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Offset-free nonlinear Model Predictive Control
with state-space process models

PIOTR TATJEWSKI

Offset-free model predictive control (MPC) algorithms for nonlinear state-space process
models, with modeling errors and under asymptotically constant external disturbances, is the
subject of the paper. The main result of the paper is the presentation of a novel technique based
on constant state disturbance prediction. It was introduced originally by the author for linear
state-space models and is generalized to the nonlinear case in the paper. First the case with mea-
sured state is considered, in this case the technique allows to avoid disturbance estimation at all.
For the cases with process outputs measured only and thus the necessity of state estimation,
the technique allows the process state estimation only - as opposed to conventional approach of
extended process-and-disturbance state estimation. This leads to simpler design with state ob-
server/filter of lower order and, moreover, without the need of a decision of disturbance place-
ment in the model (under certain restrictions), as in the conventional approach. A theoretical
analysis of the proposed algorithm is provided, under applicability conditions which are weaker
than in the conventional approach. The presented theory is illustrated by simulation results of
nonlinear processes, showing competitiveness of the proposed algorithms.

Key words: nonlinear control, predictive control, offset-free control, state-space model,
state estimation.

1. Introduction

The MPC is now a well established advanced control technology, represented by
a variety of successful control algorithms and software packages applied in practice, see,
e.g., [5], [9], [16], [19], [3], [20], [28], [18], [21], [22], [4], [25]. First MPC algorithms
used linear nonparametric models in the form of impulse or step responses (e.g., a well
known DMC algorithm). Then transfer function models were used (GPC algorithm).
Relatively later, the state-space modeling was applied in MPC structures leading to a va-
riety of successful algorithms, including those with nonlinear models. There are different
approaches to state-space modeling, as minimal and non-minimal models, extended ve-
locity form models – leading to different MPC designs. From practical point of view, the
offset-free property is necessary for any MPC algorithm, especially for process control
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applications. This means that constant, or asymptotically constant disturbances should
be attenuated by the algorithm without steady-state error (the offset). It should be also
realized that points and ways these disturbances influence the process are also important
for the MPC design. The mentioned problem has attracted a rather limited attention in
the literature, until the last decade [13], [15], [20], [14], [6], [11], [12], [23], [8]. How-
ever, there is still a certain lack of a clear understanding how the mentioned disturbances
(which include modeling errors) can be most effectively treated in the MPC algorithms
with state-space models. We concentrate on this problem in the paper, for the defined
class of asymptotically constant deterministic disturbances. More general, continuously
varying disturbances, like sinusoids, will be not considered, see [11] for offset-free MPC
reference tracking under varying disturbances.

The main subject of the paper is to present new technique of offset-free MPC design
for nonlinear processes, under (asymptotically) constant set-point values and (asymp-
totically) constant disturbances entering the process at any point, possibly with white
noises added, and to compare this technique with the existing ones. The considered class
of disturbances, important e.g. in process control, includes modeling errors and exter-
nal step disturbances or piecewise-constant disturbances changing rarely with respect
to the controlled process dynamics. Main contribution of the paper is to present new
techniques for both measured and estimated process state, in the latter case with esti-
mation of the process state only. The proposed approach generalizes the results obtained
earlier by the author for linear models [20], [23], to the case of nonlinear state-space pro-
cess models. This leads to simpler and more general MPC structures than the previous
conventional approach. The paper is a revised and extended version of the conference
papers [24], [26].

The structure of the paper is as follows. In Section 2 the MPC is briefly reviewed,
to introduce formulations needed for further considerations. In Section 3 the case with
measured state is presented, resulting in a formulation of the MPC algorithm where the
observer/estimator of the considered deterministic disturbances is not needed at all. In
Section 4 the most general case with state estimation is treated. The results presented in
these two main sections lead to simpler nonlinear MPC control structures and simpler
design as well, under significantly weaker applicability conditions. In Section 5, the pro-
posed MPC approach is illustrated by simulations of the control structure with nonlinear
example process models. Finally, conclusions are formulated.

2. Predictive Control briefly recalled

The principle of MPC is now well known, different formulations of MPC algorithms
can be found in many papers and books. In this paper, we are interested in discrete-time
state-space process models. In the books, see [9], [19], [20], [28], [18], mainly linear
process models, of different types, are considered. Nonlinear process models used in the
MPC algorithms can be in the form of nonlinear state-space models or nonlinear differ-
ence equations of higher orders, including neural network models, see, e.g., [27], [7].
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In this section, we shall briefly recall the MPC formulation needed for further presen-
tation in the paper. The principle of MPC is to evaluate the current process control input
signal by minimizing, at each sampling instant k, a performance function (cost function)
over a future prediction horizon of N samples. The following performance function is
one of the most widely used in process control:

J(k) =
N

∑
p=1

∥[ysp(k+ p|k)− y(k+ p|k)∥2
ΨΨΨ +

Nu−1

∑
p=0

∥△u(k+ p|k)∥2
ΛΛΛ , (1)

where ∥x∥2
RRR=xT RRRx, ΨΨΨ ­ 000 and ΛΛΛ > 000, are square diagonal scaling matrices of dimen-

sions corresponding to the dimensions ny and nu of the process controlled output and
control input vectors, respectively (a simpler formulation of (1) is often used in theoreti-
cal considerations, with one scaling scalar λ only, i.e., ΨΨΨ = III and ΛΛΛ = λIII). In the formu-
lation (1), Nu ¬ N denotes the length of the control horizon, ysp(k+ p|k) and y(k+ p|k)
are set-point (reference) and process output vectors predicted for a future sample k+ p,
but calculated at the current sample k, p = 1, . . . ,N. The control inputs on the control
horizon are the decision variables, whereas △u(k+ p|k) = u(k+ p|k)−u(k+ p−1|k),
p = 0, . . . ,Nu −1. The vector of the decision variables will be denoted by U(k),

U(k) = [u(k|k)T u(k+1|k)T · · ·u(k+Nu −1|k)T ]T . (2)

We assume that the optimization of J(k) is subject to simple constraints:

−△umax ¬ △u(k+ p|k)¬△umax, p = 0, . . . ,Nu−1, (3)
umin ¬ u(k+ p|k)¬ umax, p = 0, . . . ,Nu−1, (4)
ymin ¬ y(k+ p|k)¬ ymax, p = 1, . . . ,N. (5)

More general form of the constraints, including any linear functions of all variables used,
is possible, but avoided here for simplicity.

Denoting composite vectors of set-points and predicted outputs on the prediction
horizon by Y sp(k) and Y pr(k), respectively,

Y sp(k) = [ ysp(k+1|k)T · · · ysp(k+N|k)T ]T , (6)

Y pr(k) = [ y(k+1|k)T · · · y(k+N|k)T ]T , (7)

we can formulate, in a compact form, the MPC optimization problem which calculates
the optimal control trajectory:

min
U(k)

{ J(k) = ∥Y sp(k)−Y pr(k)∥2
ΨΨΨ +∥△U(k)∥2

ΛΛΛ }

subject to (3),(4) and (5), (8)

where
ΨΨΨ = diag{

N times︷ ︸︸ ︷
ΨΨΨ, . . . , ΨΨΨ}, ΛΛΛ = diag{

Nu times︷ ︸︸ ︷
ΛΛΛ, . . . , ΛΛΛ}, (9)
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and the predicted output trajectory Y pr(k) is calculated using the process model. When
this model is nonlinear, then the optimization problem (8) is also nonlinear and nonlinear
optimization procedures must be applied.

With a linear process model, the MPC optimization problem (8) is a strictly con-
vex quadratic programming (QP) problem, thus with a well defined, unique solution –
provided the set defined by the constraints assures feasibility (is non-empty). For a de-
tailed description of the MPC algorithms with linear process models, see, e.g., [20]. For
nonlinear models, uniqueness of solution points cannot be guaranteed.

Once the MPC optimization problem has been solved, the first element u(k|k) = u(k)
of the control trajectory is used only and applied as the process input. After the next
measurement (at the next sampling instant) the whole procedure is repeated (receding
horizon strategy).

We shall assume nu = ny in the paper, which usually (in the linear case always) yields
a unique solution of the MPC optimization problem. Nevertheless, the case nu > ny, not
unusual in MPC applications, will be commented.

3. Offset-free nonlinear MPC with measured state

The following description will be used to represent the nonlinear process:

x(k+1) = fp(x(k),u(k),dp(k)), (10a)
y(k) = g(x(k)), (10b)

where x denotes the process state vector, dimx = nx, y the controlled output vector,
dimy = ny, u the control (control input) vector, dimu = nu and dp represents unknown,
unmeasured disturbances (including modeling errors), dimdp = ndp . Measured distur-
bances will not be explicitly considered in the paper, for the sake of simplicity.

The process model in the following form will be assumed to be known:

x(k+1) = f (x(k),u(k)), (11a)
y(k) = g(x(k)). (11b)

But for state prediction in the MPC algorithm, (11) will be augmented to the form

x(k+1) = f (x(k),u(k))+ v(k), (12a)
y(k) = g(x(k)), (12b)

where v(k) will represent influence of unmeasured disturbances on the state vector,
dimv = nx [20, 23]. The key factor of the presented MPC algorithm is the way v(k)
is modeled for the use in (12a). The constant state disturbance prediction, originally
proposed in [20] for the MPC with linear state-space process models (see also [23]), can
be generalized to the nonlinear case, as follows

v(k) = x(k)− f (x(k−1),u(k−1)), (13)
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v(k|k) = v(k+1|k) = v(k+2|k) = · · · = v(k+N −1|k) = v(k), (14)

where x(k) denotes the process state measured at time k.
The nonlinear MPC algorithm solves, at each sampling instant k, the MPC op-

timization problem (8), using a nonlinear optimization procedure with the vector of
decision variables U(k) defined by (2). The procedure iterates the decision variables,
starting from an initial vector U (0)(k) and calculating subsequent (improved) values
U (i)(k), i = 1,2,3, . . ., etc., until certain optimality criterion is fulfilled. For each new
value U (i)(k) calculation of the output predictions y(i)(k+ p|k) over the control horizon
(i.e., for p = 1, . . . ,N) is needed.

The nonlinear MPC algorithm with measured process state, called further the Algo-
rithm NMPC1, is now presented, in the form of steps performed at each sampling
instant k:

Algorithm NMPC1
1. The process state x(k) is measured.

2. The state disturbance prediction vector v(k) is calculated according to (13).

3. The optimization problem (8) is solved, by an iterative nonlinear optimization
procedure, calculating at its every (i−th) internal iteration the output predictions
as follows:
3a. Using the model (11a), state predictions x(i)(k+ p|k) are recursively calculated
over the control horizon, i.e., for p = 1, . . . ,N:

x(i)(k+ p+1|k) = f (x(i)(k+ p|k),u(i)(k+ p|k))+ v(k), (15)

where x(i)(k|k) = x(k) is the measured state at the current sample, u(i)(k+ p|k))
are elements of the vector of decision variables (2) and

u(i)(k+ p|k) = u(i)(k+Nu −1|k) for p­ Nu. (16)

3b. The output predictions are calculated:

y(i)(k+ p|k) = g(x(i)(k+ p|k)), p = 1, . . . ,N. (17)

4. After the optimal trajectory Û(k) is found by the optimization procedure, its first
element û(k|k) is the current control input signal u(k), which is sent to the process
actuators.

Before stating a theorem about offset-free property of the NMPC1 algorithm, we
shall formulate assumptions about the class of disturbances and about the set-points.

Assumption 1 The disturbances affecting the process (10a)-(10b) are asymptotically
constant, stabilizing at a certain value dss, the set-point (reference) values are asymp-
totically constant, stabilizing at ysp

ss .
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Assumption 2 The set-point values ysp
ss are feasible and steady-state controllable

for disturbance values dss, i.e., ysp
ss satisfies the output constraints (5) and there is a

feasible control signal u (i.e., satisfying (4)) resulting in the process output y(u) = ysp
ss

in steady-state, under the disturbance values dss.

Assumption 1 of defines the class of disturbance and set-point functions under con-
sideration. Assumption 2 is natural, the steady-state value of the set-point must be fea-
sible and steady-state controllable (attainable) to make the offset-free control possible,
regardless of a kind of the feedback controller used. We shall discuss this assumption in
greater detail after Theorem 7, which formulates conditions for offset-free property of
the feedback control system with the Algorithm NMPC1.

Theorem 7 Assume that
– Assumptions 1 and 2 are satisfied,

– Assumption 3: the MPC optimization problem (8) with output predictions as de-
fined by (15)-(17) is feasible for every k (i.e., the set defined by the constraints
(3)-(5) is not empty) and the feedback control system consisting of the process
(10a)-(10b) and the Algorithm NMPC1 is asymptotically stable,

then the feedback control system defined in Assumption 3 provides offset-free control,
i.e., the process outputs stabilize at the set-point values ysp

ss , despite the influence of all
the disturbances as defined in Assumption 1.

Proof. Consider state prediction equations (15) (with the iteration superscript omit-
ted), together with the state disturbance predictions (13):

x(k+1|k) = f (x(k),u(k|k))+ [x(k)− f (x(k−1),u(k−1))], (18a)

x(k+2|k) = f (x(k+1|k),u(k+1|k))+ [x(k)− f (x(k−1),u(k−1))], (18b)
...

x(k+Nu|k) = f (x(k+Nu−1|k),u(k+Nu−1|k))+[x(k)− f (x(k−1),u(k−1))], (18c)

x(k+Nu+1|k) = f (x(k+Nu|k),u(k+Nu−1|k))+ [x(k)− f (x(k−1),u(k−1))], (18d)
...

x(k+N|k) = f (x(k+N−1|k),u(k+Nu−1|k))+[x(k)− f (x(k−1),u(k−1))]. (18e)

As the set-point signal is asymptotically constant, ysp(k) → ysp
ss , the disturbances are

asymptotically constant and the control system is asymptotically stable, then at the
steady-state the process state x(k), the outputs y(k) and the inputs u(k) stabilize at certain
constant values xss, yss = g(xss) and uss, respectively.

As the process state stabilizes at the value xss and the corresponding control vector
at the value uss, then examining, recursively, the state prediction equations (18a)-(18e),
we can conclude that at the steady-state:
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— it follows from (18a) that x(k+1|k) stabilizes at xss,
— the above and (18b) implies that x(k+2|k) stabilizes at xss,
— etc., until x(k+N|k) stabilizes at xss – i.e., all state predictions x(k+ p|k) on the

prediction horizon stabilize at xss.
Taking now into account this result and the output prediction equation (17), we conclude
that the predicted outputs stabilize, at the steady-state, at the value:

y(k+ p|k) = g(xss) = yss, p = 1, . . . ,N. (19)

It remains to prove that

y(k+ p|k) = yss = ysp
ss , p = 1, . . . ,N, (20)

that this, the performance function (1) stabilizes at its most minimal, zero value. This
follows from the form of this function, because:

— at the steady-state the control increments must be zero,
— the equality (20) must be satisfied, provided the set-point value ysp

ss is attainable
(feasible and steady state controllable, Assumption (2)). If (20) was not true, then
the first sum in the performance function (1) would be greater than zero and, at
the same time, there would be freedom to change the control signal by the opti-
mization procedure to force (1) towards the lower, zero value – as ysp

ss attainable.
This would contradict the fact that (1) is minimized at each sampling instant k (the
MPC optimization problem (8) is feasible for every k, Assumption (3)).

This completes the proof.

Given the process equations (10a)-(10b), certain analysis of steady-state controlla-
bility conditions stated in Assumption 2 can be performed using the Implicit Function
Theorem. The following algebraic equations are the process equations at steady state:

xss = fp(xss,uss,dss), (21a)
yss = g(xss). (21b)

For steady-state controllability, we are looking for a solution of this set of equations with
respect to (xss,uss), for given values of (yss,dss). From elementary algebra, a necessary
requirement for such a solution is nu ­ ny (excluding degenerate cases). Assume the
functions fp and g are continuously differentiable on their domains and define

FFFx =
∂
∂x

fp(xss,uss,dss), (22)

FFFu =
∂

∂u
fp(xss,uss,dss), (23)

GGGx =
∂
∂x

g(xss). (24)
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Denoting the system of equations (21a)-(21b) as a nonlinear mapping

H (xss,uss,dss,yss) = 0, (25)

the Jacobian JJJxu of this mapping, with respect to (xss,uss), is

JJJxu =

[
III −FFFx −FFFu

−−−GGGx 000

]
. (26)

If nu = ny, which has been assumed for the performance function (1), then the Jaco-
bian JJJxu is a square matrix. Now, it follows from the Implicit Function Theorem, that
if detJJJxu(xss,uss,dss,yss) ̸= 0, then there exists a neighborhood of (yss,dss), where the
system of equations (21a)-(21b) has a unique solution with respect to (xss,uss), i.e., we
have a unique steady-state controllability. Certainly, in a practical application the Jaco-
bian should be nonsingular for all values of its arguments from a working region of the
control system, i.e., corresponding to all possible values of yss and dss.

The case nu > ny is not uncommon in MPC applications, having a potential to select
more effective control inputs. However, the set-point information must than include also
desired steady-state values usp

ss of the process control inputs, corresponding to the values
ysp

ss (provided by a local steady-state optimization or a steady-state target optimization,
see, e.g., [16], [21]). The performance function (1) should be than modified, by adding
additional, regularizing term

Nu−1

∑
p=0

||u(k+ p|k)−usp
ss ||2ΛΛΛu

, (27)

where ΛΛΛu is a weighting matrix, or even using (27) instead of the second sum in (1) [16],
[21]. The algorithm NMPC1 can also be used in this case, providing offset-free output
control under the assumptions of Theorem 7.

On the other hand, the control system can work properly even if steady-state feasibil-
ity does not hold in Assumption 2 of Theorem 1, possibly violated due to active output
constraints (5). Then the offset-free control is certainly not possible. However, there are
well known measures to assure MPC optimization feasibility in this case, usually by
a suitable reformulation of the MPC optimization problem, using softened versions of
the output constraints instead of hard ones (5), see, e.g., [16], [20]. What necessarily
must be then fulfilled, is the Assumption (2) restricted to steady-state controllability un-
der input feasibility only (i.e., existence of uss satisfying the hard constraints (3)-(4)).
In the considered case, the process outputs would stabilize at a value closest to ysp

ss , in
the least-squares sense. The other possibility is to solve first, at each sampling instant,
a static optimization problem to find a steady-state feasible target yt

ss – the output value
which is feasible and closest to the set-point ysp

ss (a steady-state target optimization, see,
e.g., [17], [16], [20], [12]). Then this target is then used in the MPC optimization prob-
lem (8), in place of the set-point.
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Assumption 3 of Theorem 8 is important for a proper action of the MPC controller, as
infeasibility of the MPC optimization problem can be caused by the output constraints. It
must be avoided in on-line MPC control, and there are well known measures to do that,
as the one just discussed above (the use of soft formulations of the output constraints).
The asymptotic stability of the control system is a basic requirement, widely discussed
in the literature – its analysis is not the aim of this paper, directed towards the design of
controller structures assuring offset-free output control.

The essence and novelty of the algorithm NMPC1 is that the controller assures the
offset-free control without the necessity to use an observer/estimator of the deterministic
disturbances. It should be pointed out that the key factor which makes that the algorithm
works is the use of the state disturbance prediction v(k) defined by (13)-(14) and used
in prediction equations (15). This results in a compensation of state modeling errors in
steady-states, which can be easily seen from the following equations:

vss = xss − f (xss,uss) = fp(xss,uss,dss)− f (xss,uss). (28)

This means that, in fact, any process model may be used, from the point of view of the
offset-free control property only, provided the overall feedback control loop is asymp-
totically stable. Certainly, this is not the whole truth, as quality of the model influences
the feedback loop stability properties, quality of dynamic state and output predictions
over the prediction horizon, and thus the quality of the dynamic properties of the MPC
controller.

Notice that g(x) has been assumed to be a known nonlinear function of the state.
In practice it is always true (and in most cases g(x) is linear). However, if it would not
be true, a simple output disturbance model must be added in the algorithm to assure
offset-free control, in the same way as in the case with linear process model, see [23].

4. Offset-free nonlinear MPC with state estimation

4.1. The technique of extended state estimation

When the process state needs estimation, a conventional technique for offset-free
control in the linear model case is the addition of a disturbance state model and the
extended state (process-and-disturbance state) estimation, see [13], [15], [6], [10], [23].
The analysis is here made usually applying deterministic state observers, as it is a simpler
approach and all results can be easily generalized to the case with Kalman filtering. A
restrictive applicability condition of this approach is the requirement that the number
of disturbances located in the model must not exceed the number of process measured
outputs, which leads to the necessity of a thorough choice of the place where these
disturbances are located in the model.

An extension of this conventional approach to the nonlinear case can be found, e.g.,
in [12]. The augmented process model is introduced, in the form
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x(k+1) = faug(x(k),u(k),d(k)), (29a)
d(k+1) = d(k), (29b)

y(k) = gaug(x(k),d(k)), (29c)

where d(k), dimd = nd , represents the state of disturbances appropriately located in
the process model. The Extended Luenberger Observer (ELO) is then applied to the
extended state estimation [12]:

x̂(k) = faug(x̂(k−1),u(k−1), d̂(k−1))+

+LLLx[y(k−1)−gaug(x̂(k−1), d̂(k−1))], (30a)

d̂(k) = d̂(k−1)+LLLd[y(k−1)−gaug(x̂(k−1), d̂(k−1))], (30b)

where x̂(k) and d̂(k) represent estimates of the process state and disturbance state, re-
spectively. LLLx and LLLd are gain matrices of the observer, usually designed as for the stan-
dard observer for a linear process model (linearization of (29) at the working point).
Adaptation of the gain matrices can be also applied.

The disadvantage of the observer (30) is that it applies delayed input measurement,
it is a predictive observer (by analogy with the linear case [1]). More practical is the the
current observer:

x̂(k|k−1) = faug(x̂(k−1),u(k−1), d̂(k−1)), (31a)

d̂(k|k−1) = d̂(k−1), (31b)

x̂(k) = x̂(k|k−1)+LLLcx[y(k)−gaug(x̂(k|k−1), d̂(k|k−1))], (31c)

d̂(k) = d̂(k|k−1)+LLLcd [y(k)−gaug(x̂(k|k−1), d̂(k|k−1))], (31d)

where LLLcx and LLLcd are gain matrices of the observer. The Extended Kalman Filter (EKF)
can be applied in place of the ELO observer as well.

The MPC controller designed according to this more conventional technique of ex-
tended process-and-disturbance state does not use the disturbance model (13)-(14), in-
stead the modeled disturbance estimate d̂(k) is appropriately used in state and output
predictions. The disadvantage of this technique, both in the linear and, especially, in
the nonlinear case, is that the designer must define the number (dimensionality) nd and
proper placement of the disturbances in the model, under the restriction nd ¬ ny.

4.2. The technique of state disturbance prediction

The technique proposed in this section is, on one hand, a further development of the
technique presented in Section 3 for the case with measured process state. On the other
hand, it is a generalisation of the approach presented in [23], to the nonlinear case. It
differs from the technique with the extended state presented in the previous section, as it
does not use extension of the state.

Application of a state observer is necessary when the process state cannot be mea-
sured. For the process (10) modeled by (11), a simple and straightforward deterministic
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approach to the observation of the process state is to use the Extended Luenberger Ob-
server (ELO) in the standard form

x̂(k) = f (x̂(k−1),u(k−1))+LLL[y(k−1)−g(x̂(k−1))], (32)

or, better, in the current observer form (see Section 4.1):

x̂(k) = f (x̂(k−1),u(k−1))+LLLc[y(k)−g( f (x̂(k−1),u(k−1))], (33)

where x̂(k) is the state estimate and LLL or LLLc is the observer gain matrix. Design and
analysis of the ELO for nonlinear processes is not so easy as for linear systems, even
in the case without a process-model mismatch, see, e.g., [2]. The main assumption is
local observability of the model in the area of operation of the feedback control system,
and the simplest method to design the gain matrix is to do it as for a linear Luenberger
observer, for a linearization of the model (11).

The analysis of nonlinear observers is out of scope of this paper, we shall further
assume that the observer can be successfully designed (in the next section, design details
will be given for exemplary processes). Any kind of a more elaborate observer, providing
asymptotically stable estimation error in a working region of interest, can be also applied.
Extended Kalman filter may be a sound choice, especially when the process state and
outputs are under influence of noises.

The main appealing feature of the proposed nonlinear MPC algorithm is that the
process state only is estimated by the observer (the process state is not augmented),
despite modeling errors and external disturbances. The algorithm will be denoted Algo-
rithm NMPC2. Like NMPC1, it solves at each sampling instant k the nonlinear MPC
optimization problem (8), by a nonlinear optimization procedure iterating the vector of
decision variables U(k) defined by (2), starting from an initial vector U (0)(k). For each
new value U (i)(k) calculation of the output predictions y(i)(k + p|k) over the control
horizon, p = 1, . . . ,N, is performed.

Algorithm NMPC2

1. The process outputs y(k) are measured.

2. The state disturbance prediction v(k) is calculated:

v(k) = x̂(k)− f (x̂(k−1),u(k−1)). (34)

3. The optimization problem (8) is solved, iteratively by a nonlinear optimization
procedure, which calculates at its every (i-th) internal iteration the output predic-
tions in the following way:
3a. Using the model (12), state predictions x(i)(k+ p|k) are recursively calculated
over the control horizon (for p = 1, . . . ,N):

x(i)(k+ p+1|k) = f (x(i)(k+ p|k),u(i)(k+ p|k))+ v(k), (35)
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where x(i)(k|k) = x̂(k) is the estimated state, and

u(i)(k+ p|k) = u(i)(k+Nu −1|k), for p­ Nu. (36)

3b. The output predictions are calculated:

y(i)(k+ p|k) = g(x(i)(k+ p|k))+ [y(k)−g(x̂(k))], p = 1, . . . ,N. (37)

4. After the optimal trajectory Û(k) is found by the optimization procedure, its first
element û(k|k) defines the current control input signal u(k) = û(k|k), which is sent
to the process actuators.

5. The next process state estimate x̂(k+ 1) is calculated by the nonlinear observer,
e.g., (33).

It should be noted that state predictions (35) incorporate the state disturbance pre-
diction v(k) and the output predictions are calculated, in step (3b), by a non-standard
formula (37) which includes the newly introduced correction term y(k)−g(x̂(k)) (com-
pare with (17)).

The following Theorem 8 formulates conditions of offset-free property of the feed-
back control system with the Algorithm NMPC2.

Theorem 8 Assume that
– Assumptions 1 and 2 are satisfied,

– Assumption 4: The MPC optimization problem (8) with output predictions as de-
fined by (35)-(37) in the NMPC2 algorithm, is feasible for every k (i.e., the set
defined by the constraints (3)-(5) is not empty) and the feedback control system
consisting of the process (10a)-(10b) and the Algorithm NMPC2 (including the
process state observer) is asymptotically stable.

Then the feedback control system defined in Assumption 4 provides offset-free control,
i.e., the process outputs stabilize at the set-point values ysp

ss , despite the influence of the
disturbances defined in Assumption 1.

Proof. The first part of the proof is analogous to the first part of the proof of Theorem 1.
The state prediction equations are analogous to (18a)-(18e), only state estimate x̂(k) must
be used instead of the measured state x(k).

The reasoning about the steady-state is also the same, only the steady-state value of
the state estimate x̂ss must be additionally taken into account, with x̂ss ̸= xss, in general.
As the state estimate x̂ss is used now in the prediction equations in place of the mea-
sured state x(k), then further reasoning as in Theorem 1 leads to the conclusion that all
predictions x(k+ p|k) on the prediction horizon stabilize at the value x̂ss.

Taking now into account this result and the output prediction equation (37), we con-
clude that the predicted outputs stabilize, at the steady-state, at the value:

y(k+ p|k) = g(x̂ss)+ [yss −g(x̂ss)] = yss, p = 1, . . . ,N. (38)
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Therefore, due to the additional correction term [yss −g(x̂ss)] in the prediction equation
(37) in NMPC2 algorithm, the obtained result (38) is the same as in the NMPC1 algo-
rithm, see (19). Therefore, the last part of the proof, i.e., proving that y(k+ p|k) = yss =
ysp

ss , p = 1, . . . ,N, is the same as in the proof of Theorem 1. This completes the proof.

The key difference between the algorithm with measured state (Algorithm NMPC1)
and the Algorithm NMPC2 is the introduction of the correction term yss −g(x̂ss) in the
final prediction equation (19). Without this term, the process outputs would stabilize at
the value yss = g(x̂ss), in general not equal to the value ysp

ss , as in general x̂ss ̸= xxx. This is
due to the influence of deterministic disturbances and is true also in the linear case. The
reason is that at a steady-state the process equations xss = fp(xss,uss,dss) and yss = g(xss)
must be fulfilled, with results in the values (xss,uss). On the other hand, the steady-state
estimate value x̂ss is a fixed point of the observer equation (for the obtained values xss
and uss)

x̂ss = f (x̂ss,uss)+KKK(yss −g(x̂ss)) (39)

which is not equal to xss, in general. The reason is that if fp(xss,uss,dss) ̸= f (x̂ss,uss),
then we have in steady-state a non-zero correction term in the observer equation, be-
cause yss −g(x̂ss) ̸= 0. This occurs also in the conventional approach with the extended
process-and-disturbance state estimation recalled briefly in Section 4.1, due to differ-
ences in numbers and locations of disturbances in the process equations and estimated
disturbances placed by the designer in the model equations (e.g., see results of simula-
tions presented in [12]).

Comparing the main differences between the proposed technique (Algorithms
NMPC1 and NMPC2) and the more conventional approach with the extended process-
and-disturbance state estimation [12], the advantage of the proposed one is an easier
design, without the necessity of a careful choice and placement of estimated determin-
istic disturbances in the model (under the restriction nd ¬ ny !). Another advantage is a
simpler controller structure, with the observer of the process state only (not augmented).
On the other hand, it could be seen in certain cases as a disadvantage that the Algorithm
NMPC2 applies to output control only, i.e., with the main part of the MPC performance
function being the sum of squared output control errors (see (1)) – not squared differ-
ences between current and desired (reference) states of the process, as in [12]. This is
due to the fact that only the outputs are measured, thus the correction term can be for the
outputs only. Certainly, this restriction does not apply to the control structure with the
Algorithm NMPC1, as the states are measured there and thus the correction term is not
needed.
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5. Simulation examples

Example 1. A simple nonlinear process with 2-step delay, given be the equations:

xp1(k+1) = 0.32xp1(k)+0.08xp1(k)2 +0.2xp3(k)+0.25xp4(k)+0.02xp1(k)xp3(k),
(40a)

xp2(k+1) = u(k)+d(k), (40b)
xp3(k+1) = xp2(k), (40c)
xp4(k+1) = xp3(k), (40d)

y(k) = xp1(k), (40e)

is considered, where xp(k) = [xp1(k) · · ·xp4(k)]T is the process state and d(k) the un-
known (unmeasured) disturbance.

The following nonlinear model of the process is used for the controller design:

x1(k+1) = 0.27x1(k)+0.1x1(k)2 +0.2x3(k)+0.25x4(k), (41a)
x2(k+1) = u(k), (41b)
x3(k+1) = x2(k), (41c)
x4(k+1) = x3(k), (41d)

y(k) = x1(k). (41e)

where x(k) = [x1(k) · · ·x4(k)]T is the model state. Notice differences in the coefficients
of both models and presence of the unmodelled dynamics (last term in (40a)).

The MPC controllers were designed implementing NMPC1 and NMPC2 algorithms.
The appropriate prediction horizon was found to be N = 8, and the control horizon was
set to Nu = 3. Only one scalar weighting coefficient λ = 0.2 was assumed in the perfor-
mance function. The Extended Luenberger Observer (ELO, in current form) was used
for state estimation. Due to the structure of the model, only one coefficient of the ob-
server gain matrix needed to be designed, Lc = [l1 0 0 0]T , the value of l1 = 0.5 was
found experimentally. Initial state of the observer was xobs(0) = [0.5 0 0 0]T , whereas
the initial process state was zero. Simulation results are shown in Fig. 1 for the NMPC1
and in Fig. 2 for the NMPC2 algorithms, respectively. The simulation scenario comprises
unit steps of the set point at times k = 0 and k = 20 and a unit step of the input distur-
bance at time k = 40. Both algorithms respond well and similarly to set-point changes,
but NMPC1 attenuates the disturbance much better. This is due to the use of the state
disturbance prediction technique, which enables quicker reaction in the case of a delay
and measured state.
Example 2. A nonlinear SISO process with the state-space description is considered:

xp1(k+1) = 0.95xp1(k)−0.25xp1(k)xp2(k)+ xp2(k)+d1(k), (42a)
xp2(k+1) = 0.7xp2(k)+0.1xp2(k)d2(k)+u(k), (42b)

yp(k) = xp1(k)+d3(k), (42c)
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Figure 1: Algorithm NMPC1: trajectories of the set-point and measured output (left), process
input and unmeasured input disturbance (right).

Figure 2: Algorithm NMPC2: trajectories of the set-point, measured and estimated outputs (left),
process input and unmeasured input disturbance (right).

where xp(k) = [xp1(k) xp2(k)]T is the system state, d1(k), d2(k) are unknown (unmea-
sured) disturbances entering the state equations and d3(k) is an unknown (unmeasured)
output disturbance. The presented example process is taken from [12], but it is with
reacher structure of disturbances which can be mutually independent, whereas in [12]
d1(k) = d2(k) = d3(k) = d(k) was assumed, i.e., one disturbing signal.

The following nonlinear model of the process is used for the controller design:
x1(k+1) = 0.9x1(k)−0.3x1(k)x2(k)+ x2(k), (43a)
x2(k+1) = 0.8x2(k)+u(k), (43b)

y(k) = x1(k), (43c)

where x(k) = [x1(k) x2(k)]T , y(k) are the model state and output, respectively. Notice
differences in the coefficients of both models and presence of the unmodeled dynamics
(last term in (42b)).

The MPC controller was designed implementing the algorithms NMPC1 and
NMPC2. The appropriate prediction horizon was found to be N = 8, and the control
horizon was set to Nu = 4. Only one scalar weighting coefficient λ = 0.5 was assumed
in the performance function, i.e., ΨΨΨ = III and ΛΛΛ = λIII in (1). The simulation scenario was
the same for both algorithms, comprising changes of the set-point and all disturbances.
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A representative result for the NMPC1 algorithm is shown in Fig. 3. The results
show good performance of the algorithm for the considered example. Both the modeling
inaccuracies (compare coefficients and structures of (42a)-(42c) and (43a)-(43c)) and
step changes of all different and unknown (unmeasured) external disturbances are well
attenuated, providing offset-free control.

Figure 3: Algorithm NMPC1: trajectories of the measured states (top), set-point and process
output (middle), unmeasured disturbances (bottom).

For the NMPC2 algorithm, the ELO observer in the current form, with constant
gains, was found to be satisfactory. The gain matrix of the observer LLLc was designed for
the linear state-space model being linearization of the nonlinear model (43) at the origin,
in a standard way, for a predefined set of eigenvalues for the closed loop (0.3 and 0.4),
see, e.g., [1].

A representative result for the NMPC2 algorithm is shown in Fig. 4. The results show
again good performance. When comparing with the NMPC1 results, similar quality of
set-point tracking is observed. Attenuation of disturbances is worse, but not significantly.

For a comparison, the MPC nonlinear controller designed according to conventional
technique of extended process-and-disturbance state estimation (see Section 4.1) was
also tested (algorithms NMPCA). Since the example system is a SISO one, this design
has to be under the restriction dimd(k) = nd = 1. Constraining the design to single addi-
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Figure 4: Algorithm NMPC2: trajectories of measured and observed states x1 and x2 (top and
middle), set-point and process output (bottom); unmeasured disturbances as in Fig. 3.

tive disturbance d(k), there are three possibilities for placing it in the model equations:
as a disturbance of the first state (43a), of the second state (43b) or of the output equation
(43c). All cases were tested. Results shown in Figures 3 and 4 suggest that the distur-
bance d1(k) is most crucial. Therefore, the following augmented state model was first
tested:

x1(k+1) = 0.9x1(k)−0.3x1(k)x2(k)+ x2(k)+d(k), (44a)
x2(k+1) = 0.8x2(k)+u(k), (44b)
d(k+1) = d(k), (44c)

y(k) = x1(k), (44d)

and the extended state vector was [x(k) d(k)]T . This choice occurred to be not success-
ful. First, it occurred very difficult to design the ELO observer. Second, the obtained
simulation results were much worse, an example of best results is shown in Fig. 5.

Next, the disturbance d(k) was placed in the second model equation, i.e., was located
in (44b) instead of in (44a). This case occurred to be successful (the case of input distur-
bance), the simulation results obtained were similar to these with the NMPC2 algorithm
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Figure 5: Algorithm NMPCA for the disturbance added to the first model equation: trajecto-
ries of measured and observed states x1 and x2 (top and middle), set-point and process output
(bottom); unmeasured disturbances as in Fig. 3.

(not better). Since also in this case there is significant difference between disturbance
structure in the process (42) and its model, trajectories of the state estimates significantly
differed from the true state trajectories, similarly as it was for the NMPC2 algorithm (see
Fig. 4).

The third tested case was with the disturbance d(k) in the output equation. This trial
choice was a complete failure for the considered example, the ELO observer was not
able to estimate the extended state in a way sufficient for a proper controller action.

The simulations with the extended Kalman filter (EKF) instead the ELO were also
performed, for all cases presented above with the ELO. As the EKF uses gain matrix
adaptation, better results could be awaited. For the cases with augmented process-and-
disturbance state the results were generally better, but not better than with the NMPC2
algorithm. Again, the case with output disturbance was a complete failure.

Certainly, the presented comparison is for the chosen examples only. Nevertheless,
it demonstrates that is is much simpler to design the control system using the proposed
technique of state disturbance prediction than the more conventional technique of ex-
tended process-and-disturbance state and that the obtained results are competitive.
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6. Conclusions

The approach to offset-free model predictive control with nonlinear state-space pro-
cess models based on the technique of state disturbance prediction has been presented
in the paper, for deterministic asymptotically constant unmeasured external and internal
disturbances (modeling errors) and asymptotically constant set-points (reference values).
The presented control structure is derived for the output control, i.e. for MPC formula-
tions with squared output control errors being the main part of the performance function.
The presented approach was originally proposed by the author for linear state-space pro-
cess models. In the paper, the formulation for nonlinear models is derived. The basic
element is an appropriate formulation of state disturbances in the model used for the
state and output prediction, called the constant state disturbance prediction. This leads to
simpler control structures, in cases with measured state without the need of disturbance
observer/filter at all. In other cases, it is sufficient to estimate the process state only, as
opposed to the conventional approach with a process-and-disturbance state estimation.
Due to the prescribed simple disturbance modeling, in both cases the design is simpler
as it leads to the state observer/filter of lower order. Moreover, necessity of choosing
a limited number of disturbances and their placement in the process model is avoided.
Further, for cases with input delays, better disturbance attenuation can be achieved when
using design with full state measurement. Theoretical analysis of the offset-free prop-
erty of the proposed algorithms is provided, under the applicability conditions that are
weaker than in the conventional approach.

The presented approach uses the formulation of the MPC performance function
based on predicted control errors and process input increments, whereas in the approach
discussed in [12], process state and input deviations from appropriate steady-state tar-
gets are used. However, the approach with predicted control errors seems to be most
practical.

Theoretical results presented in the paper are illustrated by simulations of control
structures with nonlinear processes. Comparing the presented theoretical and simulation
results with those for the technique with extended process-and-disturbance state esti-
mation, the conclusion must be drawn that the proposed approach is simpler and yields
competitive results, thus significantly broadening the range of possible solutions avail-
able for to design engineer.
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