using the
Dempster-Shafer theory and fuzzy set theory. It is shown that such rules can be de-
termined and are easy for heuristic interpretation. Different membership functions that
are used in testing turned out to be optimal for various data sets, still the triangular
and Gaussian combination functions appear to be preferable for initial investigations.
These functions provide creation of few rule sets for five medical benchmark databases.
The elimination algorithm is proposed to extract the smallest set of necessary diagnostic
rules out of their complete set. It is noticeable that regardless of the functions, the re-
sulting rule sets are the same or similar. In majority of calculations greater sets include
as subsets smaller sets, obtained for different membership functions. In the performed
experiment, in several cases an increase of the diagnosis accuracy is achieved at the cost
of a significant enlargement of the rule set size. In these cases a little decrease of effi-
ciency allow for great decrease of rule number which may evidence that small rule sets
are more general and spare rules are specific for data. The latter are not always desirable.
Hence it could be indicated to extract the optimal rule sets firstly and then try to match
function shapes and tune them to obtain the best inference efficiency. Generally, for the
mentioned benchmarks, the obtained accuracy is better or comparable to other meth-
ods of rule extraction. The form of rules, the used membership functions that can be
described by exemplary linguistic variables ”low”, ”normal” and ”high”, as well as the
limited number of rules, create optimal conditions of cooperation between a knowledge
engineer and an expert. Further research of the Dempster-Shafer theory based inference
is worthy of interest in view of these results. It could indicate a method to create the
set of rules starting from the initial simplest rules instead of rule elimination from the
maximal set.
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