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A Lyapunov functional for a system with both lumped
and distributed delay

JOZEF DUDA

In the paper construction of a Lyapunov functional for time delay system with both lumped
and distributed delay is presented. The Lyapunov functional is determined by means of the
Lyapunov matrix. The method of determination of the Lyapunov matrix for time delay system
with both lumped and distributed delay is presented. It is given the example illustrating the
method.
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1. Introduction

The Lyapunov functionals are used to test the stability of the systems. For example
Fridman [11] introduced the Lyapunov-Krasovskii functional for examination the stabil-
ity of the linear retarded and neutral type systems with discrete and distributed delays,
which were based on equivalent descriptor form of the original system and obtained
delay-dependent and delay-independent conditions in terms of linear matrix inequality
(LMI). Ivanescu et al. [23] proceeded with the delay-depended stability analysis for the
linear neutral systems, constructed the Lyapunov functional and derived sufficient delay-
dependent conditions in terms of linear matrix inequalities (LMIs). Han [17] obtained a
delay-dependent stability criterion for the neutral systems with a time-varying discrete
delay. This criterion was expressed in the form of LMI and was obtained using the Lya-
punov direct method. Han [18] developed the discretized Lyapunov functional approach
to investigate the stability of linear neutral systems with mixed neutral and discrete de-
lays. The stability criteria, which are applicable to linear neutral systems with both small
and non-small discrete delays, are formulated in the form of LMIs. Han [19] studied the
stability problem of linear time delay systems, both retarded and neutral types, using
the discrete delay N-decomposition approach to derive some new more general discrete
delay dependent stability criteria. Han [20] employed the delay-decomposition approach
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to derive some improved stability criteria for linear neutral systems and to deduce some
sufficient conditions for the existence of a Lyapunov functional for a system with k-non-
commensurate neutral time delays of a delayed state feedback controller, which ensure
asymptotic stability and a prescribed H1 performance level of the corresponding closed-
loop system. Gu and Liu [16] investigated the stability of coupled differential-functional
equations using the discretized Lyapunov functional method and delivered the stability
condition in the form of LMI, suitable for numerical computation.

The Lyapunov functionals are also used in calculation of the robustness bounds for
uncertain time delay systems. For illustration Kharitonov and Zhabko [30] proposed a
procedure of construction of the quadratic functionals for the linear retarded type delay
systems which could be used for the robust stability analysis of time delay systems. This
functional was expressed by means of Lyapunov matrix, which depended on the fun-
damental matrix of a time delay system. Kharitonov [24] extended some basic results
obtained for the case of retarded type time delay systems to the case of neutral type
time delay systems, and in [25] to the neutral type time delay systems with a discrete
and distributed delay. Han [21] investigated the robust stability of uncertain neutral sys-
tems with discrete and distributed delays, which has been based on the descriptor model
transformation and the decomposition technique, and formulated the stability criteria in
the form of LMIs. Han [22] considered the stability for the linear neutral systems with
norm-bounded uncertainties in all system matrices and derived a new delay-dependent
stability criterion. Neither model transformation nor bounding technique for cross terms
is involved through derivation of the stability criterion.

The Lyapunov functionals are also used in computation of the exponential estimates
for the solutions of the time delay systems. For instance Kharitonov and Hinrichsen [28]
used the Lyapunov matrix to derive exponential estimates for the solutions of exponen-
tially stable time delay systems. Kharitonov and Plischke [29] formulated the necessary
and sufficient conditions for the existence and uniqueness of the delay Lyapunov matrix
for the case of a retarded system with one delay. The numerical scheme for construction
of the Lyapunov functionals has been proposed by Gu [15].This method starts with the
discretisation of a Lyapunov functional. The scheme is based on LMI techniques.

There are papers whose regard the quadratic Lyapunov functionals such that their
coefficients are given by the analytical formulas. One constructs the Lyapunov function-
als for the system with a time delay with a given time derivative. For the first time such
Lyapunov functional was introduced by Repin [32] for the case of retarded time delay
linear systems with one delay. Repin [32] delivered also the procedure for determination
of coefficients of the functional. Duda [3] presented that method of determining of the
Lyapunov functional for a linear dynamical system with two lumped retarded type time
delays in the general case with non- commensurate delays and presented a special case
with commensurate delays in which the Lyapunov functional could be determined by
solving of the ordinary differential equations set. Duda [4] presented also the method of
determining of the Lyapunov functional for a neutral system with k-non-commensurate
delays and in [9] for a linear system with both lumped and distributed delay, and in [5]
for a system with a time-varying delay.
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The Lyapunov quadratic functionals are also used to calculation of a value of a
quadratic performance index of quality in the process of the parametric optimization
for the time delay systems. One constructs a Lyapunov functional for the system with a
time delay with a given time derivative whose is equal to the negatively defined quadratic
form of a system state. The value of that functional at the initial state of the time delay
system is equal to the value of a quadratic performance index of quality. In last years a
method of determination of a Lyapunov functional by means of the Lyapunov matrix is
very popular. Duda used this method in parametric optimization problem for a system
with one retarded type time delay and a P-controller [6], for a neutral system with one
delay and a P-controller [7], for a retarded type time delay system with two delays and
P-controller [8] and for a neutral system with two delays and P-controller [10].

There is another method to achieve a value of a quadratic performance index pre-
sented by Górecki and Popek [14] which bases on a characteristic quasi-polynomial.
Górecki and Białas published two articles [2,12] whose concern relations between roots
of the transcendental equations and their coefficients. These results are helpful in the
stability analysis of the time delay systems.

In the paper a Lyapunov functional for time delay system with both lumped and
distributed delay is determined by means of the Lyapunov matrix. The method of deter-
mination of the Lyapunov matrix for time delay system with both lumped and distributed
delay is presented. To the best of author’s knowledge, such extension has not been re-
ported in the literature. There is also presented an example illustrating that method.

2. Mathematical model of a time delay system with both lumped and distributed
delay

Let us consider a time-delay system which dynamics is described by equation{
dx(t)

dt = Ax(t)+Bx(t −h)+
∫ 0
−hCx(t + ς)dς

x(θ) = φ(θ)
(1)

for t ­ 0, θ ∈ [−2h,0], where x(t) ∈ Rn, A,B,C ∈ Rn×n, h ­ 0, function φ ∈
PC([−2h,0],Rn) - the space of piece-wise continuous vector valued functions defined
on the segment [−2h,0] with the uniform norm ∥ φ ∥PC= sup

θ∈[−2h,0]
∥ φ(θ) ∥.

We introduce a new variable

y(t) =
0∫

−h

x(t + ς)dς (2)

and compute its time derivative taking into account the relationship
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dx(t + ς)
dt

=
dx(t + ς)

dς
, (3)

dy(t)
dt

=

0∫
−h

d
dt

x(t + ς)dς =
0∫

−h

d
dς

x(t + ς)dς = x(t)− x(t −h). (4)

There holds a relationship

y(σ) =
0∫

−h

x(σ+θ)dθ =

0∫
−h

φ(σ+θ)dθ = ψ(σ) (5)

for σ ∈ [−h,0]. We obtained the set of equations

[
dx(t)

dt
dy(t)

dt

]
=

[
A C
I 0

][
x(t)
y(t)

]
+

[
B 0
−I 0

][
x(t −h)
y(t −h)

]
[

x(θ)
y(θ)

]
=

[
φ(θ)
ψ(θ)

] (6)

for t ­ 0, θ ∈ [−h,0]. We introduce

z(t) =
[

x(t)
y(t)

]
(7)

A0 =

[
A C
I 0

]
(8)

A1 =

[
B 0
−I 0

]
(9)

and

ϕ =

[
φ
ψ

]
∈ PC([−h,0],R2n). (10)

The system (6) takes the form{
dz(t)

dt = A0z(t)+A1z(t −h)
z(θ) = ϕ(θ)

(11)

for t ­ 0 and θ ∈ [−h,0], where A0,A1 ∈ R2n×2n and ϕ ∈ PC([−h,0],R2n), 0¬ h ∈ R.
z(t,ϕ) is the solution of system (11) with the initial function ϕ.

The theorems of existence, continuous dependence and uniqueness of solutions of
system (11) are given in [13].
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Definition 2 K(t) is the fundamental matrix of system (11) if it satisfies the matrix
equation

d
dt

K(t) = A0K(t)+A1K(t −h)

for t ­ 0 and the following initial condition K(0) = In×n and K(t) = 0n×n for t < 0 where
In×n is the identity n×n matrix and 0n×n is the zero n×n matrix.

Theorem 2 (Bellman & Cooke [1]). Let K(t) be the fundamental matrix of system (11),
then for t ­ 0

z(t,ϕ) = K(t)ϕ(0)+
0∫

−h

K(t −h−θ)A1ϕ(θ)dθ (12)

Definition 3 The function zt(ϕ) : [−h,0]→ R2n is called a shifted restriction of z(·,ϕ)
to an interval [t −h, t] and is defined by a formula

zt(ϕ)(θ) := z(t +θ,ϕ) (13)

for t ­ 0 and θ ∈ [−h,0].

Definition 4 The trivial solution of (11) is said to be stable if for any ε > 0 there is δ > 0
such that

∥ ϕ ∥PC¬ δ ⇒∥ z(t,ϕ) ∥¬ ε

for every t ­ 0.

Definition 5 The trivial solution of (11) is said to be asymptotically stable if it is stable
and z(t,ϕ)→ 0 as t → ∞

Definition 6 The trivial solution of (11) is said to be exponentially stable if there exist
M ­ 1 and σ > 0 such that for every solution z(t,ϕ) of the system with initial function
ϕ ∈ PC([−h,0],R2n) the following condition holds

∥ z(t,ϕ) ∥¬M ∥ ϕ ∥PC e−σt

for every t ­ 0.

The controllability of the systems with time delay is presented in [31].
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3. A Lyapunov-Krasovskii functional

Given a symmetric positive definite matrix W ∈Rn×n. We are looking for a functional v :
PC([−h,0],R2n)→R such that along the solutions of system (11) the following equality
holds

d
dt

v(zt(ϕ)) =−zT (t,ϕ)Wz(t,ϕ) (14)

for t ­ 0, where z(t,ϕ) is a solution of system (11), with the initial function ϕ ∈
PC([−h,0],R2n), given by (12).

We assume that system (11) is asymptotically stable and integrate both side of (14)
from zero to infinity. We obtain

v(ϕ) =
∞∫

0

zT (t,ϕ)Wz(t,ϕ)dt. (15)

Taking into account (12) we calculate the integral of the right-hand side of (15)

∞∫
0

zT (t,ϕ)Wz(t,ϕ)dt = ϕT (0)
∞∫

0

KT (t)WK(t)dtϕ(0)+

+

0∫
−h

2ϕT (0)
∞∫

0

KT (t)WK(t −h−θ)dtA1ϕ(θ)dθ+

+

0∫
−h

ϕT (θ)AT
1

0∫
−h

∞∫
0

KT (t −h−θ)WK(t −h−η)dtA1ϕ(η)dηdθ. (16)

There holds a relation
∞∫

0

KT (t −h−θ)WK(t −h−η)dt =
∞∫

−h−θ

KT (ς)WK(ς+θ−η)dς =

=

∞∫
0

KT (ς)WK(ς+θ−η)dς.

We introduce a Lyapunov matrix

U(ξ) =
∞∫

0

KT (t)WK(t +ξ)dt. (17)

Using the Lyapunov matrix (17) we attain a formula for the functional v(ϕ)
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v(ϕ) = ϕT (0)U(0)ϕ(0)+2ϕT (0)
0∫

−h

U(−θ−h)A1ϕ(θ)dθ+

(18)

+

0∫
−h

ϕT (θ)AT
1

0∫
−h

U(θ−η)A1ϕ(η)dηdθ

where the Lyapunov matrix U is obtained by solving the set of equations [6]

d
dξ

U(ξ) =U(ξ)A0 +U(ξ−h)A1 (19)

U(−ξ) =UT (ξ) (20)

U(0)A0 +U(−h)A1 +AT
0 U(0)+AT

1 U(h) =−W (21)

for ξ ∈ [0,h], where W is a symmetric positive definite matrix. Formula (20) implies

U(ξ−h) =UT (h−ξ) = Z(ξ). (22)

We compute the derivative of Z(ξ)

d
dξ

Z(ξ) =
d
dξ

UT (h−ξ) =−AT
0 UT (h−ξ)−AT

1 UT (−ξ) =−AT
0 Z(ξ)−AT

1 U(ξ). (23)

We have received the set of ordinary differential equations{
d
dξU(ξ) =U(ξ)A0 +Z(ξ)A1
d
dξ Z(ξ) =−AT

0 Z(ξ)−AT
1 U(ξ)

(24)

for ξ ∈ [0,h] with initial condition U(0), Z(0). Formula (22) implies

U(−h) =UT (h) = Z(0). (25)

Taking (25) into account equation (21) takes a form

U(0)A0 +Z(0)A1 +AT
0 U(0)+AT

1 ZT (0) =−W. (26)

4. A Lyapunov matrix for system with both lumped and distributed delay

Matrices U(ξ) and Z(ξ) for time delay system with both lumped and distributed
delay (1) which can be written in the form (6) have a form

U(ξ) =
[

U11(ξ) U12(ξ)
U21(ξ) U22(ξ)

]
, (27)
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Z(ξ) =
[

Z11(ξ) Z12(ξ)
Z21(ξ) Z22(ξ)

]
. (28)

We take a matrix W in a form

W =

[
W1 0
0 W2

]
(29)

for ξ ∈ [−h,0], where U11(ξ), U12(ξ), U21(ξ), U22(ξ), Z11(ξ), Z12(ξ), Z21(ξ), Z22(ξ),
W1, W2 are n×n - real matrices. To obtain the Lyapunov matrix U(ξ), given by formula
(27), we should resolve the set of differential equations (24). Initial conditions of that
differential equations fulfill the equality (26).

We write equations (24) and (26) for A0 and A1 given by (8) and (9)

dU11(ξ)
dξ =U11(ξ)A+U12(ξ)+Z11(ξ)B−Z12(ξ)

dU21(ξ)
dξ =U21(ξ)A+U22(ξ)+Z21(ξ)B−Z22(ξ)

dU12(ξ)
dξ =U11(ξ)C

dU22(ξ)
dξ =U21(ξ)C

dZ11(ξ)
dξ =−BTU11(ξ)+U21(ξ)−AT Z11(ξ)−Z21(ξ)

dZ21(ξ)
dξ =−CT Z11(ξ)

dZ12(ξ)
dξ =−BTU12(ξ)+U22(ξ)−AT Z12(ξ)−Z22(ξ)

dZ22(ξ)
dξ =−CT Z12(ξ)

(30)


U11(0)A+ATU11(0)+U21(0)+U12(0)+Z11(0)B+BT Z11(0)−Z12(0)−ZT

12(0) =−W1

CTU11(0)+U21(0)A+U22(0)+Z21(0)B−Z22(0) = 0
U11(0)C+ATU12(0)+U22(0)+BT ZT

21(0)−Z22(0) = 0
U21(0)C+CTU12(0) =−W2

(31)
Using the Kronecker product we can express (30) in a form

d colU11(ξ)
dξ = (AT ⊗ I)colU11(ξ)+ colU12(ξ)+(BT ⊗ I)colZ11(ξ)− colZ12(ξ)

d colU21(ξ)
dξ = (AT ⊗ I)colU21(ξ)+ colU22(ξ)+(BT ⊗ I)colZ21(ξ)− colZ22(ξ)

d colU12(ξ)
dξ = (CT ⊗ I)colU11(ξ)

d colU22(ξ)
dξ = (CT ⊗ I)colU21(ξ)

d colZ11(ξ)
dξ =−(I ⊗BT )colU11(ξ)+ colU21(ξ)− (I ⊗AT )colZ11(ξ)− colZ21(ξ)

d colZ21(ξ)
dξ =−(I ⊗CT )colZ11(ξ)

d colZ12(ξ)
dξ =−(I ⊗BT )colU12(ξ)+ colU22(ξ)− (I ⊗AT )colZ12(ξ)− colZ22(ξ)

d colZ22(ξ)
dξ =−(I ⊗CT )colZ12(ξ)

(32)
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for ξ ∈ [0,h] with initial conditions colU11(0), colU21(0), colU12(0), colU22(0),
colZ11(0), colZ21(0), colZ12(0), colZ22(0). Solution of the set of differential equations
(32) is given in a form

colU11(ξ)
colU21(ξ)
colU12(ξ)
colU22(ξ)
colZ11(ξ)
colZ21(ξ)
colZ12(ξ)
colZ22(ξ)


=

[
Φ1(ξ) Φ2(ξ)
Φ3(ξ) Φ4(ξ)

]


colU11(0)
colU21(0)
colU12(0)
colU22(0)
colZ11(0)
colZ21(0)
colZ12(0)
colZ22(0)


(33)

where a matrix Φ(ξ) =
[

Φ1(ξ) Φ2(ξ)
Φ3(ξ) Φ4(ξ)

]
is a fundamental matrix of system (32).

Equation (22) implies
Z(h) =U(0). (34)

It means 
colZ11(h)
colZ21(h)
colZ12(h)
colZ22(h)

=


colU11(0)
colU21(0)
colU12(0)
colU22(0)

 . (35)

Equation (33) implies
colZ11(h)
colZ21(h)
colZ12(h)
colZ22(h)

= Φ3(h)


colU11(0)
colU21(0)
colU12(0)
colU22(0)

+Φ4(h)


colZ11(0)
colZ21(0)
colZ12(0)
colZ22(0)

 . (36)

From equations (35) and (36) we obtain

(Φ3(h)− I)


colU11(0)
colU21(0)
colU12(0)
colU22(0)

+Φ4(h)


colZ11(0)
colZ21(0)
colZ12(0)
colZ22(0)

= 0. (37)
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In this way we attain the set of algebraic equations which enables us to calculate the
initial conditions of (32)

U11(0)A+ATU11(0)+U21(0)+U12(0)+Z11(0)B+BT Z11(0)−Z12(0)−ZT
12(0) =−W1

CTU11(0)+U21(0)A+U22(0)+Z21(0)B−Z22(0) = 0
U11(0)C+ATU12(0)+U22(0)+BT ZT

21(0)−Z22(0) = 0
U21(0)C+CTU12(0) =−W2

(Φ3(h)− I)


colU11(0)
colU21(0)
colU12(0)
colU22(0)

+Φ4(h)


colZ11(0)
colZ21(0)
colZ12(0)
colZ22(0)

= 0

(38)

5. Example

Let us consider a system{
dx(t)

dt = ax(t)+bx(t −h)+
∫ 0
−h cx(t + ς)dς

x(θ) = φ(θ)
(39)

for t ­ 0, θ ∈ [−2h,0], where x(t) ∈ R, a, b, c are real numbers, h ­ 0. The set of
equations (32) can be written in a form

dU11(ξ)
dξ

dU21(ξ)
dξ

dU12(ξ)
dξ

dU22(ξ)
dξ

dZ11(ξ)
dξ

dZ21(ξ)
dξ

dZ12(ξ)
dξ

dZ22(ξ)
dξ


=



a 0 1 0 b 0 −1 0
0 a 0 1 0 b 0 −1
c 0 0 0 0 0 0 0
0 c 0 0 0 0 0 0
−b 1 0 0 −a −1 0 0
0 0 0 0 −c 0 0 0
0 0 −b 1 0 0 −a −1
0 0 0 0 0 0 −c 0





U11(ξ)
U21(ξ)
U12(ξ)
U22(ξ)
Z11(ξ)
Z21(ξ)
Z12(ξ)
Z22(ξ)


. (40)
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A fundamental matrix of system (40) has a form Φ(ξ) = [Φi j(ξ)] for i, j = 1, ...,8 The
set of algebraic equations (38) is given by formula

2a 1 1 0 2b 0 −2 0
c a 0 1 0 b 0 −1
c 0 a 1 0 b 0 −1
0 c c 0 0 0 0 0

p51 −1 p52 p53 p54 p55 p56 p57 p58
p61 p62 −1 p63 p64 p65 p66 p67 p68
p71 p72 p73 −1 p74 p75 p76 p77 p78
p81 p82 p83 p84 −1 p85 p86 p87 p88





U11(0)
U21(0)
U12(0)
U22(0)
Z11(0)
Z21(0)
Z12(0)
Z22(0)


=



−w1
0
0

−w2
0
0
0
0


(41)

where pi j = Φi j(h), w1,w2 are positive real numbers.
Figures show the elements of the Lyapunov matrix U(ξ) for given values of the

system (39) parameters. Figure 1 shows the elements of the Lyapunov matrix U(ξ) for
a =−0.2, b =−1, c = 1.2, h = 1 and Figure 2 for a =−0.4, b =−1, c = 1.4, h = 1.

0 0.2 0.4 0.6 0.8 1
−1.1
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Figure 1: Elements of the Lyapunov matrix for a=-0.2, b=-1, c=1.2, h=1
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Figure 2: Elements of the Lyapunov matrix for a=-0.4, b=-1, c=1.4, h=1

6. Conclusions

In the paper a Lyapunov functional for time delay system with both lumped and dis-
tributed time delay is presented. The Lyapunov functional is determined by means of the
Lyapunov matrix. The method of determination of the Lyapunov matrix for time delay
system with both lumped and distributed delay is also presented. The Lyapunov func-
tional has the property that its time derivative computed along solution of the system is
equal to the negative definite quadratic form of the instant state of the dynamical system
with time delay. An example, illustrating the method, is also given.
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