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Position-force control of mobile manipulator –
nonadaptive and adaptive case

MIRELA KACZMAREK, WOJCIECH DOMSKI and ALICJA MAZUR

This article presents a control algorithm for nonholonomic mobile manipulators with a
simple, geometric holonomic constraint imposed on the robot’s arm. A mathematical model
in generalized, auxiliary and linearized coordinates is presented, as well as the constrained
dynamics of the robotic system. A position-force control law is proposed, both for the fully
known robot’s model, as well as for the model with parametric uncertainty in the dynamics.
Theoretical considerations are supported by the results of computer simulations.

Key words: holonomic constraint, nonholonomic constraint, parametric uncertainty, adap-
tive control

1. Introduction

Mobile manipulators, which are built of a mobile platform and onboard manipulator,
that is assumed to be a rigid one, increase their importance. This is caused by wide va-
riety of tasks which they can perform, from manipulation and transportation in different
areas (both home and industrial environment), through robots performing machining op-
erations, to specialized rescue platforms [3]. Many of this applications require not only
precise position control but also some kind of a force control [12]. Such situation oc-
curs whenever a direct contact between the robot and the environment is necessary for a
correct realization of a given task.

While modelling of mobile manipulators we have to consider different constraints
appearing during the motion, which for platform and manipulator can be both – holo-
nomic and nonholonomic. This gives us four possible configurations of mobile manip-
ulators: type (h,h) – both the platform and the manipulator holonomic, type (h,nh) – a
holonomic platform with a nonholonomic manipulator, type (nh,h) – a nonholonomic
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platform with a holonomic manipulator, and finally type (nh,nh) – both the platform and
the manipulator nonholonomic. Undoubtedly, the most popular type is (nh,h) which is
considered in this article.

During the mobile manipulator modelling some uncertainty should be taken into the
consideration. Manipulator can be armed with tools with different mass or can transport
objects of an unknown inertia moment. To achieve a satisfying quality of the position–
force control, an adaptive version of control algorithm should be used.

This article presents a position–force control algorithm for a (nh,h) mobile manip-
ulator. A simple geometric holonomic constraint, defining a relationship among joint
coordinates of manipulator, is considered. According to the approach of object’s mod-
eling, previously used in papers [4] and [11], the reduced dynamics will be presented.
Presented algorithm is an extended version of works presented in [7] and [6]. Addition-
ally to the previous works, its adaptive version is also considered.

2. Model of the fully known mobile manipulator

2.1. Model in generalized coordinates

A mobile manipulator consists of two subsystems: a mobile platform and a rigid
manipulator. This robotic system can be described by vector of generalized coordinates
q = (qm,qr)

T ∈Rn+p and generalized velocities q̇ = (q̇m, q̇r)
T ∈Rn+p. Coordinates qm ∈

Rn represent the platform whereas qr ∈ Rp describe the manipulator. Robot motion is
determined by nonholonomic constraints defined by platform’s mechanical structure and
holonomic ones occurring in the manipulator.

The dynamics of manipulator mounted on the nonholonomic platform, after consid-
eration of all constraints, can be presented as follows

Q(q)q̈+C(q, q̇)q̇+D(q) = B(q)u+ fn + fh, (1)

where: q ∈ Rn+p – a vector of generalized coordinates, Q(q) – a symmetrical, positive
definite inertia matrix, C(q, q̇) – a matrix of centripetal and Coriolis forces, D(q)∈Rn+p

– a vector of gravity, B(q) – an input matrix, u – a vector of control signals, fn and fh
– external forces arising from nonholonomic and holonomic constraints acting upon the
system.

Knowing that q = (qm,qr)
T , equation (1) can be presented in a block form[

Qv Qva

Qav Qa

](
q̈m

q̈r

)
+

[
Cv Cva

Cav Ca

](
q̇m

q̇r

)
+

(
0

Da

)
=

[
B 0
0 I

](
um

ur

)
+ fn + fh. (2)

From this point, we assume that the motion of the mobile platform will be restricted
by nonholonomic constraints, whereas the manipulator has holonomic constraints, re-
sulting from its structure.

The platform should move without slippage of wheels that implicates existence of l
nonholonomic constraints presented in Pfaffian form
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A(qm)q̇m = 0. (3)

These constraints act on the system through forces fn which should always fulfil equation
(3). According to d’Alembert principle [5], forces resulting from constraints, can be
expressed as

f T
n dqm = 0. (4)

From (3) and (4) it can be concluded that force coming from nonholonomic con-
straints depends on nonholonomic Lagrange multipliers as follows

fn =

(
AT (qm)λn

0

)
, (5)

where nonholonomic Lagrange multipliers λn ∈ Rl represent static friction forces pre-
venting platform wheels slippage.

Holonomic forces, acting on manipulator joints, come from k geometric holonomic
constraints

ϕ(qr) = 0. (6)

Such forces have following form

fh =

(
0

JT λh

)
, (7)

where J is Jacobi matrix of holonomic constraints

J =
∂ϕ
∂q

=

[
∂ϕ

∂qm

∂ϕ
∂qr

]
= [0 Jr] , (8)

and λh denotes a vector of forces occurring between manipulator’s end–effector and sur-
faces defined by holonomic constraint. Using virtual work concept, it is not necessary
to measure real forces acting on surface with end–effector because they can be equiv-
alently measured in manipulator joints as the fh vector [12]. The force transformation
from the robot workspace to the joint workspace is performed by using the transposed
Jacobi matrix.

2.2. Model in auxiliary velocities

From (3) we can clearly see that allowed platform velocities belong to kernel of
Pfaffian matrix: q̇m ∈ Ker A(qm). Therefore, nonholonomic constraints can be expressed
as follows

q̇m = G(qm)η, (9)

where η constitutes a vector of auxiliary velocities [1], G is an orthogonal complement
matrix which fulfils A(qm)G(qm) = 0. It allows elimination of Lagrange multipliers in
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the platform’s dynamics equations by left–sided multiplication by GT matrix, GT AT = 0
condition is preserved. After this step, dynamics equations (2) have a form

[
GT QvG GT Qva

QavG Qa

](
η̇
q̈r

)
+

[
GT (CvG+QvĠ) GTCva

CavĠ+QavG Ca

](
η
q̇r

)

+

(
0

Da

)
=

[
GT B 0

0 I

](
um

ur

)
+

(
0

JT
r λh

)
. (10)

2.3. Model in linearizing coordinates

The coordinates qm related to mobile platform can be partially linearized [1]. For
this purpose we introduce a local coordinate transformation [2]

ξ =

(
ξ1

ξ2

)
= Φ(qm) =

(
h(qm) ∈ Rm

k(qm) ∈ Rn−m

)
, (11)

where ξ1 = h(qm) ∈ Rm denotes a vector of linearizing coordinates, k(qm) ∈ R(n−m) are
variables chosen in such a way that Φ(qm) transformation is a local diffeomorphism.
Variables k(qm) are non-linearized coordinates of the platform. Linearized variables de-
pend on the auxiliary velocities in the following way

ξ̇1 =
∂h

∂qm
q̇m =

∂h
∂qm

Gη = R−1(qm)η. (12)

The selection of linearizing variables is not trivial – they must be chosen to fulfil condi-
tion det R−1(qm) ̸= 0.

Model of the manipulator’s dynamics along with the mobile platform, defined in
linearized coordinates, becomes following

M1ẅ+C1ẇ+D1 = B1u+ fh, (13)

with elements defined as below

M1 =

[
RT GT QvGR RT GT Qva

QavGR Qa

]
,

C1 =

[
RT GT [CvGR+Qv(ĠR+GṘ)] RT GTCva

CavGR+Qav(GṘ+ ĠR) Ca

]
, (14)

D1 =

(
0

Da

)
, B1 =

[
RT GT B 0

0 I

]
,

u =

(
um

ur

)
, fh =

(
0

JT
r λh

)
, w =

(
ξ1

qr

)
.
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2.4. Constrained dynamics

Configuration space of the manipulator with holonomic constraints (i.e. geometric
constraints) is reduced to (p− k) degrees of freedom. Vector of manipulator’s coordi-
nates qr may be presented as qr = (q1r,q2r), where q1r ∈Rp−k contains coordinates, that
are constrained, while q2r ∈ Rk denotes rest of the coordinates. Jacobi matrix Jξ, recal-
culated for linearized platform coordinates, can be obtained by differentiating constraint
equation (6) by coordinates of the platform and the manipulator

Jξ =

[
∂ϕ
∂ξ1

,
∂ϕ

∂q1r
,

∂ϕ
∂q2r

]
=

[
0, 0,

∂ϕ
∂q2r

]
. (15)

Based on [8], coordinates q may be described as functions of ζ = (ξ1,q1r)
T where

w =

(
ξ1

qr

)
= φ(ζ). (16)

After differentiating, equation takes following form

ẇ =

(
ξ̇1

q̇r

)
=

∂φ
∂ζ

ζ̇ = L(ζ)ζ̇ (17)

while following condition is fulfilled

L(ζ)T JT
ξ = 0. (18)

Using relationship (18) for (13) we receive a model of the robot’s dynamics reduced to
a surface of holonomic constraint. It has following form

M1L(ζ)ζ̈+C1ζ̇+D1 = B1u+ JT
ξ λh. (19)

Left-sided multiplication of (19) by LT eliminates Lagrange multipliers λh due to rela-
tionship (18). Therefore, the equation transforms to

LT (ζ)M1L(ζ)ζ̈+LT (ζ)C1ζ̇+LT (ζ)D1 = LT (ζ)B1u. (20)

Assuming that

• ML = LT (ζ)M1L(ζ),

• CL = LT (ζ)C1,

• DL = LT (ζ)D1,
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equation (20) can be rewritten as follows

MLζ̈+CLζ̇+DL = LT (ζ)B1u. (21)

The holonomic Lagrange multipliers λh can be calculated by double differentiation,
in time domain, the holonomic constraints equation (6)

ϕ̈(qr) = J̇ξẇ+ Jξẅ = 0. (22)

After substituting ẅ from dynamics equation of the mobile manipulator (13), the equa-
tion (22) takes a form

ϕ̈(qr) = JξM−1
1 JT

ξ λh + J̇ξẇ− JξM−1
1 (C1ẇ+D1 −B1u) =W (ϕ).

Equation (22) does not guarantee that ϕ(qr)= 0 will be always fulfilled. To assure it, even
if manipulator is in some distance from surface of holonomic constraint, a numerical
damping terms [9] are added to the system in the form of following equation

W (ϕ) = ϕ̈(qr)+2αϕ̇(qr)+β2ϕ(qr),

where α and β coefficients should guarantee asymptotic stability.
After the above steps, the holonomic Lagrange multipliers fulfil

JξM−1
1 JT

ξ λh =W (ϕ)− J̇ξẇ+ JξM−1
1 (C1ẇ+D1 −B1u).

For constrained dynamics we assume that holonomic constraints are fulfilled. In such
a case it holds J̇ξ = 0 and W (ϕ) = 0 (because manipulator is located in holonomic con-
straint, not near it). The holonomic Lagrange multipliers can be calculated as follows

λh = (JξM−1
1 Jξ)

−1JξM−1
1 (C1ẇ+D1 −B1u) = Z(C1ẇ+D1 −B1u), (23)

where Z is well defined for independent holonomic constraints.

3. Control law for nonadaptive case

In case of full knowledge about mobile manipulator’s dynamics, control law consists
of the two parts: a position controller and a force controller.

Control input for the system is defined as follows

B1u = B1up − JT
ξ u f , (24)

where up denotes the position control law for constrained dynamics and u f denotes the
force control law. For constrained coordinates values of up are always equal to 0.

Considered system is constrained in nonholonomic (3) and holonomic (6) way that
makes coordinates ξ1, q1r and q2r not independent. Coordinate q2r, which is constrained,
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is unambiguously defined by (ξ1, q1r) coordinates, therefore there is no need to control
it.

In this article, some version of Sadegh & Horowitz control algorithm [10] has been
chosen as the position control law

LT B1up = ML(q)ζ̈r +CL(q, q̇)ζ̇r +DL(q)−Kds−Kpe, (25)

where e = ζ− ζd – a position error, s = ζ̇− ζ̇r = ė+Λe – a sliding variable, ζr – a
reference (artificial) trajectory, Kp = KT

p > 0,Kd = KT
d > 0,Λ = ΛT > 0 – parameters of

the controllers.
The force control is defined as follows

u f = ZM1(ẅd −K1ėw −K0ew)+λhd −K f eλ, (26)

where K0, K1,K f > 0 are regulation parameters and ew = w−wd is the position tracking
error.

Proof of the position errors convergence Consider the Lyapunov function as below

V (s,e) =
1
2

sT MLs+
1
2

eT Kpe, (27)

which is nonnegative due to the positive definiteness of ML and Kp. For such the function
V the following evaluation holds

V (s,e) ¬ 1
2

λ̄q(ML) ∥ s ∥2 +
1
2

λ̄(Kp) ∥ e ∥2

¬ α(∥ s ∥2 + ∥ e ∥2), (28)

where λ̄q(ML) denotes maximal eigenvalue of ML matrix estimated over all values q,
λ̄(Kp) is maximal eigenvalue of regulation matrix Kp, while

α = max
(

1
2

λ̄q(ML),
1
2

λ̄(Kp)

)
> 0.

Equations of system (21) with closed loop of feedback control law (25) are equal to

MLṡ+CLs+Kds+Kpe = 0. (29)

Calculating the time derivative of V given by (27) along trajectories of the closed-loop
system (29) and evoking a skew-symmetry, between inertia matrix ML and matrix of
Coriolis and centrifugal forces CL, we obtain following expression
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V̇ =
1
2

sT ṀLs+ sT MLṡ+ eT Kpė

=
1
2

sT ṀLs+ sT (−CLs−Kds−Kpe)+ eT Kpė

= −sT Kds− sT Kpe+ eT Kp(s−Λe)

= −sT Kds− eT KpΛe

¬ −β(∥ s ∥2 + ∥ e ∥2) β = min(λ(Kd),λ(KpΛ))> 0 (30)
¬ 0,

where λ(·) denotes minimal eigenvalue of a matrix.
Transforming (28) and (30) we get

V̇ ¬−β(∥ s ∥2 + ∥ e ∥2)¬−β
α

V −→ V̇ +
β
α

V ¬ 0. (31)

After multiplying both sides of the equation (31) by exp{ β
α t} and integrating in time, we

obtain following expression

V (t)e
β
α t −V (0)¬ 0 −→ V (t)¬V (0)e−

β
α t . (32)

Using the inequality (32), the exponentially fast convergence of tracking errors e and s
can be proved

1
2

λq(ML) ∥ s ∥2¬ 1
2

sT MLs¬V (t)¬V (0)e−
β
α t ,

1
2

λ(Kp) ∥ e ∥2¬ 1
2

eT Kpe¬V (t)¬V (0)e−
β
α t ,

and, consequently

∥ s ∥ ¬

√
2V (0)

λq(ML)
· e−

β
2α t ,

∥ e ∥ ¬

√
2V (0)
λ(Kp)

· e−
β

2α t .

It ends the proof of exponentially fast convergence of position errors to 0.

Convergence of a force error The equation (23), describing real force acting on holo-
nomic surface, can be rewritten as below

λh =−ZM1ẅ+u f .

Next, force error fulfills following equation

λh =−ZM1ẅ+ZM1(ẅd −K1ėw −K0ew)+λhd −K f eλ, (33)
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where K1,K0,K f > 0 are regulation parameters and eλ = λh −λhd is a force error.
The equation (33) can be transformed into a form

(I +K f )eλ =−ZM1(ëw +K1ėw +K0ew). (34)

It can be seen, that the force error depends on the position tracking error and its deriva-
tives. It is easy to show that the right side of (34) is bounded and, therefore, the force
error eλ can be made arbitrarily small by the choice of large value of K f .

4. Control law for adaptive case

It has been considered so far, how to control fully known mobile manipulator. Now
we want to present, how to control mobile manipulator when the full model of such
object is unknown. In such a case there are two possibilities – the structural uncertainty,
when forms of some matrices in dynamical model are unknown, and the parametric
uncertainty, when we do not know certain number of model parameters. In this article,
the second type is being considered and therefore adaptive version of Sadegh & Horowitz
algorithm is proposed.

The nonadaptive position control law (25) can be transformed to modified version

LT B1up = MOL(q)ζ̈r +COL(q, q̇)ζ̇r +DOL(q)+Y (q, q̇, ζ̇r, ζ̈r)a−Kds−Kpe, (35)

where MOL,COL,DOL represent known parts of model, and Ya is unknown one. Y is
so-called regression matrix and a is a vector of unknown coefficients of the robot model.

If parameters a are unknown, then we can use their time estimates denoted as â(t).
These estimates are calculated from so-called adaptation law as follows

˙̂a(t) = ˙̃a(t) =−ΓY T (q, q̇, ζ̇r, ζ̈r)s, (36)

where Γ = ΓT > 0 is a matrix of adaptive gains and ã = â− a is a vector of parameter
errors.

Proof of the convergence of position errors Consider the following Lyapunov func-
tion

Va(s,e) =
1
2

sT MLs+
1
2

eT Kpe+
1
2

ãT Γ−1ã. (37)

Equations of system (21) with closed loop of feedback control law (35) are equal to

MLṡ+CLs+Kds+Kpe−Y (q, q̇, ζ̇r, ζ̈r)ã(t) = 0. (38)

Calculating the time derivative of Va defined by (37) along trajectories of the closed-loop
system (36)-(38) and evoking a skew-symmetry between the inertia matrix ML and the
matrix of Coriolis and centrifugal forces CL, we obtain following expression
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V̇a =
1
2

sT ṀLs+ sT MLṡ+ eT Kpė+ ãT Γ−1 ˙̃a

=
1
2

sT ṀLs+ sT (−CLs−Kds−Kpe+Y (q, q̇, ζ̇r, ζ̈r)ã)+ eT Kpė+ ãT Γ−1 ˙̃a

= −sT Kds− sT Kpe+ sTY (q, q̇, ζ̇r, ζ̈r)ã+ eT Kp(s−Λe)− ãTY T (q, q̇, ζ̇r, ζ̈r)s

= −sT Kds− eT KpΛe
¬ 0. (39)

From La Salle Invariance Principle it can be concluded that (s,e) = (0,0) is asymp-
totically stable equilibrium point of the system (38). Convergence of the force error to
arbitrarily small value can be proved using similar arguments as for the nonadaptive
case. It ends the proof.

5. Simulations

The simulations have been done using the MATLAB package and the SIMULINK
toolbox. As an object of simulations we have taken RR manipulator mounted on a uni-
cycle, presented in Fig. 1.

Figure 1: Schematic of modelled mobile manipulator

Links of the RR manipulator have been modeled as homogenous sticks with length
equal to l1 = 0.9m, l2 = 1m and masses m1 = m2 = 20 kg. Parameters of platform were
equal to: mc = 50 kg, l = 0.3 m, r = 1.5 m, d = 0.1 m.

5.1. Model in generalized coordinates

For the mobile manipulator presented in Fig. 1, the following generalized robot co-
ordinates have been chosen

q =

(
qm

qr

)
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where qm = ( x, y, θ, ϕl, ϕr)
T , and qr = (q1,q2). Dynamics of mobile manipulator is

given by the equation (2) with elements equal to

• Q – symmetric positive definite inertia matrix

Q =



Q11 0 Q13 0 0 Q16 Q17

0 Q22 Q23 0 0 Q26 Q27

Q31 Q32 Q33 0 0 Q36 Q37

0 0 0 0 0 0 0
0 0 0 0 0 0 0

Q61 Q62 Q63 0 0 Q66 0
Q71 Q72 Q73 0 0 0 Q77


=

[
Qv Qva

Qav Qa

]
, (40)

where elements are defined below

Q11 = m1 +m2,

Q13 = Q31 =−as01c2 − (m1 +m2)ds0,

Q16 = Q61 =−as01c2,

Q17 = Q71 =−ac01s2,

Q22 = m1 +m2,

Q23 = Q32 = ac01 +(m1 +m2)dc0,

Q26 = Q62 = ac01c2,

Q27 = Q72 =−as01s2,

Q33 =
1
2

m1l1ds0c01 +bc2
2 +m2l2dc1c2 +m2d2,

Q36 = Q63 = bc2
2 +adc1c2,

Q37 = Q73 =−ads1s2,

Q66 = bc2
2,

Q77 = b,

and symbols denote

c0 = cosθ,s0 = sinθ,c1 = cosq1,s1 = sinq1,c2 = cosq2,s2 = sinq2,

c01 = cos(θ+q1),s01 = sin(θ+q1),a =
m2l2

2
,b =

m2l2
2

3
.
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• C – matrix of centripetal and Coriolis forces

C =



0 0 C13 0 0 C16 C17

0 0 C23 0 0 C26 C27

0 0 C33 0 0 C36 C37

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 C63 0 0 C66 C67

0 0 C73 0 0 C76 0


=

[
Cv Cva

Cav Ca

]
, (41)

with elements equal to

C13 = −((m1 +m2)dc0 +ac01c2) θ̇−ac01c2q̇1 +as01s2q̇2,

C16 = −ac01c2θ̇−ac01c2q̇1 +as01s2q̇2,

C17 = as01s2θ̇+as01s2q̇1 −ac01c2q̇2,

C23 = (−(m1 +m2)ds0 −as01c2)θ̇−as01c2q̇1 − c01s2q̇2,

C26 = −as01c2θ̇−as01c2q̇1 −ac01s2q̇2,

C27 = −ac01s2θ̇−ac01s2q̇1 −as01c2q̇2,

C33 =
m1l1

4
d (c01c0 − s01s0) θ̇−

(
adc2s1 +

m1l1
4

ds0s01

)
q̇1 − (adc1s2 +bc2s2)q̇2,

C36 = −
(

ads1c2 +
m1l1

4
ds01s0

)
θ̇−adc2s1q̇1 − (adc1 +bc2)s2q̇2,

C37 = −(adc1 +bc2)s2θ̇− (adc1 +bc2)s2q̇1 −adc2s1q̇2,

C63 =

(
adc2s1 +

m1l1
4

s0s01

)
θ̇−bs2c2q̇2,

C66 = −bs2c2q̇2,

C67 = −bs2c2θ̇−bs2c2q̇1,

C73 = (ads2c1 +bc2s2)θ̇+bc2s2q̇1,

C76 = bs2c2θ̇+bs2c2q̇1.

• D – vector of gravity

D =

 0

−m2
l2
2 gc2

 .

5.2. Constraints

The considered mobile platform is entirely nonholonomic. It means that there is no
longitudinal and lateral slipping of both wheels. These conditions can be written in the
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following form: 
ẋsinθ− ẏcosθ = 0,
ẋcosθ+ ẏsinθ− lθ̇− rϕ̇l = 0,
ẋcosθ+ ẏsinθ+ lθ̇− rϕ̇r = 0.

(42)

These constrains may be presented in Pfaffian form (3) with following A matrix

A =

 sinθ −cosθ 0 0 0
cosθ sinθ −l −r 0
cosθ sinθ l 0 −r

 .
In turn, the manipulator is restricted with holonomic constraint

Φ = l1 + l2 sinq2 = 0. (43)

5.3. Model in linearizing coordinates

The linearized coordinates of the mobile platform can be selected as follows

ξ1 =

(
x+ ecosθ
y+ esinθ

)
, (44)

where e is distance between "guidance point", which coordinates have been chosen as
linearizing outputs, from the centre of mass [2]. Matrices G(qm), R(qm) from (14) equa-
tion can be defined as follows

G(qm) =


cosθ cosθ
sinθ sinθ

1
L − 1

L

0 2
R

2
R 0

 , (45)

R(qm) =

[
cosθ sinθ

−1
e sinθ 1

e cosθ

]
, det R(qm) =

1
e
̸= 0. (46)

The vector of linearized coordinates is equal to

(
ξ1

qr

)
=


x+ ecosθ
y+ esinθ

q1

q2

 . (47)
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Jacobi matrix, expressed in coordinates (47), has a form

Jζ =

[
∂ϕ
∂ξ1

,
∂ϕ
∂qr

]
= [0 0 0 l2 cosq2]. (48)

Coordinates, which are not holonomically constrained, have been chosen as

ζ =

 x+ ecosθ
y+ esinθ

q1

 . (49)

For these coordinates the desired trajectory has been defined as below

ζd =

 1.5sin t
1.5cos t

π
4 (1− cos t)

 . (50)

Desired force value is λd = 10N.

5.4. Results

During the simulation, the following control parameters have been cho-
sen: Kp=diag{1000}, Kd=diag{100}, Λ=diag{10}, K f = 100, K0 =diag{100} and
K1=diag{10}. In adaptive case we have used the same parameters and also Γ = 1000.

During simulations we have assumed, that the parameter b= m2l2
2

3 , defining the inertia
moment of the payload, is unknown. It responses the situation, that the shape of the
transported payload is unknown.

Figure 2: Trajectory tracking for mobile platform.

In Fig. 2 tracking of the desired trajectory by the mobile platform for nonadaptive
and adaptive case has been presented. During the simulation study it was observed, that
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the time required for the mobile platform to reach the desired trajectory, was dependent
on control parameters and initial conditions. The differences between the motion of the
platform in the nonadaptive and the adaptive case are small, what is natural, because the
estimated parameter is related to the manipulator, not to the platform.

(a) Error e1 = ζ1 −ζ1d (b) Error e2 = ζ2 −ζ2d

Figure 3: Tracking errors for the platform

(a) Error e3 = ζ3 −ζ3d (b) Error eλ = λh −λhd

Figure 4: Tracking errors for unconstrained manipulator variables and force

Plots presented in Figs. 3 and 4 show the trajectory tracking process, position errors
and force error in time domain. Position errors of the platform: e1 = ζ1 − ζ1d and e2 =
ζ2 −ζ2d ; along with e3 = q1 −q1d (the error of joint position q1 of the manipulator) all
converge to 0. The time, after which the errors converge, and control quality in terms of
overshooting, is dependent on regulation parameters Kp and Kd . In turn, the force error
eλ = λh −λhd , as expected, is limited and it has steady-state error close to 0 (it is only
practically stable). Its level depends on K f control parameter.
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Figure 5: Parameter estimation in time.

In the adaptive case, for error e1 and e2, which are related to platform, there is only a
small difference in comparison to nonadaptive case. For e3 we can observe slower con-
vergence – it means, that adaptive version needs more time to converge to 0. It is obvious
and it results from theory: proofs have shown that the nonadaptive control law guaran-
tees exponentially fast convergence to 0 and the adaptive case is only asymptotically
convergent to 0.

Selection of the different control algorithm, in comparison to [7], had almost none
effect. However, the position control algorithm has been changed while the force control
algorithm has been extended.

It can be observed that the obtained force tracking error, in initial phase, is one order
higher in magnitude in comparison to force error presented in [7], however, it converges
to the same level.

6. Conclusions

In this article the control algorithm of nonholonomic mobile manipulator with geo-
metric holonomic constraint has been presented. The control law consists of two stages
– the positional and the force part. The position control algorithm has been applied to
the variables without holonomic constraints. The variable with geometrical holonomic
constraint has been controlled using the force control algorithm.

Presented algorithm is a modification of the work presented in [4] and is an extension
of the work presented in [7]. In this paper also a methodology of obtaining reduced
dynamics for a (nh,h) class of mobile manipulator has been described.

In further research we intend to apply different holonomic constraints such as static
obstacles as well as geometric constraints, dependant on all state variables.
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