
Archives of Control Sciences
Volume 26(LXII), 2016

No. 3, pages 339–365

Tools and methods for RTCP-nets modeling
and verification

MARCIN SZPYRKA, JERZY BIERNACKI and AGNIESZKA BIERNACKA

RTCP-nets are high level Petri nets similar to timed colored Petri nets, but with different
time model and some structural restrictions. The paper deals with practical aspects of using
RTCP-nets for modeling and verification of real-time systems. It contains a survey of soft-
ware tools developed to support RTCP-nets. Verification of RTCP-nets is based on coverability
graphs which represent the set of reachable states in the form of directed graph. Two approaches
to verification of RTCP-nets are considered in the paper. The former one is oriented towards
states and is based on translation of a coverability graph into nuXmv (NuSMV) finite state
model. The later approach is oriented towards transitions and uses the CADP toolkit to check
whether requirements given as µ-calculus formulae hold for a given coverability graph. All
presented concepts are discussed using illustrative examples

Key words: RTCP-nets, Petri nets, model checking, coverability graphs, nuXmv, CADP.

1. Introduction

Colored Petri nets (CP-nets [13], [14]) is one of the most widespread classes of high
level Petri nets. They provide a discrete-event modeling language combining capabili-
ties of Petri nets [19], [18] with the capabilities of a high-level programming language
that provides the primitives for the definition of data types, variables, expressions for de-
scribing data manipulation etc. CP-nets are aimed towards modeling a very broad class
of systems including information technology, automatics, electronics, biology, chem-
istry, medicine etc. All those systems can be characterized as concurrent ones. Equipped
with a time model, CP-nets may be used to model real-time systems. A survey of time
extensions of Petri nets can be found for example in [20]. There are two main time mod-
els for CP-nets, one based on time stamps attached to tokens described in [13] and the
other called interval time Petri nets proposed in [1]. Due to the CPN Tools [15], the most
often used modeling environment for CP-nets, the former model is more popular. Unfor-
tunately, reachability graphs for timed CP-nets are usually infinite, thus verification of

The Authors are with AGH University of Science and Technology, Department of Applied Computer
Science, Al. Mickiewicza 30, 30-059 Krakow, Poland. M Szpyrka is the corresponding author, e-mail:
mszpyrka@agh.edu.pl.

Received 25.07.2016.

10.1515/acsc-2016-0019

340 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

such nets using model checking techniques is limited. To overcome the problem, reach-
ability graphs with equivalence classes can be used [13], but it is necessary to define
equivalence relations for each model individually. Moreover, when reachability graphs
with equivalence classes are used, possibilities of verification of some properties can be
lost.

RTCP-nets (real-time colored Petri nets, [21], [22]) are based on CP-nest but are
equipped with different time model that makes them suitable for modeling real-time
systems. Analysis of RTCP-nets may be carried out with coverability graphs [21]. Such
a graph may be used to analyze boundedness, liveness and timing properties of the cor-
responding RTCP-net. If the set of reachable markings of an RTCP-net is finite, it is
possible to construct a finite coverability graph that represents the set of all reachable
states regardless of whether the set is finite or infinite.

The paper focuses on practical aspects of using RTCP-nets. It contains a survey of
tools and verification methods developed for RTCP-nets recently. The paper is organized
as follows. Section 2 contains the formal definition of RTCP-nets and description of basic
ideas connected with them. Rules that must be obeyed while modeling RTCP-nets with
CPN Tools are presented in Section 3. Section 4 deals with reachability and coverability
graphs. Section 5 presents RTCP-net Compiler used to generate Java representation for
models. This representation is used to generate reachability and coverability graphs. A
method of verification of RTCP-nets with the nuXmv tool is considered in Section 6. An
algorithm of translation of reachability/coverability graphs into nuXmv states machines
is also given in the section. Action-based verification of RTCP-nets with the CADP
toolbox is considered in Section 7. All methods considered in the paper are illustrated
using the example presented in Section 8. A short summary is given in the final section.

2. RTCP-nets

RTCP-nets [21], [22] are high level Petri nets similar to CP-nets. We use tokens
data types (colors), variables and expressions to deal with the tokens flow. Due to the
fact that we use CPN Tools [15] for designing RTCP-nets, the inscription language is
CPN ML [14]. Let E denote the set of expressions provided by the inscription language.
For x ∈ E , V (x) denotes the set of all free variables in x (i.e. not bound in the local
environment of the expression), and T (x) denotes the type of x, i.e. the type of values
obtained by evaluating the expression. Let V ′ be a set of variables. The set of expressions
x ∈ E such that V (x)⊆V ′ is denoted EV ′ .

Let Bool denote the boolean type (containing the elements {false, true}, and having
the standard operations from propositional logic). For an arc a, P(a) and T (a) denotes
the place node and the transition node of the arc, respectively.

Definition 3 An RTCP-net is a tuple N = (P,T,A,Σ,V,C,G, I,EM,ES,M0,S0), where:

1. P is a non-empty finite set of places.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 341

2. T is a non-empty finite set of transitions (P∩T = Ø).

3. A ⊆ (P×T)∪ (T ×P) is a flow relation.

4. Σ is a non-empty finite set of non-empty types.

5. V is a finite set of variables such that ∀v∈V T (v) ∈ Σ.

6. C : P → Σ is a type function.

7. G : T → EV is a guard function, such that ∀t∈T T (G(t)) = Bool.

8. I : T → N∪{0} is a priority function.

9. EM : A → EV is an arc expression function, such that ∀a∈AT (EM(a)) =C(P(a)).

10. ES : A → EV is an arc time expression function, such that ∀a∈AT (ES(a)) =Q+∪
{0}.

11. M0 is an initial marking, such that ∀p∈PM0(p) ∈ 2C(p)∗ , where 2C(p)∗ denotes the
set of all multi-sets over the set C(p).

12. S0 : P → Q is an initial time function, which maps each place to a rational value
called initial place time.

RTCP-nets are an adaptation of CP-nets to make modeling and verification of real-
time systems easier and more efficient. In comparison to CP-nets the set of arcs is defined
as a relation (multiple arcs are not allowed). Two expressions are attached to each arc:
a weight expression and a time expression. For any arc, each evaluation of the arc weight
expression must yield a single token belonging to the corresponding type; and each eval-
uation of the arc time expression must yield a non-negative rational value. Finally, each
place has its own local clock attached that measures the place time. Any positive value
of a place time describes how long tokens in the corresponding place will be inaccessible
for any transition. Negative values represent tokens age (all tokens in a given place share
the clock value). It is possible to specify how old a token should be so that a transition
may consume it.

Definition 4 Let an RTCP-net N be given. A marking of N is a function M defined on
the set of places P, such that: ∀p∈PM(p) ∈ 2C(p)∗ . A time function is a function S defined
on P, such that: ∀p∈PS(p) ∈Q. A state is a pair (M,S), where M is a marking and S is a
time function. The initial state is the pair (M0,S0).

Let P be an ordered set, P = {p1, p2, . . . , pn}. Both a marking M and a time function
S can be represented by vectors with |P| entries.

For any node x ∈ X = P∪T we define the set of input nodes In(x) = {y ∈ X : (y,x)∈
A} and the set of output nodes Out(x) = {y ∈ X : (x,y) ∈ A}.

342 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

Let V (t) be the set of variables that occur in the expressions of arcs surrounding a
transition t and in the guard of the transition. A binding of a transition t is a substitution b
that replaces each variable of V (t) with a value of the corresponding type, such that the
guard evaluates to true. For a transition t and its binding b, G(t)b denotes the evaluation
of the guard expression in the binding b and EM(p, t)b and ES(p, t)b denote the evaluation
of the weight and the time expression in the binding b, respectively.

Definition 5 A transition t ∈ T is enabled in a state (M,S) in a binding b iff the following
conditions hold:

∀p∈In(t)EM(p, t)b ∈ M(p)∧ES(p, t)b ¬−S(p), (1)

∀p∈Out(t)S(p)¬ 0. (2)

and for any transition t ′ ̸= t that satisfies the above conditions, I(t ′) ¬ I(t) or In(t)∩
In(t ′) = Out(t)∩Out(t ′) = Ø.

It means that a transition is enabled if all input places contain suitable tokens and
have suitable time (age of tokens), all output places are accessible and no other transition
with a higher priority strives for the same input or output places. If a transition t ∈ T is
enabled in a state (M1,S1) in a binding b it may fire, changing the state (M1,S1) to
another state (M2,S2), such that:

M2(p) =



M1(p)−{EM(p, t)b}∪{EM(t, p)b} for p ∈ In(t)∪Out(t),

M1(p)∪{EM(t, p)b} for p ∈ In(t)−Out(t),

M1(p)−{EM(p, t)b} for p ∈ Out(t)− In(t),

M1(p) otherwise.

(3)

and

S2(p) =


ES(t, p)b for p ∈ Out(t),

0 for p ∈ In(t)−Out(t),

S1(p) otherwise.

(4)

We write (M1,S1)
(t,b)−→ (M2,S2) to denote the change of states. Moreover, every time

the clock goes forward, all time stamps are decreased by the same value.

Definition 6 Let (M,S) be a state and e = (1,1, . . . ,1) a vector with |P| entries. The
state (M,S) is changed into a state (M′,S′) by a passage of time τ ∈ Q+, denoted by
(M,S) τ→ (M′,S′), iff M = M′ and the passage of time τ is possible, i.e., no transition is
enabled in any state (M,S′′), such that: S′′ = S− τ′ · e, for 0¬ τ′ < τ.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 343

For the sake of simplicity, we will assume that there is one passage of time (some-
times equal to 0) between firings of two consecutive transitions. A firing sequence of an
RTCP-net N is a sequence of pairs α = (t1,b1),(t2,b2), . . . , such that bi is a binding of
the transition ti, for i = 1,2, . . . The firing sequence is feasible from a state (M1,S1) iff
there exists a sequence of states such that:

(M1,S1)
τ1→ (M1,S′1)

(t1,b1)−→ (M2,S2)
τ2→ ··· (tn,bn)−→ (Mn+1,Sn+1)

τn+1→ . . . (5)

A firing sequence may be finite or infinite. A state (M′,S′) is reachable from a state
(M,S) iff there exists a finite firing sequence α feasible from the state (M,S) and leading
to the state (M′,S′). The set of all states that are reachable from (M,S) is denoted by
R (M,S).

3. Design of RTCP-nets with CPN Tools

CPN Tools [15] is a modeling environment for editing, simulating, and analyzing
colored Petri nets [14], [12]. Due to syntax differences CPN Tools cannot be use to sim-
ulate or verify RTCP-nets. However, the industrial-strength modeling environment can
be used for constructing RTCP-net models, which can be later processed with the RTCP-
net Compiler (see Section 5). An RTCP-net designed with the CPN Tools is presented
in Fig. 1. The following editing rules must be obeyed while designing RTCP-nets:

• A place initial state is written marking@clock value.

• The notation for multisets is m1(e1)+m2(e2)+ . . . , where m stands for multiplic-
ity and e stands for element. The multiplicity equal to 1 and the corresponding
brackets can be omitted.

• Expressions for single direction arcs are written
weight expression@time expression.

• Expressions for double direction arcs are written
input weight exp@input time exp | output weight exp@output time exp, where
arcs are consider input or output from the places point of view.

• Time expressions equal to 0 are omitted.

An example of an RTCP-net is given in Fig. 1. The model uses two token types: P
with elements a and b and a singleton R with element r. The model represents two types
of processes (represented by the a and b tokens), which compete for some resources
stored in places p6 and p7. The a process reaches two states, which are represented
by placing the a token in places p1 and p2 respectively. Similarly, each of the two b
processes reaches three states, which are represented by placing the b tokens in places
p3, p4 and p5 respectively. Let us consider expressions for selected arcs.

344 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

p1

P

(a)

p2

P

p6

R

2(r)@1

p7

R
3(r)

p3

P

2(b)

p4

P

p5

P

t1

1

t2

t3

t4

t5

a

a@2

a

a@2

2(r)@1

2(r)@1

b

b@1

b

b@2

b

b@3

r@1|r

r@2|r

r|r

r@1|r

Figure 1: RTCP-net example (shared resources).

• (p1, t1) – Transition t1 takes one token a from place p1. The place time must be
less or equal to 0. The transition sets the place time to 0.

• (t1, p2) – Transition t1 adds one token a to place p2 and sets the place time to 2.

• (p7, t1) – Transition t1 takes one token r from place p7. The place time must be
less or equal to −1. The transition sets the place time to 0.

• {p7, t5} (double arc) – Transition t5 takes one token r from place p7. The place
time must be less or equal to 0. Then the transition adds one token r to the place
and sets its time to 1.

A small part of a simulation log for the considered RTCP-net is shown in Table 8.
Tokens in place p6 are inaccessible in the initial state (M0,S0); transition t1 must take
one-time unit old token from place p7, thus there is no enable transition in the initial
state. However, there is possible the passage of time with τ= 1 that leads to state (M1,S1)
with two enable transitions t1 and t3. Due to the lack of variables there are only empty
bindings in the model, so they are omitted in firing sequences. The states presented in
Table 8 have been taken from the following firing sequence.

(M0,S0)
1→ (M1,S1)

t1−→ (M2,S2)
t3→ (M3,S3)

1−→

(M4,S4)
t3→ (M5,S5)

1−→ (M6,S6)
t4→ (M7,S7)

t2−→

(M8,S8)
2→ (M9,S9) (6)

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 345

Table 8: RTCP-net simulation log

p1 p2 p3 p4 p5 p6 p7

M0 a – 2(b) – – 2(r) 3(r)

S0 0 0 0 0 0 1 0

M1 a – 2(b) – – 2(r) 3(r)

S1 -1 -1 -1 -1 -1 0 -1

M2 – a 2(b) – – 2(r) 2(r)

S2 0 2 -1 -1 -1 0 0

M3 – a b b – 2(r) 2(r)

S3 0 2 0 1 -1 1 0

M4 – a b b – 2(r) 2(r)

S4 -1 1 -1 0 -2 0 -1

M5 – a – 2(b) – 2(r) 2(r)

S5 -1 1 0 1 -2 1 -1

M6 – a – 2(b) – 2(r) 2(r)

S6 -2 0 -1 0 -3 0 -2

M7 – a – b b 2(r) 2(r)

S7 -2 0 -1 0 2 2 0

M8 a – – b b 2(r) 3(r)

S8 2 0 -1 0 2 2 1

M9 a – – b b 2(r) 3(r)

S9 0 -2 -3 -2 0 0 -1

Hierarchical RTCP-nets are based on the construct used for hierarchical CP-nets.
Substitution transitions and fusion places [13] are used to combine pages but they are a
mere designing convenience. The former idea allows the user to refine a transition and its
surrounding arcs to a more complex net, which usually gives a more precise and detailed
description of the activity represented by the substitution transition. In comparison with
CP-nets each socket node must have only one port node assigned and vice versa. Thus,
a hierarchical net can be easily ”squashed” into a non-hierarchical one.

A fusion of places allows users to specify a set of places that should be considered
as a single one. It means, that they all represent a single conceptual place, but are drawn
as separate individual places (e.g. for clarity reasons). The places participating in such
a fusion set may belong to several different pages. They must have the same types and

346 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

initial markings. Hierarchical RTCP-nets designed with CPN Tools can be processed
with RTCP-nets Compiler.

4. Reachability and coverability graphs

Analysis of RTCP-nets may be carried out by the use of reachability graphs. The
set of reachable states R (M0,S0) is represented as a weighted, directed graph. Each
node corresponds to a unique state, consisting of a net marking and a time vector, such
that the state is the result of firing of a transition. Each arc represents a change from
a state (Mi,Si) to a state (M j,S j) resulting from a passage of time τ­ 0 and the firing of
a transition t in one of its bindings. A label of such a graph is written (t,b)/τ.

A

(a)S

B

(a)S

t2t1
x@2 | x x@2 | x x | x@3

Figure 2: RTCP-net example.

A reachability graph for an RTCP-nets may be infinite even though the set of the
net markings is finite. Let’s consider the RTCP-net presented in Fig. 2, where type S is
a singleton with value a and x is a variable of type S. The following firing sequence is
feasible in the initial state ((a,a),(0,0)):

((a,a),(0,0))
(t1,(a/x))→ ((a,a),(2,0)) 2−→

((a,a),(0,−2))
(t1,(a/x))→ ((a,a),(2,−2)) 2−→

((a,a),(0,−4))
(t1,(a/x))→ ((a,a),(2,−4)) 2−→

((a,a),(0,−6))
(t1,(a/x))→ ((a,a),(2,−6)) 2−→ . . . (7)

This example shows that transition t2 can be starved by the other one. The firing se-
quence represents an infinite path in the RTCP-net reachability graph. All states in this
sequence share the same marking, but the time of place B is infinitely decreasing, which
generates the infinite set of possible states.

However, we can point out sets of states that can be treated as indistinguishable from
the formal analysis point view. For example, let us consider states ((a,a),(2,−4)) and
((a,a),(2,−6)). The same transitions are enabled in both states and the same sequences
of actions are feasible from the states. Both states have the same markings and the same
level of tokens accessibility, i.e. we have to wait 2 time-units to take the token from the
place A and the token in the place B is already accessible. The token in the place B is
accessible if its age is at least 3 time-units, i.e. the value of the time stamp is equal to
or less than −3. It makes no difference whether the time stamp is equal to −4, −6, etc.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 347

The states are said to cover each other and only one node in the coverability graph will
be used to represent them [21].

To define the coverability relation formally we need two numbers that characterize
the considered place time. Let p ∈ P be a place of an RTCP-net N . The minimal ac-
cessibility age of a place p (δmin(p)) denotes the age when tokens in the place become
accessible for at least one output transition of the place (for at least one of its binding).
The maximal accessibility age of a place p (δmax(p)) denotes the age when tokens in the
place become accessible for all output transitions of the place (considering any binding
of these transitions).

Definition 7 Let N be an RTCP-net and let (M1,S1) and (M2,S2) be states of the net.
The state (M1,S1) is said to cover the state (M2,S2) ((M1,S1) ≃ (M2,S2)) iff M1 = M2
and the following condition holds:

∀p∈P(S1(p) = S2(p))∨ (S1(p)6−δmax(p)∧S2(p)6−δmax(p)). (8)

The coverability relation ≃ is an equivalence relation on R (M0,S0). It has been
proven [21] that for any two states such that (M1,S1) ≃ (M2,S2) it also holds
L(M1,S1) = L(M2,S2).

The reachability and coverability graphs are constructed in a similar way. They differ
only about the way a new node is added to the graph. For the coverability graph, after
calculating a new node, we check first whether there already exists a node that covers the
new one. If so, we add only a new arc that goes to the found state (if it does not already
exist) and the node is omitted. Otherwise, the new state is added to the coverability graph
together with the corresponding arc. The coverability graph contains only one node for
each equivalence class of the coverability relation.

(a, a)

(0, 0)

(a, a)

(2, 0)

(t1,(a/x))/0

(a, a)

(2, -2)

(t1,(a/x))/2 (t2,(a/x))/2

(a, a)

(2, -4)

(t1,(a/x))/2

(t2,(a/x))/2

(t1,(a/x))/2

Figure 3: Coverability graph for model from Fig. 2.

348 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

The coverability graph for the RTCP-net from Fig. 2 is shown in Fig. 3. Let us
consider the graph and the firing sequence from equation (7). After calculating the state
((a,a),(2,−6)) we affirm that there already exists the state ((a,a),(2,−4)) that covers
it. Therefore, we add only an arc that goes back to the state ((a,a),(2,−4)).

5. RTCP-net Compiler

The scheme of the modeling and verification process with RTCP-nets is shown in
Fig. 4. It starts from designing a model using CPN Tools environment as presented in
Section 3. The designed model is stored using XML file format (a .cpn file). RTCP-net
Compiler is a tool that takes an RTCP-net XML file and generates a Java application,
which can be used to simulate and generate the coverability graph for the consider model.
The Java JDK environment (version 1.6 or higher) is necessary to use the compiler.

Figure 4: Modeling and verification process for RTCP-nets

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 349

The XML file format used by the RTCP-net Compiler differs from the XML file
format used by the CPN Tools [15]. The cpn2rtcpn translator is used to convert cpn files
into XML format accepted by the compiler. The translator has been implemented in the
Java language and is used as follows:

java -jar cpn2rtcpn model.cpn -o model.xml

Then, the received XML file is transformed into a Java application:

java -jar rtcpnc model.xml model

where model is the name of the generated application. It is placed inside model subdi-
rectory, which contains model.jar file. All steps performed by the compiler are logged.
By default the log is written to standard output, however it may be redirected to a file.

The first stage of the compiler work is reading an RTCP-net from a file. The log
contains information about pages, places, transitions and arcs read by the compiler. Then
the RTCP-net is converted into equivalent non-hierarchical one. The compiler removes
substitution transitions replacing them with corresponding subpages and merges fusion
places. If necessary, some names may be adjusted to guarantee unique names for the
whole model. In the next stage, Java code is generated for the model. This stage is based
on predefined Java templates. Finally, the compiler generates files necessary for project
compilation, compiles the project and prepares the jar file. After successful compilation
the model can executed:

java -jar model.jar time

where time denotes the simulation period. The result of a model simulation is text log as
shown in Fig. 5. If more than one transition is enabled in a given state, simulator takes
one of them at random.

To generate reachability or coverability graph instead of running the simulation, -rg
(reachability graph) and -cg (coverability graph) options can be used:

java -jar model.jar time -rg
java -jar model.jar time -cg

Generated graph is stored in a dot format file and located in the working directory
of the simulator process. DOT is a graph description language that is both easily pro-
cessed by computer programs and understandable by humans. It is a part of an open
source graph visualization software Graphviz [10]. Graph saved in dot file can be easily
rendered into a PDF using one of Graphviz tools:

dot -Tpdf coverability_graph.dot > cg.pdf

In the case of our example RTCP-net, the rendered PDF file of its coverability graph
is presented in the Fig. 3. Generated graphs can be also previewed using various external
interactive dot format viewing tools like xdot or ZGRViewer.

PetriNet2ModelChecker [2] [3] is a tool that deals with the problem of translation of
RTCP-net reachability or coverability graphs into the nuXmv language and Aldebaran
format. Thus, it provides the possibility of formal verification using model checking

350 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

==
Simulation time: 0
==
Simulation time: 1
Transition ’t1’ fired with binding: ()
-->> token ’a’ removed from place ’p1’ by arc expression: a@0
<<-- token ’a’ added to place ’p2’ by arc expression: a@2
-->> token ’r’ removed from place ’p7’ by arc expression: r@1

State of ’p1’ place:
State of ’p2’ place: (a)@2
State of ’p7’ place: 2(r)
Transition ’t3’ fired with binding: ()
-->> token ’b’ removed from place ’p3’ by arc expression: b@0
<<-- token ’b’ added to place ’p4’ by arc expression: b@1
-->> token ’r’ removed from place ’p6’ by arc expression: r@0
<<-- token ’r’ added to place ’p6’ by arc expression: r@1

State of ’p3’ place: (b)
State of ’p4’ place: (b)@1
State of ’p6’ place: 2(r)@1
==
Simulation time: 2
...

Figure 5: Simulation result for model from Fig. 1.

techniques and mainstream model checkers – nuXmv for LTL and CTL temporal logics
(see section 6), CADP Evaluator for regular alternation-free µ-calculus (see section 7).
The tool integrates cpn2rtcpn and RTCP-net Compiler software and therefore allows to
load RTCP nets modeled in CPN Tools and generate their coverability graphs or simula-
tors in one application. PetriNet2ModelChecker also provides for automatic coverability
graph rendering to a pdf file. These features significantly simplify the process of RTCP-
nets modeling and verification. The tool was previously known as PetriNet2NuSMV [23]
and enables automatic translation for other classes of Petri nets, such as place-transition
and colored Petri nets.

6. Verification with nuXmv

The nuXmv tool [4] (the previous version known as NuSMV) is one of the most
popular model checkers for temporal logic. Given a finite state model and a temporal
logic formula, nuXmv can be used to check automatically whether or not the model
satisfies the formula. Formulas can be treated as a specification of requirements for a
given model and can be expressed using LTL [7] or CTL [7], [8] temporal logics. In the
nuXmv approach, the verified system is modeled as a finite state transition system [5]
usually called Kripke structure [16].

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 351

Definition 8 A finite state transition system is a tuple TS = (S, I,→,L), where:

• S is a finite set of states,

• I ⊆ S is the set of initial states,

• →⊆ S× S is the transition relation, specifying the possible transitions from state
to state,

• L is the labeling function that labels states with atomic propositions that hold for
the given state.

s0

s1 s2

a1

a2

a1

a3

{a, b = 1}

{b = 2} {a, b = 0}

MODULE main

IVAR

action: {a1,a2,a3};

VAR

s : {s0, s1, s2};

a : boolean;

b : 0 .. 2;

ASSIGN

init(s) := {s0, s2};

next(s) := case

s = s0 & action = a1: s1;

s = s1 & action = a2: s0;

s = s1 & action = a1: s2;

s = s2 & action = a3: s2;

TRUE: s;

esac;

a := case

s = s0 : TRUE;

s = s2 : TRUE;

TRUE : FALSE;

esac;

b := case

s = s0 : 1;

s = s1 : 2;

TRUE : 0;

esac;

TRANS s = s0 -> (action = a1)

TRANS s = s1 -> (action = a1

| action = a2)

TRANS s = s2 -> (action = a3)

} set of actions

} set of states
}

atomic propositions
given implicitly

} initial states


















transition relation







































labelling function

}

transitions’ labels

Figure 6: Finite state transition system written with SMV language

The nuXmv tool equipped with a dedicated modeling language (the SMV language),
which is used to define finite state transition systems [5]. An example of such a model
is given in Fig. 6. A nuXmv model consists of three sections: Variables definitions (VAR
and IVAR), ASSIGN and specification of transitions’ labels (TRANS). The IVAR sec-
tion contains definition of an input variable action, containing transitions’ labels. In
the VAR section standard variables are defined, including set of states and atomic propo-
sitions variables. The ASSIGN section is composed of three main parts. The first one
is the initialization of the state variable. The second part is responsible for defining

352 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

transitions between the states. The last part assigns values to the atomic propositions
for specific states. The set of atomic propositions is given implicitly using variables
and their domains. For example, the following expressions can be considered as atomic
propositions: a (i.e. a = TRUE), !a, b = 0, b > 1 etc. The TRANS lines specify which
transitions (actions) are available in specific states. For instance, line TRANS s = s1
-> (action = a1) | (action = a2) determines that when the system is in
state s1, the only available actions are a1 and a2.

A translation algorithm of an RTCP-net coverability graph into the nuXmv code is
presented in Fig. 7. It extends the translation algorithm presented in [2] through adding
transition’s names as edges’ labels in the nuXmv transition system. This enhancement
enables using transition names in verification process (in LTL forumalae) and giving
substantial information during the model simulation.

The flowchart is divided into six main parts corresponding to the abstract model of
a finite state transition system in nuXmv. In the adopted notation, ◃ indicates generated
nuXmv code, # represents string concatenation and mX(y) is the number of y elements
in the X multiset.

The first block of the flowchart is responsible for generation of a declaration of an
input variable action. This variable contains the name of the fired transition. First two
lines generate module name line and the beginning of the IVAR section. The action set is
initialized with a single element NOP, representing empty action. Then, every transition
label is added to the set. The next step defines the domain of the state variable s. The
variable value represents the current node of the RTCP-net coverability graph. For every
state that is reachable from the initial (M0,S0) state, the state name is included into the
set of nuXmv states.

The third section of the algorithm contains steps required to define variables which
represent markings and clocks’ values of places. At the begining, LM and LS sets are
initialised. They contain labels of markings and clocks, respectively. After initialization
of the two sets of labels there are two consecutive loops, containing three blocks each.
For every pair (place name, color) from the reachable markings, the proper variable
label is generated by concatenating these two values. The variable identified by this
label (l_mark) is a bounded integer that contains the information about the number of
tokens of the specified color in the corresponding place. Similarly, bounded integer clock
variable (l_stamp) is generated for every place of the net. Its name is the concatenation
of the place’s name and the time keyword.

The fourth step starts with adding of the beginning of the ASSIGN section and ini-
tialization of the s variable with the name of the initial state. Then the transition relation
switch statement is opened. Vik is the set of successors of si state, reachable by firing of
the transition tk. In the nested loops that follow, successors lists for every reachable state
are generated.

The next sections of the algorithm contains two similar loops. Each generates label-
ing functions – the first one for marking variables and the second one for clock variables
defined in the VAR section. Labeling functions are basically switch statements in which
the proper value is assigned to the variable depending on the current state of the system.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 353

⊲ MODULE main

⊲ IVAR

action← {NOP}
for all ti ∈ T do

action← action ∪ {ti}
end for

⊲ action : {NOP, t0, t1, ...};

1. Create set of transitions.

⊲ VAR

for all (Mi, Si) ∈ R(M0, S0) do

s← s ∪ {si}
end for

⊲ s : {s0, s1, ...};

2. Create set of states.

LM ← ∅, LS ← ∅
for all pi ∈ P do

for all cj ∈
⋃

(Mk,Sk)∈R(M0,S0)
Mk(pi) do

lmark ← pi#cj
k ← max(M,S)∈R(M0,S0)

|M(pi)|
⊲ l_mark : 0..k;

LM ← LM ∪ {lmark}
end for

lstamp ← pi#time

m← min(M,S)∈R(M0,S0)
S(pi)

n← max(M,S)∈R(M0,S0)
S(pi)

⊲ l_stamp : m..n;

LS ← LS ∪ {lstamp}
end for

3. Create set of labels.

⊲ ASSIGN

⊲ init(s) = s0;

⊲ next(s) := case

for all si ∈ s do

for all tk ∈ T do

Vik ← ∅
for all sj ∈ s do

if (Mi, Si)
tk
−→ (Mj , Sj) then

Vik ← Vik ∪ {sj}
end if

end for

⊲ s = si & action = tk: {Vik contents};

end for

end for

⊲ esac;

4. Define flow relation.

for all l ∈ LM (l = pi#cj) do

⊲ l := case

for all sk ∈ s do

c← mMk(pi)
(cj)

if c > 0 then

⊲ s = sk : c;

end if

end for

⊲ TRUE: 0;

⊲ esac;

end for

for all l ∈ LS (l = pi#time) do

⊲ l := case

for all sj ∈ s do

ts← Sj(pi)
if ts > 0 then

⊲ s = sj : ts;

end if

end for

⊲ TRUE: 0;

⊲ esac;

end for

5. Define variables’ values.

for all si ∈ s do

Ti ← ∅
for all tk ∈ T do

if ∃(Mj ,Sj)
(Mi, Si)

tk
−→ (Mj, Sj) then

Ti ← Ti ∪ {tk}
end if

⊲ TRANS s = si ->

(action = Ti_0 | action = Ti_1 | ...);

end for

end for

6. Define transitions availability.

Figure 7: Coverability graph into nuXmv translation algorithm.

354 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

The last block defines availability of the transitions. It is determined by the value of the
si variable. For every reachable state, TRANS line is generated containing a list of avail-
able transitions. One can notice that NOP action is never listed there. This is because it
is only available when no successor exists and indicates a terminal state of the system.

The algorithm was implemented as one of the features of the Petri-
Net2ModelChecker tool and thus allows conversion of a coverability graph of an RTCP-
net stored in .dot file into nuXmv code automatically. The generated nuXmv model is
stored as a text file. To include temporal logic formulas into the file the LTLSPEC and
CTLSPEC statements are used. In case of the LTL logic, the temporal operators G (glob-
ally), F (finally), X (next), U (until) can be used. Moreover, the propositional logic op-
erators are represented by: ! (not), & (and), | (or), xor (exclusive or), -> (implies)
and <-> (equivalence). In case of CTL following temporal logic operators can be used:
EG (exists globally), EX (exists next state), EF (exists finally), AG (forall globally), AX
(forall next state), AF (forall finally), E[U] (exists until), A[U] (forall until). Satisfaction
of each specified formula is automatically verified with the nuXmv tool. If a modeled
system does not satisfy a given formula, a proper counterexample is presented. It is
finally worth mentioning that nuXmv can verify systems of high complexity, i.e. con-
taining more than 1020 states. These features make nuXmv useful and convenient tool
for finite automata verification.

The usage of the presented approach is illustrated on an example of a fire alarm
control panel in Section 8.

7. Verification with CADP

The verification process described in the previous section is oriented towards states
i.e. the temporal logic formulas describe some properties of reachable states. On the
other hand, coverability graphs can be verified using the CADP toolbox [11] and the ac-
tions oriented approach. One of CADP tools called evaluator provides on-the-fly model
checking of regular alternation-free µ-calculus formulas [9], [17]. In such approach,
a specification of requirements is given as a set of µ-calculus formulas and the tool is
used to check whether the LTS graph satisfies them. The µ-calculus formulas concern
actions labels and describes sequences of performed actions.

We use dot2aut translator (included in the PetriNet2ModelChecker tool) to convert a
coverability graph into Aldebaran format. An example of a finite state transition system
coded using the Aldebaran format is given in Fig. 8. Then, such a graph can be con-
verted into BCG (Binary Coded Graphs) format that is one of acceptable input formats
for CADP Toolbox. The conversion method (from Aldebaran to BCG) is provided by
one of CADP tools. The BCG format is independent from any particular model-based
verification technique; it can be used either by tools performing graph comparison and
reduction modulo equivalence relations, or by tools checking properties expressed in
temporal logics.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 355

s0

s1 s2

a1

a2

a1

a3

{a, b = 1}

{b = 2} {a, b = 0}

number of states
number of edges
initial state

des (0,4,3)

(0,"a1",1)

(1,"a2",0)

(1,"a1",2)

(2,"a3",2)











transition relation

Figure 8: Finite state transition system written using Aldebaran format

L← ∅
for i = 0 . . . |R(M0, S0)| do

for (Mi, Si) create label i

add label i to L

end for

1. Create set of states’ labels.

<initial-state>← L((M0, S0))

<number-of-transitions>← |A|
<number-of-states>← |R(M0, S0)|
⊲ des(<initial-state>, <number-of-transitions>,

<number-of-states>)

2. Create initialization line.

for all (Mi, Si) ∈ R(M0, S0) do

for all (Mj , Sj) ∈ Out(Mi, Si), (Mi, Si)
(t,b)
−−−→ (Mj , Sj) do

<from-state>← L((Mi, Si))

<label>← t

<to-state>← L((Mj , Sj))

⊲ (<from-state>, <label>, <to-state>)

end for

end for

3. Define flow relation.

Figure 9: RTCP coverability graph into Aldebaran format translation algorithm

A translation algorithm of an RTCP-net coverability graph into Aldebaran format
is presented in the Fig. 9. The first step of the algorithm is an initialization the set of
defined labels for reachable states. This set is denoted with letter L. An appropriate label
is created for every reachable state (Mi,Si). The label of a state is its order number. The
next block appends a template content to the output file. Keywords of the template are re-
placed with proper values, i.e. the label of the initial state, number of arcs and number of
states. In the last section there are two nested loops. They are responsible for processing
each edge of the coverability graph and appending template lines containing informa-
tion about the transition which firing is denoted by the given edge. (Mi,Si) corresponds
to the input node and (M j,S j) corresponds to the output node of the edge. Out(Mi,Si)
stands for the set of successor nodes of (Mi,Si) in a reachability or coverability graph.
As previously, template line’s keywords are replaced with appropriate values, i.e. the
label of the input node, the label of the transition and the label of the output node. The
detailed version of the algorithm can be found in [3]. It has also been implemented in
the PetriNet2ModelChecker tool.

356 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

The input language of the CADP evaluator tool is an extension of the alternation-free
µ-calculus. The logic is built from three types of formulas: action, regular and state for-
mulas. An action formula is built from action names (text put into quotation marks), reg-
ular expressions substituted for action names (text put into apostrophes), Boolean con-
stants true and false and the propositional logic operators: not, or, and, implies and equ
(equivalence). Regular formulas represent regular expressions over action sequences.
The µ logic uses nil to denote the empty word and the following regular expression
operators: . (dot) – concatenation operator, | – choice operator, ∗ – the transitive and re-
flexive closure operator, and + – the transitive closure operator. Finally, a state formula is
built of: propositional variables, Boolean constants true and false, the propositional logic
operators, the possibility (⟨ ⟩) and necessity ([]) modal operators and minimal (µ) and
maximal (ν) fixed point operators. For more details on formulas syntax see the CADP
evaluator site http://cadp.inria.fr/man/evaluator.html.

The evaluator tool takes a coverability graph encoded in the BGC format and a file
with a µ-calculus formula and checks whether the formula holds for the graph. The tool
is equipped with diagnostic generation algorithms, which construct both examples and
counterexamples for a given formula.

Figure 10: Fire alarm control panel scheme.

8. Case study

A model of a fire alarm control panel is used to illustrate the process of RTCP-nets
modeling and verification. It is the model of an actual solution designed by the SITP
association [6]. According to the SITP, alarm variants usage is a common practise in
construction of fire alarm control panels. This method aims at the reduction of false
fire alarms. Its most popular variant is two-stage alarming which scheme is presented in
Fig. 10. The designed RTCP-net is shown in Fig. 11.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 357

colset SystemState = with normal | a1 | a2 | term;
colset DetectorsState = with normal | warning | dblWarning;
colset ConfirmationState = with on | off;
colset ClockState = with on | off;
colset FireDepState = with calledFor | none;
colset EmployeeState = with act | idle;
colset Delay = int with 0..300;
var t : Delay;
var prevState: DetectorsState;
var curState: DetectorsState;
var sysState: SystemState;
var fdState: FireDepState;
var empState: EmployeeState;
var clkState: ClockState;
var clkState2: ClockState;
var confState: ConfirmationState;

SmokeDetectors

DetectorsState

(normal)
FACP

SystemState

(normal)

CheckingFireHazard

ConfirmationState

(off)

Clock1

ClockState

(off)

FireDepartment

FireDepState

(none)

Employee

EmployeeState

(idle)

Clock2

ClockState

(off)

CheckDetectorsStateTimer

ClockState

(on)

SmokeDetectorsStateCheck

[curState <> normal and
 prevState <> dblWarning]

TurnOnAlarm1

TurnOffAlarm1

EmergencyCall

T1_TurnOnAlarm2

T2_TurnOnAlarm2

ConfirmAlarm

[t=120 or t=300]

Emp_TurnOnAlarm2

EmpNoticesAlarm

[t=50 or t=70]

InstantTurnOnAlarm2

[sysState <> a2 and
 sysState <> term]

ResetSystem

[curState <> normal]

warning | warning

a1 | normal

term | a1

on | on

on | off

calledFor | none

a2 | a1

off | on@60 off | off

on@t | off

act | act

on@180 | off

off | on a2 | a1

on | on

a2 | a1

a1 | a1

curState | prevState

act@t | idle

a1 | a1

term | a2

dblWarning | dblWarning

a2 | sysState

normal | term

normal | curState

none | fdState

off | confState

off | clkState2

idle | empState

off | clkState

on | on@1

Figure 11: RTCP-net model of fire alarm control panel.

There are four possible states of the system: normal, internal alarm, external alarm
and terminal. The current state of the panel is defined by the color of the token in place
FACP. Firing of SmokeDetectorsStateCheck transition with defState variable set to warn-
ing corresponds to smoke detection by only one of smoke detectors. It results in raising
of the internal alarm (TurnOnAlarm1). Personnel participation is required in this ap-
proach. It has strictly defined role of the operator in alarm verification process. Internal
alarm calls in the operator to identify the fire hazard. T1 determines the time for operator
to confirm reception of the notification. In the presented model T1 is set to 60 time units.
Clock1 place performs a role of the timer which activates external alarm at the expiry
of the deadline (T1 TurnOnAlarm2). External alarm indicates that fire department as-
sistance is required and launches fire emergency procedures. Acknowledgement of the
internal alarm (ConfirmAlarm) results in activation of a second timer (Clock2). Operator
has T2 time units to assess the threat and verify the alarm. If the internal fire alarm proves
to be false, the operator can turn it off and reset the panel to the normal state. If the threat
is real, personnel can push manual call point button (EmpTurnOnAlarm2) which auto-

358 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

matically turns on the external alarm. If the fire is manageable, the operator can attempt
to extinguish it using available fire fighting equipment. T2 is the time limit defined for
personnel to get the situation under control and to turn off the internal alarm (TurnOf-
fAlarm1). Otherwise, the external alarm is raised (T2 TurnOnAlarm2). This limit is set
to 180 time units. Coincidence detection is one of the most effective ways of elimination
false fire alarms. In this case external alarm is instantly raised upon fire detection by at
least two smoke detectors (InstantTurnOnAlarm2). Fire detection by one smoke detec-
tor raises the internal alarm (TurnOnAlarm1) which can be verified and handled by the
personnel.

Fire alarm system is an excellent example of a safety critical system. Its failures
always cause major losses. If it raises the alarm too late, many people can perish or
become seriously injured. Yet false alarms result in high costs due to, inter alia, the stop-
page of technological processes or activation of automatic extinguishing system. Hence,
comprehensive formal verification of such systems is crucial. Coverability graph of the
designed RTCP-net has 3077 states and 3986 edges. A small fragment of it, containing
the shortest cycle in the considered system, is presented in Fig. 12.

����������	��
��
�����
���	������
�����
��
���	���
��
�����
������
���������
���	���
���	�����	��
������ ���
!
����
���!�
���
���!�
��""!�
��""!�
�����!�
�����!�
��""!�
���!!

�#�
#�
#�
#�
#�
#�
#�
#!

����������	��
���������	��
�$�
����&	'
������

��
���&�
�(�����!!&�

���)�*�
����!�
���
���!�
��""!�
��""!�
�����!�
�����!�
��""!�
���!!
�#�
%��
%��
%��
%��
%��
%��
#!

����������	��
���������	��
��)�*�
����&	'
������

��
���&�
�(�����!!&�

���)�*�
����!�
���!�
��""!�
��""!�
�����!�
�����!�
��""!�
���!!
�#�
#�
%��
%��
%��
%��
%��
#!

�,������ '
�+����
���
���
���&��������!!&#

���)�*�
����!�
���
�!�
��""!�
��""!�
�	�������
!�
�����!�
��""!�
���!!
�#�
#�
%��
%��
#�
%��
%��
#!

����
���	������
�!!&#

�3�����������
��""&	��������
�""&	���������
�""&	��"������
�)�*�
����&	'
������
����&���������
	�������
&"������!!&#

Figure 12: Fragment of a coverability graph for model of fire alarm control panel.

Analysis of a coverability graph of any Petri net modeling a real system is not trivial.
Complexity of this task rapidly increases with the complexity of the modeled net. In this
case manual verification is practically impossible. In the presented approach, the cover-
ability graph of modeled system is automatically translated into nuXmv and Aldebaran
formats. In the first case, satisfiability of formulae specified in LTL, CTL and RTCTL
temporal logics can be automatically verified with nuXmv tool. In the second case, µ-
calculus formulae are verified with CADP Evaluator. Selected fragments of nuXmv code
are shown in Listing 1.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 359

Listing 1: Fragments of nuXmv code generated from the coverability graph of the model
in Fig. 11.
MODULE main
IVAR

action: {NOP, ConfirmAlarm, ..., TurnOnAlarm1};
VAR

s: {s0, s1, s2, ..., s3075, s3076};
...
FACP_normal : 0..300;
FACP_a1 : 0..300;
FACP_a2 : 0..300;
FACP_term : 0..300;
...
FACP_time : -350..300;
...

ASSIGN
init(s) := s0;
next(s) := case

s = s0 & action = SmokeDetectorsStateCheck: {s1, s2};
s = s1 & action = TurnOnAlarm1: s3;
...
s = s3076 & action = ResetSystem: s0;
TRUE: s;

esac;
...
FACP_normal := case

s = s0 : 1;
s = s1 : 1;
s = s2 : 1;
s = s30 : 1;
s = s39 : 1;
s = s40 : 1;
TRUE : 0;

esac;
...
FACP_time := case

s = s1 : -1;
...
s = s3076 : -120;
TRUE : 0;

esac;
...
TRANS s = s0 -> (action = SmokeDetectorsStateCheck)
TRANS s = s1 -> (action = TurnOnAlarm1)
TRANS s = s2 -> (action = InstantTurnOnAlarm2)
...
TRANS s = s391 -> (action = ConfirmAlarm | action =
↪→ SmokeDetectorsStateCheck)

360 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

...
TRANS s = s3076 -> (action = ResetSystem)

Three examples of LTL formulae representing properties of the modeled system are
presented below.

Listing 2: Examples of LTL formulae for the model in Fig. 11.
LTLSPEC G FACP_normal > 0 -> FACP_a1 = 0 & FACP_a2 = 0 &
↪→ FACP_term = 0

LTLSPEC G F FACP_normal > 0
LTLSPEC G((FACP_a1 > 0 & X(action = TurnOffAlarm1)) -> FACP_a2
↪→ = 0 U FACP_normal > 0)

The first formula is an example of an invariant property. It denotes that there can
be no states in which system is both in normal and any other SystemState. The sec-
ond formula is a liveness property that verifies whether system can always go back to
the initial SystemState. Both of these formulae are proven true. The last formula is the
most interesting one. It employs not only states of the coverability graph but also edges’
labels. This approach is only possible thanks to the latest improvements in the transla-
tion algorithm (Fig. 7). This formula checks whether operator’s action of internal alarm
disarming is definitely preventing false external alarm from being raised. The modeled
system satisfies this formula. However, if it wasn’t the case, nuXmv would provide an
counterexample that, compared to the previous version of translation algorithm, is much
easier to understand and track. This is due to the fact that beyond just showing current
values of system variables, nuXmv would show the fired transitions too. Furthermore,
this huge improvement enhances the nuXmv simulation mode in the same way.

The other approach, strictly action-based, can also be used in the case of the pre-
sented system. It utilises popular CADP Evaluator tool. Selected fragments of the con-
sidered coverability graph translated into Aldebaran format accepted by the tool are
presented below.

Listing 3: Fragments of aut file generated from the coverability graph of the model in
Fig. 11.
des (0, 3986, 3077)
(0, "SmokeDetectorsStateCheck", 1)
(0, "SmokeDetectorsStateCheck", 2)
(1, "TurnOnAlarm1", 3)
(2, "InstantTurnOnAlarm2", 4)
(3, "EmpNoticesAlarm", 6)
(3, "EmpNoticesAlarm", 5)
(4, "EmergencyCall", 7)
...
(2107, "SmokeDetectorsStateCheck", 2120)
(2107, "Emp_TurnOnAlarm2", 2122)
(2107, "TurnOffAlarm1", 2121)
...

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 361

(3073, "SmokeDetectorsStateCheck", 3076)
(3074, "ResetSystem", 30)
(3075, "ResetSystem", 0)
(3076, "ResetSystem", 0)

Three examples of µ-calculus formulae checking properties of the modeled system
are presented below.

Listing 4: Examples of µ-calculus formulae for the model in Fig. 11.
[true*."ConfirmAlarm".(not "ResetSystem")*."T1_TurnOnAlarm2".
↪→ true*."ResetSystem"] false

[true*."InstantTurnOnAlarm2".(not "EmergencyCall")*."ResetSystem
↪→ "] false

[true*."ConfirmAlarm".(not "ResetSystem" and not "
↪→ T2_TurnOnAlarm2" and not "Emp_TurnOnAlarm2")*."
↪→ EmergencyCall"] false

The first formula verifies whether acknowledgement of the internal alarm turns off
the first timer, that is Clock1. Verification in CADP Evaluator proves, that even after
expiration of T1 time limit, the premature external alarm is not raised. The second for-
mula checks whether fire detection by at least two smoke detectors always turns on the
external alarm. It is also proven true. The last formula denotes that after employee con-
firmation of the internal alarm, the external alarm cannot be raised unless the operator
turns it on manually or timer T2 expires. This formula, however, is not satisfied. Second
smoke detector can possibly activate at any given moment, automatically turning on the
external alarm, what was verified by the second formula. It is also worth mentioning
that a graph explaining the truth value of given formula can be generated using -diag
option of the Evaluator tool.

Table 9: Examples of RTCP-net models.

ID Model States Edges

1. Fire alarm control panel 3077 3986

2. Railway switch 3888 5817

3. Producer-consumer 3696 13330

4. Communication protocol 11001 11000

5. Communication protocol 2 7390 22390

Translation and verification times were measured for the presented fire alarm control
panel and a few other RTCP-net models (Table 9). Tests were performed on a PC with
Intel Core i7 930 processor and 16 GB of RAM. Verification results are divided into two
tables. The first one (Table 10) covers verification in nuXmv and the other (Table 11)
verification in CADP Evaluator tool. Each table contains times (measured in seconds) of

362 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

Table 10: Measured times [s] of LTL and CTL formulae verification in nuXmv for the
models from Table 9.

ID Trans. Init. I II III Avg.

1. 0,7 29,86 14,72 85,89 53,91 51,51

2. 1,0 25,21 14,2 13,15 16,76 14,7

3. 1,4 19,95 18,92 29,63 14,66 21,07

4. 5,3 214,56 3,6 20,98 56,62 27,07

5. 6,0 130,9 10,56 0,81 67,46 26,28

Table 11: Measured times[s] of µ-calculus formulae verification in CADP Evaluator for
the models from Table 9.

ID Trans. Init. I II III Avg.

1. 0,6 0,026 0,381 0,235 0,23 0,28

2. 0,9 0,031 0,375 0,242 0,234 0,28

3. 1,3 0,042 0,38 0,229 0,156 0,26

4. 4,9 0,038 0,242 0,243 0,387 0,29

5. 5,9 0,057 0,4 0,236 0,234 0,29

translation, initialization, verification of three formulae specific for the models and their
average.

The measured times proved to be entirely satisfactory. Verification in nuXmv is vis-
ibly slower then in CADP Evaluator. But on the other hand nuXmv allows to use vari-
ables’ values in the specification while in CADP one can only use edges’ labels. These
two approaches complete each other allowing formal verification of complex models.

9. Summary

The popularity of Petri nets results from the simplicity of the modeling language and
the ability of adjusting them to users’ needs. The diversity of Petri nets classes allows
users either to find the class that is the most suitable for the given problem or to refine
one. In the second case, it is necessary to provide suitable software supporting practical
usage of the new-defined Petri net class.

RTCP-nets are the result of the adaptation of colored Petri nets to modeling and
verification of real-time systems. The main difference between CP-nets and RTCP-nets
is the new time model with local clocks attached to places in case of the latter class.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 363

The main advantage of the time model is the possibility of representation of the set of
reachable states with a finite coverability graph that stores all information necessary for
the verification of time properties.

The paper presents a survey of tools and verification methods (algorithms) developed
for RTCP-nets recently. We use CPN Tools, a mainstream environment for CP-nets mod-
eling, for constructing RTCP-nets. To simulate behaviour of an RTCP-net and to com-
pute its reachability and coverability graphs the rtcpnc compiler has been developed. For
the formal verification of a model properties the model checking techniques are used.
Two established model checkers are used for that purpose, nuXmv and CADP. The use
of these tools requires the transformation of a reachability/coverability graph into the
NuSMV or Aldebaran format respectively. Improved versions of translation algorithms
have been presented in the paper. Moreover, all described tools used for RTCP-nets ver-
ification have been implemented and integrated into the PetriNet2ModelChecker tool.
To summarize, the paper contains description of the key RTCP-nets’ concepts and the
state-of-the-art of the tools and verification methods developed for the nets recently. All
these information are sufficient to use RTCP-nets in practise.

References

[1] W.M.P. VAN DER AALST: Interval timed coloured Petri nets and their analysis. In
Proc. of the 14th Int. Conf. on Application and Theory of Petri Nets, 691 London,
UK, (1993), 453-472.

[2] A. BIERNACKA, J. BIERNACKI and M. SZPYRKA: State-based verification of
RTCP-nets with nuXmv. In Int. Conf. of Computational Methods in Sciences and
Engineering (ICCMSE 2015), 1702, Athens, Greece, (2015), 100010–1–100010–4.

[3] J. BIERNACKI, A. BIERNACKA and M. SZPYRKA: Action-based verification of
RTCP-nets with CADP. In Int. Conf. of Computational Methods in Sciences and
Engineering (ICCMSE 2015), 1702, Athens, Greece, (2015), 100011–1–100011–4.

[4] R. CAVADA, A. CIMATTI, M. DORIGATTI, A. GRIGGIO, A. MARIOTTI,
A. MICHELI, S. MOVER, M. ROVERI and S. TONETTA: The nuXmv symbolic
model checker. In Computer Aided Verification, 8559 of Lecture Notes in Computer
Science, Springer, 2014, 334–342.

[5] A. CIMATTI, E. CLARKE, F. GIUNCHIGLIA and M. ROVERI: NUSMV: a new
symbolic model checker. Int. J. on Software Tools for Technology Transfer, 2(4),
(2000), 410-425.

[6] J. CISZEWSKI, K. KUNECKI, W. MARKOWSKI, J. SAWICKI and M. SOBECKI:
SITP Guideline WP-02:2010. Fire alarm systems. The design, 2010.

364 M. SZPYRKA, J. BIERNACKI, A. BIERNACKA

[7] E.M. CLARKE, O. GRUMBERG and D.A. PELED: Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

[8] E.A. EMERSON: Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, B Elsevier Science, 1990, 995-1072.

[9] E.A. EMERSON: Model checking and the mu-calculus. In DIMACS Series in
Discrete Mathematics, American Mathematical Society, (1997), 185-214.

[10] EMDEN R. GANSNER and STEPHEN C. NORTH: An open graph visualization
system and its applications to software engineering. Softw. Pract. Exper., 30(11),
(2000), 1203–1233.

[11] H. GARAVEL, F. LANG, R. MATEESCU and W. SERWE: CADP 2006: A tool-
box for the construction and analysis of distributed processes. In Computer Aided
Verification, 4590 Springer-Verlag, 2007, 158-163.

[12] B. JASIUL, M. SZPYRKA AND J. ŚLIWA: Malware behavior modelling with col-
ored Petri nets. In Computer Information Systems and Industrial Management
Proceedings of the 13th IFIP TC8 Int. Conf. CISIM 2014, 8838 Springer-Verlag,
2014, 667-679.

[13] K. JENSEN: Colored Petri Nets. Basic Concepts, Analysis Methods and Practical
Use, volume 1–3. Springer-Verlag, Berlin, Germany, 1992-1997.

[14] K. JENSEN and L.M. KRISTENSEN: Colored Petri nets. Modelling and Validation
of Concurrent Systems. Springer, Heidelberg, 2009.

[15] K. JENSEN, L.M. KRISTENSEN and L. WELLS: Colored Petri nets and CPN
Tools for modelling and validation of concurrent systems. Int. J. on Software Tools
for Technology Transfer, 9(3-4), (2007), 213-254.

[16] S. KRIPKE: A semantical analysis of modal logic I: normal modal propositional
calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9
(1963), 67-96. Announced in J. of Symbolic Logic, 24 (1959), 323.

[17] R. MATEESCU and M. SIGHIREANU: Efficient on-the-fly model-checking for reg-
ular alternation-free µ-calculus. Technical Report 3899, INRIA, 2000.

[18] T. MURATA: Petri nets: Properties, analysis and applications. Proc. of the IEEE,
77(4), (1989), 541-580.

[19] C. A. PETRI: Communication with automata. Technical report, New York, 1965.
English translation of Kommunikation mit Automaten, PhD Dissertation, University
of Bonn, 1962.

TOOLS AND METHODS FOR RTCP-NETS MODELING AND VERIFICATION 365

[20] S. SAMOLEJ and T. SZMUC: Time extensions of Petri nets for modelling and
verification of hard real-time systems. Computer Science, 4 (2002), 55-76.

[21] M. SZPYRKA: Analysis of RTCP-nets with reachability graphs. Fundamenta In-
formaticae, 74(2–3), (2006), 375-390.

[22] M. SZPYRKA: Analysis of VME-Bus communication protocol – RTCP-net ap-
proach. Real-Time Systems, 35(1), (2007), 91-108.

[23] M. SZPYRKA, A. BIERNACKA and J. BIERNACKI: Methods of translation of
Petri nets to NuSMV language. In Proc. of the Concurrency Specification and
Programming Workshop (CSP 2014), 1269 Chemnitz, Germany, (2014), 245-256.

