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On dynamically consistent Jacobian inverse
for non-holonomic robotic systems

JOANNA RATAJCZAK and KRZYSZTOF TCHOŃ

This paper presents the dynamically consistent Jacobian inverse for non-holonomic robotic
system, and its application to solving the motion planning problem. The system’s kinematics
are represented by a driftless control system, and defined in terms of its input-output map in
accordance with the endogenous configuration space approach. The dynamically consistent Ja-
cobian inverse (DCJI) has been introduced by means of a Riemannian metric in the endogenous
configuration space, exploiting the reduced inertia matrix of the system’s dynamics. The con-
sistency condition is formulated as the commutativity property of a diagram of maps. Singular
configurations of DCJI are studied, and shown to coincide with the kinematic singularities. A
parametric form of DCJI is derived, and used for solving example motion planning problems
for the trident snake mobile robot. Some advantages in performance of DCJI in comparison to
the Jacobian pseudoinverse are discovered.

Key words: non-holonomic system, motion, Jacobian inverse, dynamic consistency, met-
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1. Introduction

It is well known that for both holonomic as well as non-holonomic robotic systems
the motion planning problem can be solved by means of Jacobian algorithms. A system-
atic way of derivation of the Jacobian algorithms is offered by the continuation method
introduced into robotics by H. Sussmann [20]. Within this paradigm, in [21] we have
introduced the endogenous configuration space approach, and derived Jacobian inverses
and Jacobian motion planning algorithms for non-holonomic systems. It is worth men-
tioning that the endogenous configuration space approach allows to transfer the concepts
originally defined for holonomic systems to the world of non-holonomic systems, pre-
serving conceptual consistency of both these areas. An up to date review of this approach
has been provided recently in [23].
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An example of such a transferable concept is the dynamically consistent Jacobian in-
verse (DCJI) developed for robotic manipulators by O. Khatib [8, 9], and then exploited
successfully to the control of redundant manipulators [12], humanoid robots [10, 18] as
well as biomechanical systems [3, 4]. In the original Khatib’s formulation the dynamic
consistency of a Jacobian inverse means that the forces acting in the configuration space
and not transmitted by the dual Jacobian inverse to the operational space do not cause
any motion of the end effector. When resolved mathematically, this postulate results in
a kind of the weighted version of the Jacobian pseudoinverse [7, 2], where the role of
the weight matrix is performed by the inertia matrix of the manipulator. In this way
DCJI becomes a tool for inversion of the kinematics, respecting some features of the
manipulator’s dynamics.

Following the idea of DCJI for holonomic robotic systems, in [22] we have designed
DCJI for non-holonomic robotic systems. Three methods of the derivation have been
promoted in this reference, called the geometric, the force, and the optimization method;
the force method refers directly to the Khatib’s approach. DCJI for mobile manipulators
is devised in [17].

The purpose of this paper is to present and further advance the geometric method of
designing DCJI for non-holonomic robotic systems. We claim that DCJI originates from
a sort the interplay among a number of maps characterizing the infinitesimal behaviour
of the robotic system including the Jacobian, the Jacobian inverse, and their dual maps.
In accordance with [22], within the geometric method a leading actor is the Riemannian
metric in the endogenous configuration space defined by means of the reduced inertia
matrix of the system’s dynamics, and the related isomorphisms between the endogenous
configuration space and its dual space. All these maps have been arranged into a diagram
whose commutativity guarantees the dynamic consistency of the Jacobian inverse. Two
aspects of this commutativity are considered, both leading to the same formula for DCJI.
Geometrically, the dynamic consistency prevents the motion of the end effector under the
influence of the endogenous momenta contained in the null space of the dual Jacobian
inverse. Associated with DCJI is the motion planning algorithm allowing to compute the
control function that makes the end effector to reach a desired point in the operational
space. This algorithm is based on solving a functional differential equation evolving in
the endogenous configuration space. Therefore, in order to facilitate the computation of
its solution the control functions have been replaced by their truncated orthogonal series,
making the motion planning algorithm finite dimensional. In the paper a parametric form
of all the concepts underlying the derivation of DCJI is provided, resulting in a paramet-
ric dynamically consistent Jacobian motion algorithm. Performance of this algorithm
is illustrated with a motion planning problem for two kinematics models of the trident
snake robot [5, 6], differing from each other by the choice of control inputs. A compar-
ison with the motion planning algorithm based on the classical Jacobian pseudoinverse
reveals some advantages of DCJI.

This paper is organized in the following way. The next section introduces basic con-
cepts, including the kinematics, the endogenous configuration, the Jacobian, the Jacobian
inverse, configuration singularities, and the dynamics model of a non-holonomic system.



ON DYNAMICALLY CONSISTENT JACOBIAN INVERSE
FOR NON-HOLONOMIC ROBOTIC SYSTEMS 557

Section 3 is devoted to DCJI, that is derived on the basis of a Riemannian metric, from
the commutativity requirement of a diagram of maps. To aid the computations, in sec-
tion 4 a parametric version of the concepts introduced in the previous section is defined,
including the diagram of parametric maps and a parametric dynamically consistent Ja-
cobian motion planning algorithm. Example computations are conducted in section 5 in
relation to a motion planning problem for two kinematics models of the trident snake
robot. Section 6 concludes the paper.

2. Basic concepts

We shall study robotic system characterized by configuration coordinates q∈Q=Rn

and velocities q̇ ∈ TqQ, subject to l ¬ n independent constraints in the form of Pfaff

A(q)q̇ = 0. (1)

Hereabout TqQ∼=Rn denotes the tangent space to Q at the configuration q, and the matrix
A(q) has dimension l ×n and full rank l. It will be assumed that the constraints (1) are
non-holonomic.

After adding an output function, the Pfaffian constraints provide a description of the
system’s kinematics in the form of a driftless control system with output

q̇ = G(q)u =
m

∑
i=1

gi(q)ui, y = k(q) = (k1(q), . . . ,kr(q)), (2)

whose vector fields gi(q) belong to the null space of the Pfaffian matrix A(q). The con-
trol vector u ∈ Rm, m = n− l, and the output vector y ∈ Y = Rr comprises operational
coordinates. It will be assumed that the controls act on the system (2) over a time in-
terval [0,T ], and its control functions u(·) belong to the Hilbert space X = L2

m[0,T ] of
Lebesgue square integrable functions of time, with values in w Rm. The control space X
is equipped with the inner product

⟨u1(·),u2(·)⟩=
T∫

0

uT
1 (t)u2(t)dt. (3)

In accordance with the terminology adopted in [21, 23], this space will be referred to
as the endogenous configuration space of the system (2). Concerning the control func-
tions of (2) our standing assumption will be that for every u(·) ∈ X and every initial
configuration q0 the system’s trajectory q(t) = φq0,t(u(·)) exists for every t ∈ [0,T ].

In agreement with the endogenous configuration space approach, the kinematics of
the robotic system will be identified with the input-output map

Kq0,T : X −→ Y (4)
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of (2), defined as
Kq0,T (u(·)) = k(q(T )) = k(φq0,T (u(·))). (5)

The map (5) is continuously differentiable, see [11], Appendix D. Its derivative with
respect to the control function,

Jq0,T (u(·))v(·) = DKq0,T (u(·))v(·) =
d

dα
|α=0Kq0,T (u(·)+αv(·)), (6)

will be regarded as the Jacobian of the non-holonomic robotic system. At a fixed control
function u(·) the Jacobian

Jq0,T (u(·)) : Tu(·)X −→ TKq0 ,T (u(·))Y (7)

becomes a linear map between corresponding tangent spaces Tu(·)X ∼= X and
TKq0 ,T (u(·))Y

∼= Y . It is well known [19], that for a given (u(t),q(t)) the Jacobian is deter-
mined by the linear approximation of the system (2), so setting ξ(t) = Dφq0,t(u(·))v(·),
v ∈ Rm and w ∈ Rr, we get a linear control system with output

ξ̇ = A(t)ξ+B(t)v, w =C(t)ξ, (8)

where ξ0 = 0 and

A(t) =
∂G(q(t))u(t)

∂q
, B(t) = G(q(t)), C(t) =

∂k(q(t))
∂q

. (9)

Having solved the system (8), we obtain the following integral formula for the Jacobian

Jq0,T (u(·))v(·) = w(T ) =C(T )ξ(T ) =C(T )
T∫

0

Φ(T, t)B(t)v(t)dt. (10)

The matrix Φ(t,s) is the fundamental matrix of system (8), satisfying the differential
equation

∂Φ(t,s)
∂t

= A(t)Φ(t,s), Φ(s,s) = In. (11)

The Jacobian (7) has its dual

J∗q0,T (u(·)) : Rr∗ −→ X ∗ (12)

acting between suitable dual (cotangent) spaces. For rT ∈ Rr∗ and v(·) ∈ X the dual (12)
is defined as follows

(
J∗q0,T (u(·))r

T )v(·) = rT Jq0,T (u(·))v(·) = rTC(T )
T∫

0

Φ(T, t)B(t)v(t)dt. (13)
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In particular, (13) implies that the dual Jacobian is determined by the matrix function

J̄q0,T (u(·))(t) = BT (t)ΦT (T, t)CT (T ), (14)

such that, using the inner product (3), we obtain

(J∗q0,T (u(·))r
T )v(·) = ⟨J̄q0,T (u(·))(·)r,v(·)⟩.

Relying on this identity, and exploiting the identifications X ∗ ∼= X and Rr∗ ∼= Rr we
derive the identity

Jq0,T (u(·))J∗q0,T (u(·)) =C(T )
T∫

0

Φ(T, t)B(t)BT (t)ΦT (T, t)dt =

C(T )G(T )CT (T ) = Gq0,T (u(·)). (15)

The matrix Gq0,T (u(·)) standing in (15) will be referred to as the mobility matrix of the
non-holonomic robotic system.

Having defined the kinematics of the non-holonomic robotic system as the map (4),
by reference to the Jacobian (7) we can introduce regular and singular endogenous con-
figurations, [21]. Specifically, an endogenous configuration u(·) ∈ X , at which the Ja-
cobian is surjective is called regular, otherwise u(·) is singular. It follows that singular
configurations coincide with singular optimal controls of the system (2). Equivalently,
u(·) ∈ X is singular if and only if at u(·) the mobility matrix (15) loses rank. It is easily
checked that the matrix G(t) =

∫ t
0 Φ(t,s)B(s)BT (s)ΦT (t,s)ds constituting the mobility

matrix satisfies the Lyapunov equation

Ġ(t) = B(t)BT (t)+A(t)G(t)+G(t)AT (t), G(0) = 0. (16)

By definition, at a regular endogenous configuration the Jacobian equation

Jq0,T (u(·))v(·) = w (17)

delivers a solution v(·) ∈ X for any w ∈ Rr. Such a solution can be found by means of a
right Jacobian inverse

J#
q0,T (u(·)) : TKq0 ,T (u(·))Y −→ Tu(·)X , (18)

that satisfies the identity Jq0,T (u(·))J#
q0,T (u(·)) = Ir. A well known example of the right

inverse is the Jacobian pseudoinverse (the Moore–Penrose generalized Jacobian inverse,
[1])

J#MP
q0,T (u(·))(t) = BT (t)ΦT (T, t)CT (T )G−1

q0,T (u(·)), (19)

defined as the solution of a minimal quadratic optimal control problem in the system
(8), satisfying the equality condition (17), [21]. Right Jacobian inverses can be em-
ployed in order to solve the inverse kinematics (so the motion planning problem) in
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the non-holonomic robotic system. The problem consists in computing a right inverse
Lq0,T : Y −→ X of the kinematics, such that Kq0,T ◦ Lq0,T = idY . This objective can be
achieved by applying the continuation method, in agreement with the procedure sketched
below. We begin with an initial guess u0(·) ∈ X . If it solves the problem, we finish. Oth-
erwise, we look for a continuously differentiable curve uθ(·) of endogenous configura-
tions, such that the error e(θ) = Kq0,T (uθ(·))− yd decays exponentially to zero, with a
pre-defined decay rate γ> 0. This requirement will be fulfilled, if the curve uθ(·) satisfies
the differential equation

e′(θ) =
de(θ)

dθ
=−γe(θ).

Now, taking into account the form of the error, we arrive at an implicit differential equa-
tion

Jq0,T (uθ(·))u′θ(·) =−γe(θ).

Finally, having applied a right inverse J#(u(·)) of the Jacobian, we convert this equation
to the explicit form

u′θ(·) =−γJ#(uθ(·))(Kq0,T (uθ(·))− yd), uθ=0(·) = u0(·). (20)

The differential equation (20) establishes a Jacobian inverse kinematics algorithm. Let
uθ(·)(yd) denote its solution corresponding to yd . Then, the solution of the inverse kine-
matics problem is obtained as the limit

u(t)(yd) = lim
θ−→+∞

uθ(t)(yd), (21)

In this setting, the value Lq0,T (yd) of the inverse kinematics can be computed as the limit

Lq0,T (yd) = lim
θ−→+∞

uθ(·)(yd). (22)

The last issue examined in this section is concerned with the dynamics of the non-
holonomic system. Given the Pfaffian constraints (1) or the control system (2), we de-
fine the Lagrangian L(q, q̇) = 1

2 q̇T M(q)q̇−V (q), where M(q) = MT (q)> 0 is the inertia
matrix and V (q) denotes the potential energy. Then, the Euler–Lagrange equations of
motion take the form

M(q)q̈+N(q̇,q) = B(q)τ+T,

where N(q̇,q) represents the centripetal, Coriolis and gravity terms, B(q) is the control
matrix, τ stands for driving forces or torques, and T denotes the traction forces enforcing
the satisfaction of motion constraints. Having applied the d’Alembert Principle we com-
pute the traction forces, and then eliminate them that results in the reduced equations of
motion

q̇ = G(q)u, F(q)u̇+P(q,u) = S(q)τ. (23)

For further use we pay special attention to the reduced inertia matrix

F(q) = GT (q)M(q)G(q). (24)
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3. Dynamically consistent Jacobian inverse

Consider the non-holonomic robotic system with the kinematics (2), the Jacobian
(10), and the reduced inertia matrix (24). Suppose that J#

q0,T (u(·)) is a right inverse (18)
of the Jacobian. Given this right inverse, the map Lq0,T (y) can be computed by the related
Jacobian inverse kinematics algorithm, in accordance with (20) and (22).

In this section we shall describe a specific inverse, called the Dynamically Consistent
Jacobian Inverse (DCJI). In the reference [22] we presented three methods of derivation
of DCJI. The reconstruction presented here relies on the method referred to as geometric.
As a preliminary step we endow the endogenous configuration space with a Riemannian
metric based on the matrix (24). Given an endogenous configuration u(·) ∈ X , we let
q(t) = φq0,t(u(·)) denote the corresponding trajectory of (2). Set

Mq0(u(·))(t) = F(φq0,t(u(·))),

and choose a pair of elements v1(·),v2(·) ∈ Tu(·)X . Then, the Riemannian metric on X
can be defined in the following way

gX (u(·))(v1(·),v2(·)) =
T∫

0

vT
1 (t)Mq0(u(·))(t)v2(t)dt. (25)

Associated with (25) are two isomorphisms

g♭X (u(·)) : Tu(·)X −→ T ∗
u(·)X and g♯X (u(·)) : T ∗

u(·)X −→ Tu(·)X ,

often called musical, defined as

g♭X (u(·))(v(·)) = vT (·)Mq0(u(·))(·) = pT (·),

g♯X (u(·))(pT (·)) = M −1
q0

(u(·))(·)p(·) = v(·),
(26)

where v(·) ∈ Tu(·)X and pT (·) ∈ T ∗
u(·)X play the role of the endogenous velocity and

the endogenous momentum at the configuration u(·). Observe that the identities in (26)
should be read as

pT (t) = vT (t)Mq0(u(·))(t) and v(t) = M −1
q0

(u(·))(t)p(t).

By definition, the isomorphisms (26) are mutually inverse, so

g♯X (u(·))◦g♭X (u(·)) = idTu(·)X .

Moreover, the action of pT (·) on v(·) can be interpreted as energy, and is tantamount to
the usual pairing

pT (·)v(·) = ⟨p(·),v(·)⟩=
T∫

0

pT (t)v(t)dt,
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⟨·, ·⟩ denoting the inner product (3) in the endogenous configuration space. The opera-
tional space is also equipped with a Riemannian metric gY (y), that will be specified later.
The musical isomorphisms associated with this metric are denoted as g♭Y (y) and g♯Y (y).

Now we are ready to introduce DCJI, following the geometric method. Given the
Jacobian (10) and its right inverse (18), we take the dual maps

J∗q0,T (u(·)) : T ∗
y Y −→ T ∗

u(·)X and J#∗
q0,T (u(·)) : T ∗

u(·)X −→ T ∗
y Y (27)

operating as

(J∗q0,T (u(·))r
T )v(·) = rT Jq0,T (u(·))v(·) and

(J#∗
q0,T (u(·))pT (·))w = pT (·)J#

q0,T (u(·))w. (28)

The maps introduced in sections 2 and 3 can be arranged into the following diagram

y
Lq0,T−−−−→ Lq0,T (y) = u(·)

Kq0,T−−−−→ yy y y
TyY

J#
q0 ,T

(u(·))
−−−−−→ Tu(·)X

Jq0 ,T (u(·))−−−−−→ TyYyg♭Y (y)

xg♯X (u(·))
xg♯Y (y)

T ∗
y Y

J∗q0 ,T
(u(·))

−−−−−→ T ∗
u(·)X

J#∗
q0 ,T

(u(·))
−−−−−→ T ∗

y Y

(29)

The right Jacobian inverse J#
q0,T (u(·)) is dynamically consistent, if the lower subdiagram

of (29) commutes. The resulting DCJI will be denoted by J#DC
q0,T (u(·)). The diagram’s

commutativity has two aspects. If the lower left subdiagram commutes then, for y =
Kq0,T (u(·)), we get

J#DC
q0,T (u(·)) = g♯X (u(·))J

∗
q0,T (u(·))g

♭
Y (y).

A composition from the left with Jq0,T (u(·)) results in

g♭Y (y) =
(

Jq0,T (u(·))g
♯
X (u(·))J

∗
q0,T (u(·))

)−1
,

where u(·) = Lq0,T (y). Finally, using (26), we conclude that

J#DC
q0,T (u(·)) = g♯X (u(·))J

∗
q0,T (u(·))

(
Jq0,T (u(·))g

♯
X (u(·))J

∗
q0,T (u(·))

)−1
. (30)

Re-stated in matrix terms, for w ∈ TyY , the identity (30) is equivalent to

(J#DC
q0,T (u(·))w)(t) = M −1

q0
(u(·))(t)BT (t)ΦT (T, t)CT (T )

(
DDC

q0,T
)−1

(u(·))w. (31)
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The matrix

DDC
q0,T (u(·)) =C(T )

T∫
0

Φ(T, t)B(t)M −1
q0

(u(·))(t)BT (t)ΦT (T, t)dtCT (T ) (32)

appearing in (31) is called the dynamically consistent mobility matrix. By analogy with
(15), we set

DDC
q0,T (u(·)) =C(T )D(T )CT (T ), (33)

and derive the Lyapunov equation

Ḋ(t) = B(t)M −1
q0

(u(·))(t)BT (t)+A(t)D(t)+D(t)AT (t), D(0) = 0. (34)

Thanks to the positive definiteness of the matrix (24), the singular endogenous configu-
rations of mobility matrices (15) and (32) coincide. As a by-product of the mathematical
developments we have obtained the Riemannian metric in the operational space that
should be defined as

gY (y)(w1,w2) = wT
1
(
DDC

q0,T
)−1

(Lq0,T (y))w2, (35)

Even more transparently the dynamic consistency is visible from the analysis of the
lower right subdiagram of (29). This is so because the dynamic consistency requires
that endogenous momenta belonging to the null space of J#∗

q0,T (u(·)), so annihilated by
this map, should never produce any velocity of motion in the operational space Y . In
mathematical terms

kerJ#DC∗
q0,T (u(·))⊂ kerJq0,T (u(·))g

♯
X (u(·)). (36)

Now, since the null space of any dual right Jacobian inverse J#∗
q0,T (u(·)) is spanned by

idT ∗
u(·)X

− J∗q0,T (u(·))J
#∗
q0,T (u(·)),

the identity (36) results in

Jq0,T (u(·))g
♯
X (u(·))

(
idT ∗

u(·)X
− J∗q0,T (u(·))J

#DC∗
q0,T (u(·))

)
= 0, (37)

from which (30) follows directly.

4. Parametric DCJI

Since the DCJI relies on the functional differential equation (20) evolving on the
infinite dimensional endogenous configuration space, for computational purposes it may
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be advantageous to introduce a finite dimensional parametrization of endogenous con-
figurations (control functions). This is realized by some truncated orthogonal series ex-
ploiting a finite number of basic functions f1(t), f2(t), . . . , fk(t). To this aim, suppose
that the matrix

P(t) = blockdiag{P1(t), P2(t), . . . ,Pm(t)}, Pi(t) = [ f1(t), f2(t), . . . , fk(t)],

of dimension m× s, s = mk collects these basic functions, suitably arranged, so that

u(t) = uλ(t) = P(t)λ, λ = (λ1,λ2, . . . ,λs) ∈ Rs. (38)

The orthogonality condition means that
∫ T

0 PT (t)P(t)dt = Is. This parametrization is s-
dimensional, with s arbitrary, but not less than the dimension of the operational space,
s ­ r. After replacing in (2) and in the following equations the control function by the
parametric form (38) we obtain the parametric trajectory

φ̃q0,t(λ) = φq0,t(uλ(·)),

and the parametric kinematics

K̃q0,T (λ) = Kq0,T (uλ(·)).

Next, along the pair (uλ(t), φ̃q0,t(λ)) we compute the parametric forms Aλ(t), Bλ(t),
Cλ(t) of matrices (9) then Φλ(t,s), arriving at the parametric Jacobian

J̃q0,T (λ) =Cλ(T )
T∫

0

Φλ(T, t)Bλ(t)P(t)dt,

and the parametric inertia matrix

M̃q0(λ)(t) = F(φ̃q0,t(λ)).

These data allow one to compute the parametric Riemannian metric

g̃Rs(λ)(µ1,µ2) = µT
1 Rq0,T (λ)µ2,

where a pair of parametric endogenous µ1,µ2 ∈ Rs, based on the matrix

Rq0,T (λ) =
T∫

0

PT (t)M̃q0,T (λ)(t)P(t)dt.

In consequence, the musical isomorphisms (26) take the following parametric form

g̃♭Rs(λ)(µ) = µT Rq0,T (λ) = pT and g̃♯Rs(λ)(p) = R −1
q0,T (λ)p = µ,
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where pT ∈ Rs∗ ∼= Rs denotes the parametric endogenous momentum.
Having defined the parametric Jacobian, we introduce the parametric right Jacobian

inverse J̃#
q0,T (λ) and the parametric dual maps J̃∗q0,T (λ) and J̃#∗

q0,T (λ) corresponding to
(28). Let L̃q0,T (λ) stand for the parametric inverse of K̃q0,T (λ). Then, analogically to
(29), for a fixed λ all these parametric maps will be embedded into the diagram of maps

y
L̃q0 ,T−−−−→ L̃q0,T (y) = λ

K̃q0 ,T−−−−→ yy y y
Rr

J̃#
q0,T

(λ)
−−−−→ Rs J̃q0 ,T (λ)−−−−→ Rryg̃♭Rr (y)

xg̃♯Rs (λ)
xg̃♯Rr (y)

Rr
J̃∗q0 ,T

(λ)
−−−−→ Rs

J̃#∗
q0 ,T

(λ)
−−−−→ Rr,

(39)

where we have used the obvious identifications Rs∗ ∼= Rs and Rr∗ ∼= Rr.
Now, assuming commutativity of the lower left subdiagram of (39), we deduce that

for DCJI
J̃#DC

q0,T (λ) = g̃♯Rs(λ)J̃∗q0,T (λ)g̃
♭
Rr(y), y = K̃q0,T (λ).

After some further developments resembling those preceding (31) we reach a conclusion
that the parametric DCJI takes the following form

J̃#DC
q0,T (λ) = R −1

q0,T (λ)J̃
T
q0,T (λ)

(
D̃DC

q0,T (λ)
)−1

, (40)

where
D̃DC

q0,T (λ) = J̃q0,T (λ)R
−1

q0,T (λ)J̃
T
q0,T (λ)

stands for a parametric dynamically consistent mobility matrix.
To comply with the request that the parametric momenta living in the null space of

J̃#∗
q0,T (λ) should not affect the motion in the operational space, the lower right subdiagram

of (39) yields
ker J̃#DC∗

q0,T (λ)⊂ ker J̃q0,T (λ)g
♯
Rs(λ),

so adopting a reasoning analogous to that after (36) we come again to the identity (40).
In order to introduce the parametric dynamically consistent Jacobian motion plan-

ning algorithm we take a continuously differentiable curve λθ ∈ Rs and the correspond-
ing parametric curve of controls uθ(t) = P(t)λθ in the endogenous configuration space
X . Let

ẽθ = K̃q0,T (λθ)− yd

denote a parametric error curve in the operational space. The parametric dynamically
consistent Jacobian motion planning algorithm is determined by the trajectory λθ of the
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following differential equation resulting from the substitution of (40) into (20)

λ′
θ =−γR −1

q0,T (λθ)J̃T
q0,T (λθ)

(
D̃DC

q0,T (λθ)
)−1

(K̃q0,T (λθ)− yd). (41)

In the next section the algorithm defined by (41) will solve example motion planning
problem for the trident snake robot.

5. Computations

The trident snake robot, depicted in Fig. 1, is composed of a triangular shape body
and three movable links fixed to the body and at the vertexes of the triangle by revolute
joints. Each link is supported by a passive wheel moving without the lateral slip. The
trident snake has been originally introduced in [5] as an example of a non-holonomic
system with 3 controls and the bracket generating property achieved by the control vector
fields and their first order Lie brackets. It also serves as an example of a robotic system
with so called undulatory locomotion [13]. The study of kinematics of the trident snake
was done in [5, 6], while the trident snake with dynamics was examined in [15, 16]. The

Figure 1: Trident snake

vector of generalized coordinates q = (x,y,θ,ϕ1,ϕ2,ϕ3)
T ∈R6 describes the position and

orientation of the robot’s body, and the angular position of each link. The links have the
same length l, the body triangle is equilateral, with radius of the circumscribed circle
equal to r.
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The kinematics of the trident snake mobile robot are represented by the driftless
control system of the form (2),

q̇ = G(q)u, k(q) = (q1,q2,q3)
T , (42)

steered by three controls u = (u1,u2,u3)
T ∈ R3. We shall solve the motion planning

problem for two different representations of the robot’s kinematics, see [14]: the first,
when the controls are related to the position and orientation of the body (position and
orientation control), and the second, when the controls are velocities of the joints (joint
angle control).

In the position and orientation control case the control matrix G(q) is as follows [5]

G(q) =



cosθ −sinθ 0
sinθ cosθ 0

0 0 1
1
l sin(ϕ1 +α1) −1

l cos(ϕ1 +α1) −1
l (l + r cosϕ1)

1
l sin(ϕ2 +α2) −1

l cos(ϕ2 +α2) −1
l (l + r cosϕ2)

1
l sin(ϕ3 +α3) −1

l cos(ϕ3 +α3) −1
l (l + r cosϕ3)


=

[
G1(θ)
G2(ϕ)

]
. (43)

The trident snake kinematics subject to the joint angle control are obtained by employ-
ing a feedback v = G2(ϕ)u. Therefore, the kinematics representation for the joint angle
control case takes the form (42), with the control matrix [14]

G(q) =

−
1
a

 f1 f2 f3

g1 g2 g3

h1 h2 h3


I3

 (44)

where

a =
(l+r cosϕ1)sin(ϕ3−ϕ2+

2π
3 )+(l+r cosϕ2)sin(ϕ1−ϕ3+

2π
3 )+(l+r cosϕ3)sin(ϕ2−ϕ1+

2π
3 )

l3 ,

fi =
(l+r cosϕi+2)cos(ϕi+1+αi+1+θ)−(l+r cosϕi+1)cos(ϕi+2+αi+2+θ)

l2 ,

gi =
(l+r cosϕi+2)sin(ϕi+1+αi+1+θ)−(l+r cosϕi+1)sin(ϕi+2+αi+2+θ)

l2 ,

hi =−l−2 sin(ϕi+1 −ϕi+2 +αi+1 −αi+2),

with indexes i to be counted modulo 3 (i.e. α4 = α1,). In both cases, the following values
of geometric parameters are assumed: l = 0.12m, r = 0.12m, and α1 = −2π

3 , α2 = 0,
α3 =

2π
3 .

In order to compute DCJI we need also the dynamics equations of the trident snake.
To this aim we shall exploit the results of [15]. According to this reference, the entries
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of the inertia matrix of the trident snake M(q) = MT (q) = [mi j], i, j = 1, . . . ,6 are equal
to

m11 = m22 = mc +3ml +3mm, m14 =−l(mw + ml
2 )sin(α1 +ϕ1 +θ),

m15 =−l(mw + ml
2 )sin(α2 +ϕ2 +θ), m16 =−l(mw + ml

2 )sin(α3 +ϕ3 +θ),
m24 = l(mw + ml

2 )cos(α1 +ϕ1 +θ), m25 = l(mw + ml
2 )cos(α2 +ϕ2 +θ),

m26 = l(mw + ml
2 )cos(α3 +ϕ3 +θ),

m34 = I0w +mwl(l + r cos(ϕ1))+
1
6

mll(2l +3r cos(ϕ1)),

m35 = I0w +mwl(l + r cos(ϕ2))+
1
6

mll(2l +3r cos(ϕ2)),

m36 = I0w +mwl(l + r cos(ϕ3))+
1
6

mll(2l +3r cos(ϕ3)),

m44 = m55 = m66 = I0w +mwl2 +
1
3

mll2,

m13 =−mwl
(

sin(α1 +ϕ1 +θ)+ sin(α2 +ϕ2 +θ)+ sin(α3 +ϕ3 +θ)
)

−mwr
(

sin(α1 +θ)+ sin(α2 +θ)+ sin(α3 +θ)
)
− 1

2
ml

(
2r
(

sin(α1 +θ)
+sin(α2 +θ)+ sin(α3 +θ)

)
+ l
(

sin(α1 +ϕ1 +θ)+ sin(α2 +ϕ2 +θ)
+sin(α3 +ϕ3 +θ)

))
,

m23 = mwl
(

cos(α1 +ϕ1 +θ)+ cos(α2 +ϕ2 +θ)+ cos(α3 +ϕ3 +θ)
)

+mwr
(

cos(α1 +θ)+ cos(α2 +θ)+ cos(α3 +θ)
)
+

1
2

ml

(
2r
(

cos(α1 +θ)
+cos(α2 +θ)+ cos(α3 +θ)

)
+ l
(

cos(α1 +ϕ1 +θ)+ cos(α2 +ϕ2 +θ)
+cos(α3 +ϕ3 +θ)

))
+mmr

(
cos(θ+α1)+ cos(θ+α2)+ cos(θ+α3)

)
,

m33 = I0 +3I0w +3mw(r2 + l2)+2mwrl
(

cos(ϕ1)+ cos(ϕ2)+ cos(ϕ3)
)
+

ml

(
l2 +3r2 + lr

(
cos(ϕ1)+ cos(ϕ2)+ cos(ϕ3)

))
+6mmr2.

Parameters of the robot’s dynamics are the following: the body mass m0 = 0.52kg, the
wheel mass mw = 0.03kg, the wheel radius rw = 0.02m, the wheel width d = 0.01m, the
link mass ml = 0.07kg, the motor mass mm = 0.055kg, the total mass mc = m0+3(mw+

mm +ml), and the moments of inertia I0 =
m0r2

4 , I0w = mw(3r2
w+d2)

12 .
Now, we shall solve the motion planning problem for the trident snake kinematics de-

fined by (42) with substitution for the control matrix of either (43) or (44). The paramet-
ric motion planning algorithm (41) will be employed. The motion planning problem con-
sists in driving the system (42) from q0 = (0,0,0,0,0) to the desired yd = (0.5,0.5,π),
over the time horizon T = 2. All control functions have been chosen in the form of the
trigonometric series including a constant term and 2 harmonics; this gives the parametric
endogenous configuration space of dimension s = 15.
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Figure 2: Plan of motion – the position and orientation control

Figures 2 and 3 show the solutions of the motion planning problem obtained by
means of the DCJI and, for the comparison, using the Jacobian pseudoinverse, both in
the parametric version. The differences between the solutions are exposed in Tabs. 1 and
2, using two numerical parameters. The parameter named curve length expresses the
length of the path of the body in XY plane. The second parameter, called area, denotes
the area of the region determined by the XY path and the line connecting the initial point
and the desired location. These two parameters could be treated as indicators of how
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Figure 3: Plan of motion – the joint angle control

the solution differs from the shortest one in the plane (in the Euclidean metric). In this
context it is worth to mention that for the best possible solution the curve length is equal√

2/2 ≈ 0.707. One can observe that in both cases the solution provided by the dynami-
cally consistent Jacobian inverse is only about by 7−8% longer than the segment of the
straight line. The analysis of the Moore–Penrose Jacobian inverse shows that this differ-
ence rises to about 23% in position and orientation control case and exceeds 40% when
the joint angles are controlled. This fact can be also observed when the area parameter is
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examined. When the position and orientation of the trident snake is controlled the area
for the Jacobian pseudoinverse solution is twice as large than for DCJI, and this ratio
grows even larger in the second case. The time required for the calculation depends on
the complexity of the system’s equations. One iteration of the dynamically consistent
Jacobian algorithm takes about 0.1s for the position and orientation control and 1.9s
for the joint angle control, and respectively 0.05s and 1.6s when we apply the Jacobian
pseudoinverse algorithm (PC with 3.40GHz processor). These times are not critical, as
the motion planning may be performed off-line.

Table 1: Length and area – the position and orientation control

JMP JDC

curve length 0.872867 0.778952

area 0.105765 0.0467873

Table 2: Length and area – the joint angle control

JMP JDC

curve length 1.01162 0.766437

area 0.148061 0.0450832

6. Conclusion

We have studied the dynamically consistent Jacobian inverse (DCJI) for non-
holonomic robotic systems within the endogenous configuration space approach. The
geometric method of deriving this inverse has been examined that relies on a Rieman-
nian metric in the endogenous configuration space, and extracts the consistency from a
commutative diagram of maps related to the Jacobian and the Riemannian metric. A mo-
tion planning algorithm has been designed involving DCJI. For computational purposes
a parametric version of this algorithm has been provided. Two motion planning problems
for the trident snake have been solved. Two performance indicators disclosed that DCJI–
based motion planning outperforms that relying on the Jacobian pseudoinverse. More
comprehensive performance evaluation of DCJI will be a subject of our future research.
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