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The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 
9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring 
Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition 
and Evaluation System. The authors coupled collected TBM drive data with available information on 
rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. 
Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART 
regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field 
penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the 
conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were 
screened with different computational approaches allowing enriched insight. The primary goal of the 
analysis was to investigate empirical relations between multiple explanatory and responding variables, 
to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear 
relations. For each of the penetration indices, a predictive model coupling both regression methods was 
built and validated. The resultant models appeared to be stronger than constituent ones and indicated an 
opportunity for more accurate and robust TBM performance predictions. 

Keywords: EPB TBM, TBM performance, penetration rate, field penetration index, CART trees, machine 
learning, multivariate regression

Pierwszy etap budowy systemu odpływowego Abu Hamour został ukończony na początku roku 2017. 
Tunel o długości 9,5 km i średnicy 3,7 m przeprowadzono z zastosowaniem dwóch maszyn drążących 
z równoważeniem ciśnienia gruntu (EPB TBM), wyprodukowanych przez Herrenknechta. Przebieg 
pracy maszyn TBM był monitorowany i zapisywany przez automatyczny system zbierania danych. 
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Autorzy połączyli te dane z dostępnymi informacjami o właściwościach masywu skalnego, oczyścili 
dane, uzupełnili zmiennymi wtórnymi oraz zagregowali tygodniami i zmianami roboczymi. Zbadano 
korelacje i statystyki opisowe. Metodami liniowej regresji wielorakiej i regresji CART zbudowano mo-
dele łączące wskaźniki wydajności drążenia (PR, PPR, FPI) z ich charakterystykami operacyjnymi oraz 
charakterystykami geotechnicznymi słabego masywu skalnego rejonu Doha, w którym prowadzono tunel. 
Obydwie zastosowane metody regresji dają interpretowalne modele oraz stosują odmienne algorytmy 
obliczeniowe, co pozwala na wzbogacenie wyników. Głównym celem analizy było znalezienie możliwie 
najlepszych podzbiorów zmiennych objaśniających oraz ocena siły znalezionych związków liniowych 
i nieliniowych. Dla każdego wskaźnika wydajności zbudowano też model predykcyjny wykorzystujący 
obydwie metody regresji. Zbudowane w ten sposób modele wynikowe okazały się silniejsze od modeli 
składowych. To wskazuje drogę możliwej poprawy dokładności i stabilności przewidywań wskaźników 
wydajności TBM.

Słowa kluczowe: EPB TBM, wydajność TBM, prędkość drążenia, polowy wskaźnik drążenia, drzewa 
CART, uczenie maszyn, regresja wieloraka

1. Introduction 

Complex physical phenomena and interactions make TBM performance sensitive to mul-
tiple conditions. Understanding of those relations, specifically the ability to model and estimate 
TBM performance, is important at all stages of a project, including technology selection, tun-
nel design, resources planning and excavation process. It is crucial for the project costs and its 
timely completion. 

CSM (Rostami, 1997) and NTNU (1998, Bruland, 1998, 2014) models are often used for 
estimating TBM performance. Other theoretical or empirical formulas and predictive models 
were proposed or evaluated by Hassanpour et al. (2010, 2011), Delisio and Zhao (2014), Gong 
and Zhao (2009), Benato and Oreste (2015), Ramezanzadeh (2005), Bieniawski et al. (2007), 
Palmstrom (1995), Barton (2000), Yagiz (2008), Hamidi et al. (2010), Jain et al. (2014), Salimi 
et al. (2016) and others. Physical and mixed methods consider cutting mechanism, disk cutter 
forces and wear, and are based on various field and laboratory tests and simulations. Empirical 
models relay on historical operational and field data.

Due to the sensitivity to geological and geotechnical conditions, predictions of TBM 
performance are accurate under a limited range of conditions, specifically rock mass quality 
conditions and technology details. TBM performance prediction models for hard rock, described 
comprehen sively by Hassan pour et al. (2011), have been applied for the conditions of the weak/
soft rocks of Doha by authors in an earlier publication (Stypulkowski et al., 2017). As expected, 
hard rock approach to FPI prediction does not give satisfactory results in the weak/soft rocks of 
Doha without major adjustments. 

While TBM performance predictive models are quite common and perform well for a wide 
range of strong rock mass conditions, EPB TBM performance predictions and models for weak/
soft rock conditions are not well documented and verified. Factors impacting the EPB TBM 
Penetration Rate (PR) in the conditions of soft ground are different than in hard rock. The PR in 
hard rock is linked to rock hardness. In weak/soft rock, no increase of penetration can be associ-
ated with thrust and torque increase typically observed in hard rock (Avunduk, 2012). Maher 
(2017) suggested that there is a relationship between PR and surfactants used in soft ground. 

Authors have previously conducted a regression analysis of TBM performance with General 
Linear Regression and Neural Networks models for Earth Pressure Balance technology and weak/
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soft rock of Doha. The dataset was aggregated by strokes, thus the dependences and variability 
had been different due to a smaller aggregation step and consequently much larger number of 
cases. Still, strong linear relations were observed and high predictive potential of the dataset 
processed by Neural Networks was revealed. 

This paper continues research into the issue and describes relations linking performance 
indicators with EPB TBM operational and geotechnical features. We present explanatory Linear 
Regression and CART regression trees analysis for better understanding of the processes and 
relations within the dataset aggregated by weeks and shifts. Then we use these two analytical 
techniques to build and validate predictive models with the Averaged model approach. 

2. General project description and tunneling 
accomplishment

Abu Hamour Surface & Ground Water Drainage Tunnel (Phase I) is a 9.5 km long, 3.7 m 
diameter tunnel, excavated about 30 m below the ground surface. The tunnel runs from an ex-
isting shaft to a retrieving shaft located within the footprint of a future pumping station on the 
coastline. The tunneling was carried out simultaneously by two similarly equipped Herrenknecht 
EPB TBMs. Phase I of the project also included 19 access shafts and drop shafts facilitating 
runoff inflows along the route of the tunnel. Offline shafts used sequential excavation tunneling 
methods to connect to the tunnel in 15 locations. There are also 3 online shafts, 1 existing shaft 
and 6 additional branch shafts facilitating connections to the main tunnel, accomplished by mi-
crotunnelling. Access Shaft AS11 located in the center of the tunnel alignment was the launching 
location for the eastern and western TBMs drives facilitating mining in opposite directions. It 
also provided access for tunnel construction for the duration of the project. 

Tunneling was run in both drives simultaneou sly, 6 days a week, two 11-hour shifts a day. 
Eastern production runs started on May 13, 2014, and western on July 7, 2014. The breakthrough 
was reached on July 22, 2015, and July 29, 2015, respectively. The best weekly progress was 
24.7 m/day in the western and 27.3 m/day in the eastern drive of the tunnel. The excavation was 
carried out by two TBMs with rotating cutter-heads fitted with cutting wheels and tools. The 
excavated material was collected by buckets and transported through the openings provided 
between the cutters into the excavation chamber. A screw conveyor extracted the spoil from 
the chamber and discharged it onto the belt conveyor installed on the TBM rear which in turn 
offloaded the material onto muck skips. The muck skips were operated by diesel powered loco-
motives, which traveled on the tunnel rail track. The permanent lining of the tunnel consisted of 
dowelled, pre-cast concrete segments reinforced with steel fibers. TBMs specification, overall 
tunneling performance and stroke performance statistics are presented in Tab. 1 and 2. For more 
information on the project, see Stypulkowski et al. (2013, 2017).

3. Geology 

The Qatar region is geologically a part of the Arabian Gulf Basin between the Arabian shield 
and Iranian mobile belt. The post Cretaceous sedimentation is basically a sequence of shallow 
marine limestone with occasional shale in a shallow basin (Abu Zeid, 1991; LeBlanc, 2008). 
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TABLE 1

Specification of TBMs

Weights and Dimensions

Total length 124.5 m
TBM weight 330 ton

TBM core weight 172 ton
Bore Diameter 4.52m

Design Parameters

Curve radius 300 m
Gradient 0.05%

UCS 2-65 MPa
Hydrostatic pressure 2-3 bars

Segmental lining

Segments per ring 6+key
Total rings installed 7198

Ring width 1.3m
Segment thickness 250mm

Cutterhead 

Style Mixed
Cutters 17

Scrapers 75
Buckets 8

Cutterhead Drive
Cutterhead speed 0-4.5 min–1

Nominal torque 2167 kNm
Maximum thrust 20891 kN

Conveyor 
Type Screw conveyor

Diameter 600 mm

TABLE  2

Tunneling performance

TBM East TBM West
Overall tunneling performance

Advance per work days [meter/day] 17 15
Advance per calendar days [meter/day] 14 12

Rings per work days [ring/day] 13 12
Rings per calendar days [ring/day] 11 9

Average per stroke performance
Tunneling time [min] 30 35

Liner erecting time [min] 22 27
Stop time [min] 36 42

Cutterhead torque [kNm] 1149 1226
Thrust force per cutter [kN] 341 382

Penetration rate [m/hr] 2.86 2.39
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The formations encountered in Doha area comprise of Quaternary marine, aeolian and sabkha 
deposits: Rus of Lower Eocene, Lower Dammam and Upper Dammam of Middle Eocene and 
Lower Dam of Lower Miocene. 

During the project we came across: Simsima Limestone which contains Dolomite of Upper 
Dammam formation, Midra Shale of Lower Dammam formation and Rus of Lower Eocene. The 
Dammam formation is usually divided into three main stratigraphic units: Simsima, Midra, and 
Rus. Based on findings in the shafts, specifically their strength, we further sub divided Simsima 
into Simsima A, Simsima B and Simsima C. Simsima C is typically fine to medium grained 
dolomitic limestone, loosely compacted, highly weathered, extremely weak to very weak, het-
erogeneous. It has been observed that compaction and strength increases when transitioning into 
Simsima B, which is moderately weathered, weak to medium strong. The grade of compaction 
increases and the ground mass becomes strong to very strong as it becomes Simsima A. Transi-
tion from Simsima to Midra is marked by layers of gypsum. Midra was encountered at different 
elevations along the alignment. Rus is characterized by the presence of horizontal layers with 
varying color, composition, grain size, weathering and strength. Fig. 1 reflects the geological 
profile along the tunnel alignment.

 Fig.  1. Interpreted geology from shaft mapping. Scales in [m]

Shale, dolomitic limestone, pinkish dolomitic limestone, green clay, marl, clay stone and 
gypsum constitute the main rock mass. The thickness of layers varies from 2 cm to 1.5 m. 
Strength varies from medium strong, weak and very weak, to extremely weak rock. The silty/
sandy limestone is only 1/3 while clay rich components are 2/3 at the tunneling horizon, at the 
shaft junctions. The characteristics of the ground mass along the alignment vary significantly 
both horizontally and vertically (Pathak et al. 2015, Stypulkowski et. al 2017). 
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4. Intact rock and rock mass properties

Laboratory tests on rock samples obtained from borings before construction gave Uniaxial 
Compressive Strength (UCS) between 2 and 65 MPa. Tensile Strength from Brazilian splitting 
tests (BTS) ranged 0.1-9.1 MPa. Point Load Test strength estimate ranged 0.1-7.5 MPa. Elastic 
modulus from uniaxial compression tests ranged 0.4-49 GPa and from pressure meter testing 
in initial loading ranged 0.1-5.3 GPa. Down-hole seismic test for the dynamic elastic modulus 
ranged 1.0-4.3 GPa. The mapping results and analyses summarized in Tab. 3 indicate that rock 
quality was poor to extremely poor. Original rock mass quality assessment based on pre-design 
borings is generally conservative, when compared with shaft mapping results. Limited laboratory 
testing of the muck has been conducted. Test results indicate clay content 23-35%, silt content 
9-16%, PI 36-57% and LL 10-13%. 

TABLE 3

Rock mass quality assessmen t summary

Rock mass quality 
parameters Borehole based Shaft 

mapping max
Shaft 

mapping min
RQD 55 50 40

Joint Number 6 15 20
Joint Roughness 3 4 3
Joint Alteration 3 3 2

Joint Water 0.66 0.66 0.5
Q 1.23 2 0.79

UCS rating 2 2 1
RQD rating 13 8 3

Spacing rating 5 8 5
Condition of discont. 9 10 0
Ground water rating 10 10 7

RMR 34 38 18

5. Input dataset, explanatory and responding 
variables 

The TBM excavation process was monitored by Herrenknecht Operation and Guidance 
Systems and the drive data collected by the TBM Data Acquisition and Evaluation System. The 
contractor kept their own, paper records. At the design stage of the project, general geology 
investigations and laboratory testing of rock properties were performed on cores from several 
boreholes along the axis of the tunnel. Additional information on geology, rock and rock mass 
properties came from mapping and were collected during access shafts excavation. The TBM drive 
data collected automatically and manually were coupled with available information on rock mass 
properties, cleansed and completed with secondary variables. All outlying values were reviewed 
case by case and corrected for typos and compared with other sources of data, or replaced with 
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nearby stroke values. Launching and learning curves data were omitted. The collected data were 
primarily integrated and aggregated by strokes. For the purpose of this analysis it was then ag-
gregated by weeks and shifts, so each case represents a week of tunneling by one shift and one 
drive. As a result, the number of cases was reduced to 197. Aggregation comprised of mainly 
averaging, summing or evaluating a median, depending on variable meaning and property. 

Three TBM performance indices were considered: penetration rate PR [mm/min], penetra tion 
per revolution PPR [mm/rev] and field penetration index FPI [(kN/cutter)/(rev/min)]. 

Operational and steering characteristics considered in this analysis included: Rotation 
[rev/min], Thrust and Jacking forces [kN], Torque [kNm] and secondary: Rotational Power 
[kNm/min] and Rotational Resistance coefficient. They also included over 20 other operational 
characteristics referring to Earth pressure sensor measurements, Foam delivery (pressure, air, 
surfactant volume), Grease seal pressure, Grouting injection pressures and volumes, Guidance 
measurements, Jacking force I/C ratio (force in invert to force in crown ratio), Drive labeling 
eastern or western drive of the tunnel. For some of those quantities both average and maximum 
values were considered in the analysis.

Operational characteristics (like steering, foam delivery) are adjusted automatically or 
manually by the TBM operator, in response to a change of tunneling conditions and performance. 
In effect, they impact the TBM performance and are dependent on the performance and other 
conditions at the same time. Quantities showing direct relation to PR (like muck weight or in-
jected grouting volume) were eliminated from the analysis. Injection pressure and foam delivery 
measures, including surfactant consumption, have low or moderate statistical correlation with 
penetration rates and are considered among independent variables. 

For Geological strata formations through which the tunnel is driven, the elevation of crown, 
axis and invert locations were identified along its length. It was interpolated from available core 
drills and nearby shafts mapping. Three types of Simsima, one of Midra Shale and one of Rus 
were used to describe formations strata. UCS and BTS tests for each of the geological forma-
tions were performed. Coupling information on strata in crown, axis and invert and strength of 
each formation, an average UCS and BTS were estimated and assigned to a particular location 
along the tunnel. 

Geotechnical quantities included the mechanical properties of rock in relation to strata geol-
ogy: UCS [MPa], BTS [MPa], and some other geotechnical conditions: Overburden thickness 
[m] and Ground water pressure [m]. 

The regression methods select a narrow subset of variables as determined by a specific, 
automatic or semi-automatic variable selection rule. The two model-building methods applied 
differ in many aspects and the respective best subset criteria selections are different as well. The 
relation of the responding variable with explanatory variables can also differ, so the selection of 
the best subset varies for each of the responding variables. Finally, at the stage of model build-
ing the best subset of variables is selected by each analytical method and for each responding 
variable individually. 

The final dataset consisting of 197 cases and about 40 manually preselected variables was 
used for the multivariate regression analysis. It was proceeded by an overview of basic statistics 
and correlations between dependent and explanatory variables. 
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6. Descriptive statistics and correlations 
for key variables

Descriptive statistics for the responding, major geotechnical and operational variables for 
eastern and western dive of the tunnel have been marked as boxes and whiskers in Fig. 2-4. The 
changes of the observed penetration, geotechnical and operational quantities along the tunnel 
axis are plotted in Fig. 5-7. Pearson correlations between dependent and independent variables 
are listed in Tab. 4.
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Fig.  2. Statistics of dependent variables: PR, PPM and FPI, for western and eastern drive 
of the tunnel. Box and whiskers plots showing mean, 95% conf. intervals for the mean, 

and min-max intervals
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Fig.  3. Statistics of three operational characteristics: Rotation, Torque and Thrust for western 
and eastern drive of the tunnel. Box and whiskers plots showing mean, 95% conf. intervals for the mean, 

and min-max



833

West East

Drive

9

10

11

12

13

14

15

16
U

C
S

 [M
P

a]

West East

Drive

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

2,6

B
TS

 [M
P

a]

West East

Drive

16

18

20

22

24

26

28

30

O
ve

rb
ur

de
n 

[m
]

Fig.  4. Statistics of three geotechnical characteristics: UCS, BTS and Overburden, for western and eastern drive 
of the tunnel. Box and whiskers plots showing mean, 95% conf. intervals for the mean, and min-max
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 Fig.  5. Dependent variables’ runs along the tunnel line, smoothed plots. Left axis: PR [mm/min], 
FPI [kN/cutter/mm/rev]. Right axis: PPR [mm/rev]

0 1000 m 2000 m 3000 m 4000 m 5000 m 6000 m 7000 m 8000 m 9000 m
0

2

4

6

8

10

12

14

16

18

20

16

18

20

22

24

26

28

30
 UCS [MPa] (left scale)
 BTS [MPa] (left scale)
 Overburden [m] (right scale)

 Fig.  6. Three geotechnical variables’ runs along the tunnel line, smoothed plots. Left axis: UCS and BTS 
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TABLE  4

Linear correlation for dependent and some explanatory variables. N = 197. 
Steering variables are excluded from later FPI models (respective values in brackets) 

Variables
Bivariate Pearson correlation

PR PPR FPI ln(FPI)
UCS [MPa] –0.612 –0.616 0.420 0.499
BTS [MPa] –0.401 –0.423 0.187 0.229

Overburden [m] –0.188 –0.153 0.005 0.066
Ground water pressure [m] –0.264 –0.162 0.089 0.160

Earth pressure from 4 sensors max [bar] –0.129 –0.096 0.314 0.321
Earth pressure c1 0.229 0.194 –0.382 –0.397

Jacking force I/C ratio 0.361 0.305 –0.432 –0.442
Foam delivery pressure avg [bar] –0.177 –0.135 0.384 0.319

Foam delivery air [m3] –0.062 –0.007 0.072 0.116
Surfactant consumption 0.226 0.237 –0.387 –0.368

Grease seal pressure max [bar] –0.338 –0.268 0.271 0.344
Guidance c4 0.413 0.413 –0.293 –0.356

Rotation max [rpm] –0.529 –0.668 (0.541) (0.579)
Torque avg [kNm] –0.251 –0.227 (0.359) (0.443)
Thrust avg [kN] –0.522 –0.479 (0.725) (0.767)
Thrust max [kN] –0.488 –0.443 (0.696) (0.734)

Rotational power avg [kNm/min] –0.392 –0.481 (0.547) (0.621)
Rotational power max [kNm/min] –0.668 –0.722 (0.770) (0.816)

Rotational resistance avg [-] 0.364 0.333 (–0.468) (–0.449)
Rotational resistance max [-] –0.105 –0.123 (–0.041) (–0.014)

Multivariate linear and non-linear tree regression models of data acquired during tunneling 
were estimated using Statistica (Tibco, 2017), specifically with GLZ and C&RT workspace nodes.
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7. General Linear Regression models

GLR regression models were constructed for each of the dependent variables (PR, PPR 
and FPI) in order to search for the set of independent variables explaining the three considered 
TBM penetration rates, and to measure the strength of the models and evaluate the part of its 
variability that can be explained with the collected dataset. Instead of the FPI variable itself, its 
natural logarithm was analyzed. Regarding all FPI models, steering variables were excluded 
from FPI regression models in order to avoid any trivial, predefined relations being reflected in 
descriptive models, but an alternative approach may probably also be considered.

Generalized Linear Model module with identity link function and normal distribution was 
used. Semi-automated, forward entry, and forward stepwise algorithms for explaining vari-
able selection were applied. The significance and statistical assumptions of GLR models were 
checked with appropriate statistics, as required by classic statistical techniques. This ensures 
model’s usability for interpretation and prediction. To evaluate the fitness or the strength of all 
the multidimensio nal regression models, Model response vs. Observations plot and coefficient 
of determination R2 were used. The number of 197 cases gave 20+ cases per single variable al-
lowing robust and stable model parameters estimation. 

The GLR models specification and results summary are presented in Tab. 5. Explanatory 
variables selected using a forward entry algorithm and employed by these models are listed. The 
sequence is related to the importance of a specific variable for the model measured by the Wald 
statistic, while the +/– signs refer to the positive or negative contribution of a variable to the 
model. All models are statistically significant and all variables are significant in a model. Tab. 5 
shows coefficients of determination for each of the considered linear models. The strongest lin-
ear relation and regression model is achieved for penetration per revolution PPR. To judge how 
much the multivariate approach improves models compared to any single variable regression, 
the highest R2 value for a single independent variable model is also shown. Fig. 8, 9 and 10 left, 
show Observations vs. Model response graphs for GLR models. 
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Fig. 8. Observations vs. model response graphs for Penetration rate PR [mm/min] models. 
GLR (left), CART regression (mid), Averaged model (right)
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Fig. 9. Observations vs. model response graphs for Penetration rate per revolution PPR [mm/rev] models. 
GLR (left), CART regression (mid), Averaged model (right)
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Fig.  10. Observations vs. model response graphs for Field penetration index ln(FPI) models. 
GLR (left), CART regression (mid), Averaged model (right)

TABLE 5

GLR models’ specification and coefficient of determination R2. N = 197

Dependent 
variable Explanatory variables Model’s 

R2
Bivariate 
best R2

PR
(+)RotResistance avg, (–)BTS, (–)RotPower max, (–)RotResist-
ance max, (–)UCS, (–)Foam delivery air, (+)Jacking I/C ratio, 

(–)Ground water pressure, (+)Surfactant consumption
0.776 0.446

PPR (–)RotPower max, (+)Torque avg, (–)Thrust avg, (+)Thrust max, 
(–)UCS, (–)Foam delivery air, (–)BTS, (+)Jacking I/C ratio 0.796 0.521

ln(FPI)
(+)UCS, (+)Earth pressure max, (+)Overburden, (–)Surfactant 

consumption, (+)BTS, (+)Earth pressure c1, (–)Jacking I/C 
ratio, (+)Foam delivery pressure,

0.679 0.249
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8. Non-linear CART tree regression models 

Classification and Regression Trees (CART) was the second regression method used. The 
idea behind this method is to reflect the nature of original data by splitting cases into discrete 
clusters with a set of simple logical conditions. In case of regression problems, each terminal 
node assigns a value to the elements it contains. Simple interpretation of results is one of the 
advantages of trees method. There are no rigorous assumptions specific for classic statistical 
regression methods. A major issue is to avoid over-fitting and provide high performance of the 
model at the same time. 

The classic Classification and Regression Trees (CART) algorithm (Breiman et al., 1984) 
was used here. Stopping on variance pruning method was applied. Specifically, the following 
stopping parameters were applied: maximum of 5 tree levels, minimum of 5 % for splitting nodes, 
minimum 5 cases in child node. To validate CART models, a 10-fold cross-validation method 
was used and within-node variance monitored. The validation procedure gave satisfactory results 
and proved models’ stability and usability.

CART trees models based on geotechnical and operational features were built for PR, PPR 
and ln(FPI). The results are presented in Tab. 6, Fig. 8-10 mid and Fig. 11-13.

TABLE 6

Coefficients of determinatio n R2 for three regression models. N =197

Dependent variable
R2 by regression method

GLR CART Averaged model 
PR 0.776 0.828 0.869

PPR 0.796 0.878 0.895
ln(FPI) 0.679 0.803 0.823

Coefficients of determination values are high, substantially higher than the respective linear 
multivariate models (Tab. 6). Observations vs. Model response graphs for CART models (Fig. 8, 
9, 10 mid) show horizontally scattered, detached groups referring to terminal clusters of cases 
(leafs) in the respective tree structure (compare Fig. 8 mid and Fig. 11). 

A tree structure directly reflects the model. The resulting tree structure for PR is presented 
in Fig. 11. The best discriminating variable and value is Rotation max. Cases with Rotation 
max ≤ 2.9 rpm have generally higher PR than these having Rotation max > 2.9 rpm. The higher 
PR cases node (Rotation max ≤ 2.9), is further split by UCS = 18.4 MPa value into higher PR 
node (UCS ≤ 13.3 MPa) and lower PR node (USC > 13.3 MPa). On the right-hand side of the 
graph the low PR node (Rotation max > 2.9) is best discriminated by Thrust max = 8268 kN. 
Following the tree splits, one can conclude, that the highest PR values in the dataset are observed 
for: (Rotation max ≤ 2.9 rpm) and (UCS ≤ 13.3 MPa) and (Ground water pressure ≤ 18.4 m). The 
lowest PR values in the dataset sample are observed for: (Rotation max > 2.9 rpm) and (Thrust 
max > 8268). Finally we have 9 non-terminal nodes and 10 terminal nodes in the tree. The size of 
the terminal nodes ranges from 8 to 35 cases, the variance within the nodes ranges from 8.5 to 39.3.

The resulting tree structure for PPR and ln(FPI) are presented in Fig. 12 and 13, respec-
tively. The highest PPR values in the dataset are observed for: (Rotation max ≤ 2.9 rpm) and 
(UCS ≤ 13.3 MPa) and (Ground water pressure ≤ 18.4 m) and (Guidance to roll end ≤ –1.36 deg). 
The lowest PR values in the dataset sample are observed for: (Rotation max > 2.9 rpm) and 
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Fig. 11. CART tree structure representing PR model

Fig. 12. CART tree structure representing PPR model

(Thrust max > 7784). There are 12 non-terminal and 13 terminal nodes in the tree. The highest 
FPI values in the dataset (Fig. 13) are observed for: (Jacking force I/C ratio ≤ 1.90 rpm) and 
(UCS > 13.7 MPa) and (Overburden ≤ 22.7 m). The lowest PR values in the dataset sample are 
observed for: (Jacking force I/C ratio > 1.90 rpm) and (Earth pressure max ≤ 0,25). There are 12 
non-terminal nodes and 13 terminal nodes in the tree. 
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9. Averaged models 

Averaged model response is the arithmetic mean of GLM and CARD model responses. Unlike 
each constituent models, it cannot be interpreted directly. Instead, the combination of two different 
modeling approaches can improve the robustness and predictive power of the averaged model. 

GLR and CART model validation accounts for the averaged model being applicable, still 
the averaged model was further validated. The dataset was split in proportion 3:1 training and 
validation  sample. The training sample was used for building a n averaged model which was 
then deployed with the val idation sample. Each of the 3 averaged models (PR, PPR and ln(FPI)) 
proved to be sufficiently stable.

Some narrowing of the model response range is observed, but all the averaged models 
perform considerably better than their constituent models. Observation vs. Averaged model 
response graphs (Fig. 8, 9 and 10 right) show that averaged models are less scattered around 
diagonals than respective GLR and CARD models, have lower variation and prediction errors. 
Tab. 6 confirms stronger relations. 

10. Summary

Common availability of TBM drive monitoring and automated acquisition of data along with 
investigated geology and rock mass properties allows for producing reliable, empirical models 
of TBM penetration indices for various TBM technologies and rock mass conditions. 

The presented work includes the results of a descriptive regression analysis linking TBM 
penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with 

Fig. 13. CART tree structure representing ln(FPI) model
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several TBM operational and geotechnical features, specifically for Earth Pressure Balance tech-
nology and weak/soft rocks of Doha. In order to search for the best set of variables explaining 
the considered TBM penetration rates, and to evaluate the part of their variability that can be 
explained with the collected data, the General Linear Regression was primarily used. Significant 
relations explaining considerable portion of variability were captured. Instead of linear equations 
of GLR, regression trees establish a set of simple classification conditions grouping cases and 
assigning them a value. CART regression trees were also used to show dependencies within the 
dataset and explain its structure. 

Taking into account complex phenomena and interactions accompanying the process of EPB 
TBM operations, and rough, interpolated data on geology, the performed data analysis showed 
fairly strong and significant relations. The presented attempt to explain TBM performance in-
dicators PR, PPR and FPI with operational and geotechnical data may be considered advisable 
and applicative. 

The Averaged response modeling approach was used to probe the predictive potential of 
the dataset aggregated by weeks/shifts and to check the strength of averaged models. Combining 
two different regression methods appeared to be effective for building predictive models of TBM 
performance, and will be further investigated.
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