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Abstract A direct problem and an inverse problem for the Laplace’s
equation was solved in this paper. Solution to the direct problem in a
rectangle was sought in a form of finite linear combinations of Chebyshev
polynomials. Calculations were made for a grid consisting of Chebyshev
nodes, what allows us to use orthogonal properties of Chebyshev polyno-
mials. Temperature distributions on the boundary for the inverse problem
were determined using minimization of the functional being the measure of
the difference between the measured and calculated values of temperature
(boundary inverse problem). For the quasi-Cauchy problem, the distance
between set values of temperature and heat flux on the boundary was min-
imized using the least square method. Influence of the value of random dis-
turbance to the temperature measurement, of measurement points (distance
from the boundary, where the temperature is not known) arrangement as
well as of the thermocouple installation error on the stability of the inverse
problem was analyzed.

Keywords: Laplace’s equation; Boundary inverse problem; Quasi-Cauchy problem; Sta-
bility of the inverse problem

Nomenclature

a – multinomial coefficient of the function of distribution of temperature T̃ (w)
c – multinomial coefficient of the function of distribution of temperature T (x, y)
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G – element of a vector {G}
F – element of a vector {F}
J – functional, the sum of squares of the differences between the temper-

ature calculated at the measurement point and the measured one
k – summing index, Chebyshev nodes
M – number of measuring points
m – number of Chebyshev nodes on the y-axis
N1 − 1 – degree of the polynomial describing unknown distribution of temper-

ature on the Γ1 boundary
n – number of Chebyshev nodes on the x-axis
p – summing index, pertains to the temperature measurement points
T – temperature, K
W i – Chebyshev polynomial of the first kind of ith degree
w – Chebyshev node
[x]

n
– integer part of the division of number x by n

xmodn – remainder of the division of number x by n
x, y – Cartesian coordinates
‖δT‖ – Euclidean norm from the difference between the temperature assumed

in a direct problem and that calculated with the inverse problem at
points on edge Γ1

Greek symbols

Γ – edge of the area
γ – multinomial coefficient, pertains to the sought temperature distribution on

edge Γ1

δ – absolute error
ε – distance of the temperature measurement points from edge Γ1

Subscripts

c – calculated value
dp – assumed values in the direct problem
ip – values calculated with the use of the inverse problem
h, i, j, k – summing index
p – summing index
q – number of rows of the Chebyshev nodes on axis x, in which the tem-

perature measurement is performed
random – values calculated with random disturbance to the temperature mea-

surement

Superscripts

* – measured value

T̃ – temperature, function dependent on the Chebyshev node

Ã – matrix A−1 element

F̃ – element of a vector {F̃}

G̃ – element of a vector {G̃}
′′ – second derivative
⊤ – transpose
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1 Introduction

In many technological cases, it is impossible to measure temperature on
the edge of considered domain or such measurements show significant un-
certainties. It is due to the surface high temperature and heat flow by
radiation. This problem occurs, for instance, in combustion chambers or
in heat-turbine housings. Determination of temperature distribution on
the region’s boundary is possible through solving the inverse problem. In
this paper the boundary-value inverse heat conduction problem with steady
boundary was solved with the use of the Laplace and Fourier transforms
[1]. A new approach to solving the inverse boundary problem with the
use of the Laplace transform consisting in solving the first-order Volterra
equation was proposed in [2]. On the other hand the Cauchy problem in
the multilayer region for the one-dimensional heat conduction equation was
analyzed in [3]. To solve the ill-posed problem, the Fourier transform and
the modified Tikhonov regularization technique were used. The Cauchy
problem for the Laplace equation was also solved by replacing it by the
solution of the Poisson equation based on polyharmonic functions [4]. Pa-
per [5] presents the solution of the mixed inverse problem consisting in
the Cauchy problem, the backward heat conduction problem and the heat
source recovery problem. To do so, a differential quadrature method and
the Lie-group adaptive method were applied. Two new methods of regu-
larization for ill-posed Cauchy problem were considered in [6]. In paper
[7] Chebyshev polynomials and the least-squares method were applied to
solve the inverse heat conduction problem. Sensitivity of solutions to in-
verse problems was analyzed in papers [5,8–11]. Coefficient inverse problem
was a subject of study in [12], where the thermal conductivity function of
a solid was approximated by a polynomial. Inverse problems are applied
in technical problems, such as analysis of boilers operation [13], heat ex-
changers operation [14], processes related to changes of phase of solidifying
metal [15].

In this paper, the direct problem and the inverse problem for the Laplace’s
equation were solved using the Chebyshev polynomials. Sensitivity of the
obtained solution to errors in measurement and thermocouple installation
were also considered.
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2 Direct problem

Given is the Laplace’s equation

∂2T

∂x2
+
∂2T

∂y2
= 0 (1)

with the boundary conditions (Fig. 1):

Γ1 : T (x = 1, y) = TΓ1
(y) , (2)

Γ2 : T (x, y = 1) = TΓ2
(x) , (3)

Γ3 : T (x = −1, y) = TΓ3
(y) , (4)

Γ4 : T (x, y = −1) = TΓ4
(x) . (5)

Figure 1: Considered domain.

Temperature assumed on the boundary Γ = Γ1∪Γ2∪Γ3∪Γ4 is a continuous
function. Temperature distribution in the considered region can be written
using Chebyshev polynomials [16]

T (xi, yj) =
n−1∑

p=0

m−1∑

q=0

cpqWp (xi)Wq (yj) . (6)

On the x and y axes there are n and m nodes, respectively. Inner nodes
are the Chebyshev nodes [16]. Equation (1) is required to be satisfied
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Figure 2: Node enumeration.

in these nodes. After renumerating nodes (Fig. 2), point (xi, yj) of the
table is denoted as the node wl, where l = (j − 1)n + i. Dependences
i = (l − 1) modn+1 and j = [l − 1]n +1 occur there. After new numeration
of nodes is introduced, temperature distribution can be written as

T̃ (wl) =
mn∑

k=1

akW[k−1]m

(
x(l−1)modn+1

)
W(k−1)modm

(
y[l−1]n+1

)
. (7)

Inserting temperature function in the form (8) into Eq. (1) in Chebyshev
nodes, we have

mn∑

k=1

akW
′′

[k−1]m

(
x(l−1)modn+1

)
W(k−1)modm

(
y[l−1]n+1

)
+

+
mn∑

k=1

akW[k−1]m

(
x(l−1)modn+1

)
W ′′

(k−1)modm

(
y[l−1]n+1

)
= 0 . (8)

Moreover, if boundary conditions (2) – (6) are taken into account, the
algebraic system of linear equations is obtained

Ax = b , (9)

where
x = {a1, a2, . . . , amn}⊤ , (10)
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where superscript ⊤ denotes transpose operation, and

b =
{
T̃ (w1) , T̃ (w2) , . . . , T̃ (wn) , T̃ (wn+1) , 0, . . . ,

0, T̃ (w2n) , T̃ (w2n+1) , 0, . . . , 0, T̃ (w3n) , T̃ (w3n+1) , 0 . . . (11)

. . . , 0, T̃
(
w(m−1)n

)
, T̃
(
w(m−1)n+1

)
, T̃
(
w(m−1)n+2

)
, . . . , T̃ (wmn)

}⊤

,

[Aij ] i = 1, . . . , mn
j = 1, · · · , mn

. (12)

Elements of matrix A corresponding to nodes on the boundary assume the
following form:

Alk = W[k−1]m

(
x(l−1)modn+1

)
W(k−1)modm

(
y[l−1]n+1

)
, (13)

and for inner nodes we have

Alk = W ′′

[k−1]m

(
x(l−1)modn+1

)
W(k−1)modm

(
y[l−1]n+1

)

+W[k−1]m

(
x(l−1)modn+1

)
W ′′

(k−1)modm

(
y[l−1]n+1

)
. (14)

If there is an inverse matrix to A then the solution is of the following form

x = A−1b . (15)

3 Inverse problem

It is difficult to perform temperature measurements on the edges of many
machines’ components. Temperature may be therefore determined by solv-
ing boundary inverse problem based on temperature measurements at inner
points of the body (Fig. 3) or by solving an inverse Cauchy-type problem
based on the known value of the heat flux density and the temperature on
the edge Γ3 (Fig. 4).

The inverse problem was solved taking into account conditions (3)–(6) and
temperature measurements in Chebyshev nodes. Measuring points were sit-
uated in one row (the first type of problem – the inverse boundary problem)
or in two rows being close to each other (the second type of problem – the
quasi-Cauchy problem). For the first-type problem, calculations included
temperature measurements at points (xq, yi), where i = 2, 3, . . . ,M + 1
(Fig. 5). In the second-type problem, points of temperature measurement
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Figure 3: Boundary inverse problem. Figure 4: Cauchy-type inverse problem.

Figure 5: Points of tempera-
ture measurement for
the inverse boundary
problem.

Figure 6: Points of temperature measurement for the
quasi-Cauchy problem.

were situated in Chebyshev nodes of coordinates (xq, yi) and (xq+1, yi) for
i = 2, 3, . . . ,M/2 + 1, where M is the even number (Fig. 6).
Based on temperature measurement inside the region, unknown tempera-
ture distribution on the Γ1 boundary was determined. Unknown course of
the boundary condition was approximated by Chebyshev polynomials

TΓ1
(y) =

N1∑

i=1

γiWi−1 (y) , (16)

where the values of coefficients γi for i = 1, 2, . . . , N1 are unknown. On
the basis of the direct problem, temperature distribution was described by
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the formula (8). Unknown values of coefficients ak for k = 1, 2, . . . ,mn
were determined from the system of linear equations (16), including ele-
ments of matrix A and of vector b described by formulae (12)–(15). Un-
known temperature distribution on the Γ1 boundary corresponds to nodes
2n, 3n, . . . , (m− 1)n. Based on (18), the following equalities occur at
points on the Γ1 boundary

T̃ (wjn) =
N1∑

i=1

γiWi−1 (yj) (17)

for j = 2, 3, . . . , (m− 1). Therefore, Eq. (16) can be written in the form of

{x} = A−1
{
F̃
}

+ A−1
{
G̃
}
, (18)

where
{
G̃
}

=
{

0, · · · , 0, T̃ (w2n) , 0, . . . , 0, T̃ (w3n) , 0, . . . . . . , 0, T̃
(
w(m−1)n

)
,

0, . . . , 0}T and F̃i = bi − G̃i for each i = 1, 2, . . . ,mn. Assuming that

{F} = A−1
{
F̃
}

and {G} = A−1
{
G̃
}

, we obtain the solution of the form of

{x} = {F} + {G} , (19)

where the values of the vector {F} are known, while values of the vector
{G} are unknown and can be described by the following relation:

Gk =
m−1∑

j=2

Ãk,jn

N1∑

i=1

γiWi−1 (yj) . (20)

Elements of the inverse of the matrix A are written as Ãk,jn. Hence,

ak = Fk +Gk = Fk +
m−1∑

j=2

Ãk,jn

N1∑

i=1

γiWi−1 (yj) . (21)

Values γi for i = 1, 2, . . . , N1 should be determined from the minimum of
functional

J =
M+1∑

p=2

[
Tc

(
xq+f(p), yg(p)

)
− T ∗

(
xq+f(p), yg(p)

)]2
, (22)

where f (p) = 0 for the first-type problem (inverse boundary problem), and
f (p) = [p− 1]M/2+1 for the second-type problem (quasi-Cauchy problem);
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and g (p) = p for the first-type problem and g (p) = 1+(p− 1) mod (M/2 + 1)
+ [p− 1]M/2+1 for the second-type problem; the asterisk denotes the mea-
sured value. On the basis of the formula (8) we have

J=
M+1∑

p=2

[
mn∑

k=1

akW[k−1]m

(
xq+f(p)

)
W(k−1)modm

(
yg(p)

)
−T ∗

(
xq+f(p), yg(p)

)]2

.

(23)
Substituting the dependence (23) into Eq. (25) we have obtained

J =
M+1∑

p=2




mn∑

k=1


Fk +

m−1∑

j=2

Ãk,jn

N1∑

h=1

γhWh−1 (yj)


 ×

W[k−1]m

(
xq+f(p)

)
W(k−1)modm

(
yg(p)

)
− T ∗

(
xq+f(p), yg(p)

)]2
. (24)

Functional has its minimum (necessary condition), if for each i = 1, 2, . . . , N1

the following equality occurs:

∂J

∂γi
= 0 . (25)

Hence,

∂J

∂γi
= 2

M+1∑

p=2




mn∑

k=1


Fk +

m−1∑

j=2

Ãk,jn

N1∑

h=1

γhWh−1 (yj)




×W[k−1]m

(
xq+f(p)

)
W(k−1)modm

(
yg(p)

)
− T ∗

(
xq+f(p), yg(p)

)]

×
mn∑

k=1

W[k−1]m

(
xq+f(p)

)
W(k−1)modm

(
yg(p)

)m−1∑

j=2

Ãk,jnWi−1 (yj) .(26)

Applying substitutions C1 (i, p)=
∑mn

k=1W[k−1]m

(
xq+f(p)

)
W(k−1)modm

(
yg(p)

)

∑m−1
j=2 Ãk,jnWi−1 (yj) and C2 (k, p) = W[k−1]m

(
xq+f(p)

)
W(k−1)modm

(
yg(p)

)

we have obtained

∂J

∂γi
= 2

M+1∑

p=2

C1 (i, p)




mn∑

k=1


Fk +

m−1∑

j=2

Ãk,jn

N1∑

h=1

γhWh−1 (yj)




× C2 (k, p) − T ∗
(
xq+f(p), yg(p)

)]
. (27)
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Therefore, taking into account the equality

C3 (i) =
M+1∑

p=2

T ∗
(
xq+f(p), yg(p)

)
C1 (i, p)

we have

1

2

∂J

∂γi
=−C3 (i)+

M+1∑

p=2

C1 (i, p)
mn∑

k=1

C2 (k, p)


Fk +

m−1∑

j=2

Ãk,jn

N1∑

h=1

γhWh−1 (yj)


 .

(28)
Suppose that C4 (p) =

∑mn
k=1C2 (k, p)Fk, then

1

2

∂J

∂γi
=−C3 (i)+

M+1∑

p=2

C1 (i, p)


C4 (p)+

mn∑

k=1

C2 (k, p)
m−1∑

j=2

Ãk,jn

N1∑

h=1

γhWh−1 (yj)


 .

(29)
Substituting C5 (i) =

∑M+1
p=2 C1 (i, p)C4 (p) we have obtained

1

2

∂J

∂γi
=−C3 (i)+C5 (i)+

M+1∑

p=2

C1 (i, p)
mn∑

k=1

C2 (k, p)
m−1∑

j=2

Ãk,jn

N1∑

h=1

γhWh−1 (yj) .

(30)
For C6 (i) = −C3 (i) + C5 (i) we have

1

2

∂J

∂γi
= C6 (i) +

M+1∑

p=2

C1 (i, p)
mn∑

k=1

C2 (k, p)
m−1∑

j=2

Ãk,jn

N1∑

h=1

γhWh−1 (yj) . (31)

After permuting summation, we have obtained

1

2

∂J

∂γi
= C6 (i) +

N1∑

h=1

γh

M+1∑

p=2

C1 (i, p)
mn∑

k=1

C2 (k, p)
m−1∑

j=2

Ãk,jnWh−1 (yj) . (32)

We have applied the substitution C7 (i, h) =
∑M+1

p=2 C1 (i, p)
∑mn

k=1C2 (k, p)
∑m−1

j=2 Ãk,jnWh−1 (yj). Therefore,

0 =
1

2

∂J

∂γi
= C6 (i) +

N1∑

h=1

γhC7 (i, h) . (33)

Hence, for each i = 1, 2, . . . , N1

−C6 (i) =
N1∑

h=1

γhC7 (i, h) . (34)
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Matrix equation with unknown vector {γ} can be written in the form:

{−C6} = [C7] {γ} . (35)

If there is an inverse matrix to the matrix [C7], then

{γ} = [C7]−1 {−C6} . (36)

4 Numerical example

It was assumed that temperature distribution in the whole region can be
described by the following function

T (x, y) = sinhx sin y . (37)

Calculations were made for n = m = 10 nodes along x and y axes. By
means of solving the direct problem, values of temperature for selected in-
ner nodes were determined; these values were assumed as measured values
to test the program. Measured values were disturbed by values δrandom

ranging from 0 to 0.05 of the temperature maximum value. The mean
square deviation of set values in the direct problem from the values calcu-
lated with the use of inverse problem method in nodes on the Γ1 boundary
was described by the relation

‖δT‖ =

√√√√
m∑

i=1

[Tdp (x = 1, yi) − Tip (x = 1, yi)]
2 . (38)

Two types of solution were considered. The first one was the boundary
inverse problem, where one row of measuring points was included (Fig. 7a).
For the quasi-Cauchy problem, temperature measurement was performed
in two rows (Fig. 7b). Measuring points for both problems coincided with
Chebyshev nodes.
An influence of changes in measuring points arrangement on the accuracy
of temperature distribution on the Γ1 boundary was studied. The measure
of accuracy are values ‖δT‖ described by the formula (38).
For the first type of inverse problem, it was assumed that M = 8 and
N1 = 8. Values ‖δT‖ were calculated; they grow with relocating tempera-
ture measuring points from the Γ1 boundary to the Γ3 boundary (Fig. 8).
They reach their maximum for the second row of Chebyshev nodes. De-
creasing value ‖δT‖ for q amounting to 3, 5 or 7 results from nonuniform
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Figure 7: a) Boundary inverse problem, b) Quasi-Cauchy problem.

a) b)

Figure 8: Values ‖δT‖ for the boundary problem with temperature measurements in the
Chebyshev nodes xq for q: a) from 2 to 9; b) from 5 to 9, including a random
disturbance to the temperature measurement δrandom.

arrangement of Chebyshev nodes enabling for fine meshing of collocation
points close to the boundary of the region. Increase of the random distur-
bance to the temperature measurement δrandom from the value of 0 to 0.05
results in linear increase of the value ‖δT‖ (Fig. 9). Values ‖δT‖ amounted
from 3.45 × 10−16 for temperature measurement in nodes closest to the Γ1

boundary and δrandom = 0 to 422.76 for measuring points situated in the
second row of nodes and δrandom = 0.05 (Tab. 1).

In calculations for the inverse problem of the second type, it was as-
sumed that M = 16 and N1 = 8. Calculations were made for two rows of
measuring points of coordinates x coinciding with Chebyshev xq and xq+1

nodes. For q = 3, the value ‖δT‖ is maximal, what is presented in Fig. 10
and in Tab. 2. Increase of the random disturbance to the temperature mea-
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Figure 9: Values ‖δT‖ for the boundary inverse problem depending on the random dis-
turbance to the temperature measurement δrandom.

Table 1: Values ‖δT‖ for the inverse boundary problem.

q δrandom = 0 δrandom = 0.01 δrandom = 0.02

2 1.72 × 10−9 84.55 169.10

3 7.89 × 10−12 13.48 26.96

4 1.04 × 10−11 13.96 27.92

5 2.92 × 10−12 2.60 5.21

6 7.21 × 10−11 3.14 6.27

7 3.63 × 10−13 0.90 1.80

8 6.97 × 10−13 1.19 2.38

9 3.45 × 10−16 0.90 × 10−2 1.80 × 10−2

q δrandom = 0.03 δrandom = 0.04 δrandom = 0.05

2 253.66 338.21 422.76

3 40.44 53.92 67.40

4 41.88 55.84 69.79

5 7.81 10.41 13.02

6 9.41 12.54 15.68

7 2.70 3.60 4.49

8 3.57 4.76 5.96

9 2.70 × 10−2 3.60 × 10−2 4.50 × 10−2

surement δrandom causes linear increase of mean square deviation of the set
values from the values calculated on the Γ1 boundary (Fig. 11).
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a) b)

Figure 10: Values ‖δT‖ for quasi-Cauchy problem with temperature measurement in
Chebyshev xq and xq+1 nodes for q: a) from 2 and 3 to 8 and 9; b) from
4 and 5 to 8 and 9, including the random disturbance to the temperature
measurement δrandom.

Table 2: Values ‖δT‖ for quasi-Cauchy problem.

q δrandom = 0 δrandom = 0.01 δrandom = 0.02

2 8.14 × 10−12 7.21 14.41

3 8.93 × 10−12 10.42 20.84

4 3.28 × 10−12 2.62 5.24

5 1.22 × 10−12 0.75 1.50

6 7.73 × 10−13 0.62 1.23

7 3.29 × 10−13 0.87 1.75

8 3.42 × 10−16 6.85 × 10−3 1.37 × 10−2

q δrandom = 0.03 δrandom = 0.04 δrandom = 0.05

2 21.62 28.82 36.03

3 31.25 41.67 52.09

4 7.87 10.49 13.11

5 2.25 3.01 3.76

6 1.85 2.47 3.09

7 2.62 3.49 4.37

8 2.06 × 10−2 2.74 × 10−2 3.4 × 10−2

5 Conclusions

In this paper two types of inverse problem for the Laplace’s equation in the
rectangular domain were solved. The form of the solution was written as
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Figure 11: Values ‖δT‖ for quasi-Cauchy problem depending on the random disturbance
to the temperature measurement δrandom.

the linear combination of Chebyshev polynomials. Influence of changes in
measuring points arrangement and random disturbance to the temperature
measurement on the mean square deviation of the set values from the values
calculated on the Γ1 boundary was considered. Furthermore, the tempera-
ture distribution was sought on the Γ1 boundary. Values ‖δT‖ reach their
maximum for q = 2 and q = 3, what results from the arrangement of
collocation nodes. Calculation model brings positive results for measuring
points situated in Chebyshev nodes closest to the Γ1boundary, even for the
disturbance to the temperature measurement δrandom = 0.05. Relocation of
measuring points into the Γ3 boundary worsens significantly results of cal-
culations. For calculations without disturbance to the measurement data
(δrandom = 0), the model returns positive results, irrespective of measuring
points arrangement.

Received 18 May 2016
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