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New observer-based control design for mismatched
uncertain systems with time-delay

VAN VAN HUYNH

In this paper, the state estimation problem for a class of mismatched uncertain time-delay
systems is addressed. The estimation uses observer-based control techniques. The mismatched
uncertain time-delay systems investigated in this study include mismatched parameter uncer-
tainties in the state matrix and in the delayed state matrix. First, based on a new lemma with
appropriately choosing Lyapunov functional, new results for stabilization of mismatched uncer-
tain time-delay systems are provided on the basis of a linear matrix inequality (LMI) framework
and the asymptotic convergence properties for the estimation error is ensured. Second, the con-
trol and observer gains are given from single LMI feasible solution which can overcome the
drawback of the bilinear matrix inequalities approach often reported in the literature. Finally, a
numerical example is used to demonstrate the efficacy of the proposed method.

Key words: observer-based control, time-delay systems, linear matrix inequality (LMI),
mismatched uncertain systems.

1. Introduction

The states of a system are not always measurable in many control systems and ap-
plications due to unavailability of sensors and owing to infeasibility of measurement
schemes. In this situation, there are two approaches in designing the control scheme for
stabilization. One is to use the output-based controllers, such as static gain and dynamic
compensator types [1-2]. The other is to utilize state observers to provide an estimate
of the unmeasured states [3-16]. The first approach is achieved under assumption that
the norm of un-measurement states must be bounded by a constant value (∥T1x∥ 6 µ1
or ∥z∥ 6 q2) [1-2]. In practical cases, these conditions are difficult to meet. Therefore,
the design of observer-based control is very important and has been attracting the at-
tention for researchers in recent years [3-16]. In [3], the robust observer-based control
is proposed for a class of linear systems without input uncertainty. A class of uncer-
tain systems with disturbance input is considered in [4]. In [5], based on linear matrix
inequalities (LMI) the controller gain and the observer gain are designed to stabilize a

The Author is with Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty
of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam, e-mail:
huynhvanvan@tdt.edu.vn

Received 26.12.2015.

10.1515/acsc-2016-0033



598 V.V. HUYNH

class of mismatched uncertain systems involving exogenous disturbances. In order to re-
duce conservative, the authors of [6] have presented a new observer-based stabilization
for mismatched uncertain systems.

However, time delays are not included in the above approaches [3-6]. Time-delay
systems often feature in real-world problems, for example, chemical processes, biolog-
ical systems, economic systems, and hydraulic/pneumatic systems. Time delay com-
monly leads to a degradation and/or instability in system performance [1-2]. This has
motivated the application of observer-based control to time delay systems, leading to
many useful results [7-16].

In [7], observer design approach is proposed based on H∞ control theory. Based on
communication disturbance observer, the practical design procedure of the time delayed
control system was developed in [8]. In [9], a class of memoryless adaptive robust state
observers is proposed for uncertain nonlinear time-delay systems. Based on Lyapunov
stability theorem and LMI technique, an observer-based sliding mode control is devel-
oped for uncertain state-delayed systems [10]. The non-fragile observer and controller
design method is presented in [11]. A repetitive control design is presented for time-
delay systems via disturbance observer [12]. The authors of [13] have presented a new
reduced-order observer to stabilize a class of nonlinear systems involving time-varying
delay. The delay dependent stability and stabilization is proposed for systems with inter-
val time-varying delay [14]. In [15], a nonlinear-observer-based controller is designed to
stabilize a class of time delay system with triangular structure. The proposed observer-
based stabilization conditions are developed for a class of matched uncertain system with
both the input and the output delays [16]. In the above works there are obtained impor-
tant results related to observer-based control, especially stability of time-delay systems
is assured under certain conditions.

It is worth to point out that there are some limitations in existing design methods
of observer-based control in application for the stability of mismatched uncertain time-
delay systems. First, most of the existing results cannot be applied for time-delay systems
with mismatched parameter uncertainties in the state matrix [7-11, 13-16]. Second, these
obtained methods given in [3-5, 10, 15] remain conservative due to using bilinear matrix
inequalities (BMI) conditions. Therefore, it is important to develop a new observer-based
control with a single-step approach to stabilize the uncertain time-delay systems with
mismatched parameter uncertainties in the state matrix and in the delayed state matrix.

In this paper, we extend the concept of observer-based control, introduced by [3]
and [6], for the aim of stabilizing mismatched matched time-delay systems. The main
contributions of this paper are as follows:

• The mismatched uncertain time-delay systems investigated in this study include
mismatched parameter uncertainties in the state matrix and in the delayed state
matrix.

• The appropriate LMI stability condition by the Lyapunov method is derived to
guarantee the stability of the mismatched uncertain time-delay system. The pro-
posed LMI condition is solved without any additional restrictive conditions.
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• The controller gain matrix and the observer gain matrix are directly computed
from the LMI formulation.

2. Statement of the problem

Consider the following mismatched uncertain systems with time-delay:

ẋ(t) = [A+∆A]x(t)+ [Ad +∆Ad]x(t −d)+Bu(t)
y(t) =Cx(t)

(1)

where x(t) ∈ ℜn is the vector of continuous-time state variables, u(t) ∈ ℜm is the vector
of control inputs, y(t)∈ℜp is the system outputs. The symbols x(t−d(t)) and y(t−d(t))
represent delayed states and delayed outputs, respectively. The known function d = d(t)
is the time-varying delay which is assumed to be continuous, non-negative and bounded
in ℜ+, that is, d̄ := supt∈ℜ+{d(t)}< ∞. The initial conditions for the system is given by
x(t) = ϕ(t), (t ∈ [−d̄,0]) where ϕ(t) is continuous in [−d̄,0]. The matrices S, B, C and Ad
are constant matrices with appropriate dimensions. The terms ∆A and ∆Ad represent the
mismatched uncertainties of the plant, which the matching conditions are not satisfied.

The following assumptions are useful for the development of our work.

Assumption 1. The matrix pair (A,C) is observable.

Assumption 2. The mismatched parameter uncertainties in the state matrix are satisfied
as ∆A = MF(t)N, where F(t) is unknown but bounded as ∥F(t)∥ ¬ 1 and M, N are
known matrices of appropriate dimensions.

Assumption 3. The mismatched parameter uncertainties in the delayed state matrix
are given as ∆Ad(t) = MdFd(t)Nd , where Fd(x(t),xd , t) is unknown but bounded as
∥Fd(t)∥¬ 1 and Md , Nd are any nonzero matrices of appropriate dimensions.

The observer-based controller we consider in this paper is under the form:

˙̂x(t) = Ax̂(t)+Ad x̂(t −d)+Bu(t)+L[y(t)− ŷ(t)], (2)

ŷ(t) =Cx̂(t), (3)

u(t) =−Kx̂(t) (4)

where x̂(t) ∈ ℜn is the estimation of x(t), ŷ(t) ∈ ℜp is the observer output, K ∈ ℜm×n is
the controller gain, L ∈ ℜn×p is the observer gain.

Let e(t) = x(t)− x̂(t) and from the equations (1) and (2)-(4), we have[
ẋ(t)
ė(t)

]
=

[
A−BK +∆A BK
∆A A−LC

][
x(t)
e(t)

]
+

[
Ad +∆Ad 0
∆Ad Ad

][
x(t −d)
e(t −d)

]
. (5)
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Before ending this section, we would like to introduce the following lemmas, which
will be used in the development of our main results

Lemma 6 [17] Let X, Y and F are real matrices of suitable dimension with FT F ¬ I
then, for any scalar φ > 0, the following matrix inequality holds

XFY +Y T FT XT 6 φ−1XXT +φY TY.

Lemma 7 Assume that x ∈ ℜn, y ∈ ℜn, N ∈ ℜn×n, N is a positive definite matrix. Then,
the inequality

xT y+ yT x 6 1
ε

xT N−1x+ εyT Ny

holds for all ε > 0.

Proof of lemma 2. For any n×n matrix N > 0, N
1
2 is well defined and N

1
2 > 0. Let vector

ϑ =

√
1
ε

N(−1/2)x−
√

εN1/2y.

Then, we have

ϑT ϑ = (

√
1
ε

N(−1/2)x−
√

εN1/2y)T (

√
1
ε

N(−1/2)x−
√

εN1/2y)

= (

√
1
ε

xT (N−(1/2))T −
√

εyT (N1/2)T (

√
1
ε

N−(1/2)x−
√

εN1/2y)

=
1
ε

xT N−1x− xT y− yT x+ εyT Ny.

Since ϑT ϑ > 0, it is obvious that

xT y+ yT x 6 1
ε

xT N−1x+ εyT Ny.

The proof is completed.

Lemma 8 [18] The following matrix inequality:[
Q(x) Π(x)

Π(x)T R(x)

]
> 0

where Q(x)=Q(x)T , R(x)=R(x)T and Π(x) depend affinity on x, is equivalent to R(x)>
0, Q(x)−Π(x)R(x)−1Π(x)T > 0.
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3. Main results

The following theorem holds:

Theorem 13 System (1) is robustly stabilizable by the observer-based control (2)-(4) if
there exist four positive definite matrices R ∈ ℜn×n, P ∈ ℜn×n, Q1 ∈ ℜn×n, Q2 ∈ ℜn×n,
two matrices K̂ ∈ ℜm×n, L̂ ∈ ℜn×p and positive scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0,
ε5 > 0, and ε6 > 0 so that the following linear matrix inequality (LMI) condition (6) is
feasible

Ξ1 0 RAd 0 RBK̂ 0 −RBK̂ I 0 RMd RM 0
0 Ξ2 0 PAd 0 I 0 0 PMd 0 0 PM

AT
d R 0 Ξ3 0 0 0 0 0 0 0 0 0
0 AT

d P 0 −Q2 0 0 0 0 0 0 0 0
K̂T BT R 0 0 0 − ε5R 0 0 0 0 0 0 0

0 I 0 0 0 − ε−1
5 R 0 0 0 0 0 0

−K̂T BT R 0 0 0 0 0 − ε6R 0 0 0 0 0
I 0 0 0 0 0 0 − ε−1

6 R 0 0 0 0
0 MT

d P 0 0 0 0 0 0 − ε4I 0 0 0
MT

d R 0 0 0 0 0 0 0 0 − ε3I 0 0
MT R 0 0 0 0 0 0 0 0 0 − ε2I 0

0 MT P 0 0 0 0 0 0 0 0 0 − ε1I



< 0

(6)
where Ξ1 = RA+AT R+Q1 + ε7NT N, Ξ2 = PA− L̂C +AT P−CT L̂T +Q2 and Ξ3 =
−Q1 +ε8NT

d Nd , ε7 =
1
ε1
+ 1

ε2
ε8 =

1
ε3
+ 1

ε4
. Hence, the stabilizing observer-based control

gains are given by K = K̂R−1 and L = P−1L̂.

Proof Take symmetric positive-definite matrix variables P ∈ ℜn×n > 0, R ∈ ℜn×n > 0,
Q1 ∈ ℜn×n > 0 and Q2 ∈ ℜn×n > 0 and choose a Lyapunov functional as

V (x(t),e(t)) =
[

x(t)
e(t)

]T [R 0
0 P

][
x(t)
e(t)

]
+

t∫
t−τ

[
x(s)
e(s)

]T [Q1 0
0 Q2

][
x(s)
e(s)

]
ds. (7)

Then, the time derivative of V is given by

V̇ (x(t),e(t)) =
[

x(t)
e(t)

]T [R 0
0 P

][
ẋ(t)
ė(t)

]
+

[
ẋ(t)
ė(t)

]T [R 0
0 P

][
x(t)
e(t)

]
+

[
x(t)
e(t)

]T [Q1 0
0 Q2

][
x(t)
e(t)

]
−
[

x(t −d)
e(t −d)

]T [Q1 0
0 Q2

][
x(t −d)
e(t −d)

]
.

(8)
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According to equation (5) and (8), we have

V̇ (x(t),e(t)) =
[

x(t)
e(t)

]T [Q1 0
0 Q2

][
x(t)
e(t)

]
−
[

x(t −d)
e(t −d)

]T [Q1 0
0 Q2

][
x(t −d)
e(t −d)

]

+

[
x(t)
e(t)

]T {[ R(A−BK)+R∆A RBK
P∆A P(A−LC)

]

+

[
(A−BK)T R +(∆A)T R (∆A)T P

(BK)T R (A−LC)T P

]}[
x(t)
e(t)

]

+

[
x(t)
e(t)

]T [ RAd +R∆Ad 0
P∆Ad PAd

][
x(t −d)
e(t −d)

]
+

[
x(t −d)
e(t −d)

]T [ AT
d R+(∆Ad)

T R (∆Ad)
T P

0 AT
d P

][
x(t)
e(t)

]

=

[
x(t)
e(t)

]T{[R(A−BK)+(A−BK)T R RBK
(BK)T R P(A−LC)+(A−LC)T P

]
+

[
0

PM

]
F(t) [N 0]

+

[
NT

0

]
FT (t)

[
0 MT P

]
+

[
RM
0

]
F(t) [N 0]+

[
NT

0

]
FT (t)

[
MT R 0

]}[x(t)
e(t)

]

+

[
x(t)
e(t)

]T {[ RAd 0
0 PAd

]
+

[
RMd

0

]
Fd(t) [Nd 0] +

[
0

PMd

]
Fd(t) [Nd 0]

}[
x(t −d)
e(t −d)

]

+

[
x(t −d)
e(t −d)

]T {[ AT
d R 0
0 AT

d P

]
+

[
NT

d

0

]
FT

d (t)
[
MT

d R 0
]

+

[
NT

d

0

]
FT

d (t)
[
0 MT

d P
]}[x(t)

e(t)

]

+

[
x(t)
e(t)

]T [Q1 0
0 Q2

][
x(t)
e(t)

]
−
[

x(t −d)
e(t −d)

]T [Q1 0
0 Q2

][
x(t −d)
e(t −d)

]
. (9)

By Lemma 1, it follows from (9) that

V̇ (x(t),e(t))¬
[

x(t)
e(t)

]T {[ R(A−BK)+(A−BK)T R RBK
(BK)T R P(A−LC)+(A−LC)T P

]
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+ε1

[
0

PM

][
0 MT P

]
+

1
ε1

[
NT

0

]
[N 0]

+ε2

[
RM

0

][
MT R 0

]
+

1
ε2

[
NT

0

]
[N 0]

}[
x(t)
e(t)

]

+

[
x(t)
e(t)

]T [ RAd 0
0 PAd

][
x(t −d)
e(t −d)

]
+

[
x(t −d)
e(t −d)

]T [ AT
d R 0
0 AT

d P

][
x(t)
e(t)

]

+

[
x(t)
e(t)

]T {
ε3

[
RMd

0

][
MT

d R 0
]
+ ε4

[
0

PMd

][
0 MT

d P
]}[x(t)

e(t)

]

+

[
x(t −d)
e(t −d)

]T {
1
ε3

[
NT

d

0

]
[Nd 0]+

1
ε4

[
NT

d

0

]
[Nd 0]

}[
x(t −d)
e(t −d)

]

+

[
x(t)
e(t)

]T [Q1 0
0 Q2

][
x(t)
e(t)

]
−
[

x(t −d)
e(t −d)

]T [Q1 0
0 Q2

][
x(t −d)
e(t −d)

]

=

[
x(t)
e(t)

]T

{

[
RA+AT R 0

0 P(A−LC)+(A−LC)T P

]

+

[
RBK

0

]
[0 I]+

[
0
I

][
(BK)T R 0

]
+

[−RBK
0

]
[I 0]+

[
I
0

][
−(BK)T R 0

]
+ε1

[
0

PM

][
0 MT P

]
+

1
ε1

[
NT

0

]
[N 0]

+ε2

[
RM

0

][
MT R 0

]
+

1
ε2

[
NT

0

]
[N 0]}

[
x(t)
e(t)

]

+

[
x(t)
e(t)

]T [RAd 0
0 PAd

][
x(t −d)
e(t −d)

]
+

[
x(t −d)
e(t −d)

]T [AT
d R 0

0 AT
d P

][
x(t)
e(t)

]

+

[
x(t)
e(t)

]T {
ε3

[
RMd

0

][
MT

d R 0
]
+ ε4

[
0

PMd

][
0 MT

d P
]}[x(t)

e(t)

]

+

[
x(t −d)
e(t −d)

]T {
1
ε3

[
NT

d

0

]
[Nd 0]+

1
ε4

[
NT

d

0

]
[Nd 0]

}[
x(t −d)
e(t −d)

]

+

[
x(t)
e(t)

]T [Q1 0
0 Q2

][
x(t)
e(t)

]
−
[

x(t −d)
e(t −d)

]T [Q1 0
0 Q2

][
x(t −d)
e(t −d)

]
. (10)

In addition, applying Lemma 2, we have
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[
RBK

0

]
[0 I]+

[
0
I

][
(BK)T R 0

]
6 ε5

[
RBK

0

]
R
[
(BK)T R 0

]
+

1
ε5

[
0
I

]
R−1 [0 I]

= ε5

[
RBKR

0

]
R−1

[
R(BK)T R 0

]
+

1
ε5

[
0
I

]
R−1 [0 I]

(11)
and

[−RBK
0

]
[I 0]+

[
I
0

][
−(BK)T R 0

]
6 ε6

[−RBK
0

]
R
[
−(BK)T R 0

]
+

1
ε6

[
I
0

]
R−1 [I 0]

= ε6

[−RBKR
0

]
R−1

[
−R(BK)T R 0

]
+

1
ε6

[
I
0

]
R−1 [I 0] .

(12)
According to equations (10), (11) and (12), we achieve

V̇ (x(t),e(t))6
[

x(t)
e(t)

]T {[ RA+AT R 0
0 P(A−LC)+(A−LC)T P

]

+ε5

[
RBKR

0

]
R−1

[
R(BK)T R 0

]
+

1
ε5

[
0
I

]
R−1 [0 I]

+ε6

[−RBKR
0

]
R−1

[
−R(BK)T R 0

]
+

1
ε6

[
I
0

]
R−1 [i 0]

+ε1

[
0

PM

][
0 MT P

]
+

1
ε1

[
NT

0

]
[N 0]

+ε2

[
RM

0

][
MT R 0

]
+

1
ε2

[
NT

0

]
[N 0]

}[
x(t)
e(t)

]

+

[
x(t)
e(t)

]T [ RAd 0
0 PAd

][
x(t −d)
e(t −d)

]
+

[
x(t −d)
e(t −d)

]T [ AT
d R 0
0 AT

d P

][
x(t)
e(t)

]

+

[
x(t)
e(t)

]T {
ε3

[
RMd

0

][
MT

d R 0
]
+ ε4

[
0

PMd

][
0 MT

d P
]}[x(t)

e(t)

]

+

[
x(t −d)
e(t −d)

]T {
1
ε3

[
NT

d

0

]
[Nd 0]+

1
ε4

[
NT

d

0

]
[Nd 0]

}[
x(t −d)
e(t −d)

]

+

[
x(t)
e(t)

]T [Q1 0
0 Q2

][
x(t)
e(t)

]
−
[

x(t −d)
e(t −d)

]T [Q1 0
0 Q2

][
x(t −d)
e(t −d)

]
(13)
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Define the augmented vector

χ(t) =
[
xT (t) eT (t) xT (t −d) eT (t −d)

]T
. (14)

Then, we can get the following equation

V̇ (x(t),e(t))6 χT (t)Ωχ(t) (15)

where

Ω=


[

RA+AT R+ ε7NT N + ε2RMMT R+ ε3RMdMT
d R+Q1 0

0 PA− L̂C+AT P−CT L̂T + ε1PMMT P+ ε4PMdMT
d P+Q2

]
+Ψ

[
RAd 0
0 PAd

]
[

AT
d R 0

0 AT
d P

]
−
[

Q1 0
0 Q2

]
+

[
ε8NT

d Nd 0
0 0

]
 ,

and

Ψ = ε5

[
RBK̂

0

]
R−1 [K̂T BT R 0

]
+

1
ε5

[
0
I

]
R−1 [0 I]+ ε6

[
−RBK̂

0

]
R−1 [−K̂T BT R 0

]
+Θ

Θ =
1
ε6

[
I
0

]
R−1 [I 0] , K̂ = KR, L̂ = PL.

Applying lemma 3 to LMI (6), we obtain

Ω=



RA+AT R+ε7NT N+
1
ε2

RMMT R+ε3RMdMT
d R+Q1 0

0 PA−L̂C+AT P−CT L̂T+ε1PMMT P+ε4PMdMT
d P+Q2

 +Ψ
[

RAd 0
0 PAd

]
[

AT
d R 0

0 AT
d P

]
−
[

Q1 0
0 Q2

]
+

 1
ε8

NT
d Nd 0

0 0




<0.

(16)
From equations (15) and (16), it is obvious that

V̇ (x(t),e(t))< 0. (17)

The inequality (17) show that if LMI (6) holds, which further implies that the system
(1) is robustly stabilizable by the observer-based control (2)-(4).

Remark 2 Compared to recent LMI methods [3-5, 10, 15], the proposed method offers
less constraint in the LMI equation making it easier to find a feasible solution.
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4. Numerical example

In this section, to illustrate the effectiveness of the proposed observer-based control,
the proposed method will be applied to the following mismatched uncertain time-delay
system, which is modified from [10].

ẋ(t) =


 −1.8 1 0

0.6 −1.5 0
0 1 −1

+∆A

x(t)

+


 0.2 0.1 0.1

0.1 0.1 0
0 0.1 0

+∆Ad

xd +

2 0
0 1
1 1

u(t),

(18)

y(t) =
[

1 5 2
3 1 0

]
x(t) (19)

where x(t) = [x1 x2 x3]
T ∈ ℜ3, u(t) ∈ ℜ2 and y = [y1 y2]

T ∈ ℜ2. The mismatched
parameter uncertainties in the state matrix are ∆A = MF(t)N with F(t) = sin(t),

M =

 0.1 0 0.1
0 0.1 0.1
0 0.1 0.1

 and N =

 0.1 0 0.1
0.1 0.1 0
0.1 0 0.1

 . The mismatched parameter

uncertainties in the delayed state matrix are ∆Ad = MdFd(t)Nd with Fd(t) = cos(t),

Md =

 0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

 and Nd =

 0.1 0 0.1
0 0.1 0.1

0.1 0 0.1

 . The design parameters

are chosen as α1 = 0.9, α2 = 0.4, α3 = 0.3, α4 = 0.9, α5 = 0.2 and α6 = 0.5. Then, by

solving the LMI (6), we have the feasible solution R =

 14.87 1.20 −6.37
1.20 19.23 −9.00
−6.37 −9.00 11.59

 ,
P =

 18.05 2.87 −7.51
2.87 21.23 −5.15
−7.51 −5.15 15.36

 , Q1 =

 16.247 −7.930 - 2.156
−7.930 28.229 −12.752
−2.156 −12.752 9.797

 ,
Q2 =

 28.35 −8.19 −7.83
−8.19 30.22 −10.51
−7.83 −10.51 15.14

 , K̂ =

[
0.06 0.06 −0.07
−0.13 −0.17 0.26

]
, and

L̂ =

 −0.196 0.54
0.316 −0.43
−0.062 0.31

 . The matrix Σ is selected to be Σ = [1.0954 0.2191] and
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K2 = ΣPΣT = 0.0758. Hence, the stabilizing observer-based control gains are given by

K = K̂R−1 =

[
0.002 0.001 −0.004
0.002 0.003 0.027

]
and L = P−1L̂ =

 −0.016 0.049
0.015 −0.017
−0.006 0.038

 .
The initial conditions for the above system are selected to be x(0) = [1 1 1]T and

x̂(0) = [0 0 0]T . The time-varying delay d(t) is chosen as d(t) = 0.1. From Fig. 1 to Fig.
4, it clearly shows that the proposed controller is effective in dealing with mismatched
parameter uncertainties in the state matrix and in the delayed state matrix. It should be
pointed out that the controller given in [10] can not be applied for the system (18)-(19)
because mismatched parameter uncertainties in the state matrix and in the delayed state
matrix are not satisfied the matching conditions.

5. Conclusion

In this paper, a new approach to design observer-based controllers for mismatched
uncertain time-delay systems is proposed. First, the sufficient condition in terms of linear
matrix inequality is derived such that the stability of mismatched uncertain time-delay
systems and the asymptotic convergence properties for the estimation error are assured.
Second, the control and observer gains are given from single LMI feasible solution.
Thus the drawback of the bilinear matrix inequalities approach often encountered in the
literature is removed and conservatism is reduced, and robustness is enhanced.

Figure 1: State x1 and estimated state x̂1.
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Figure 2: State x2 and estimated state x̂2.

Figure 3: State x3 and estimated state x̂3.
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Figure 4: State estimation errors e1, e2 and e3.
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