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Abstract This paper endeavours to study aspects of wave propagation
in a random generalized-thermal micropolar elastic medium. The smooth
perturbation technique conformable to stochastic differential equations has
been employed. Six different types of waves propagate in the random
medium. The dispersion equations have been derived. The effects due to
random variations of micropolar elastic and generalized thermal parameters
have been computed. Randomness causes change of phase speed and at-
tenuation of waves. Attenuation coefficients for high frequency waves have
been computed. Second moment properties have been briefly discussed with
application to wave propagation in the random micropolar elastic medium.
Integrals involving correlation functions have been transformed to radial
forms. A special type of generalized thermo-mechanical auto-correlation
functions has been used to approximately compute effects of random varia-
tions of parameters. Uncoupled problem has been briefly outlined.
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1 Introduction

A large number of research papers covering various branches of theoretical
and computational micropolar elasticity are being reported in the literature
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every year in recent time. Eringen has published many pioneering papers
and treatises on various aspects of micropolar elasticity. The coupled stress
theory developed by Eringen comprises granular materials as also composite
fibrous materials [1]. For this reason authors from different research fields
have been taking interest in micropolar elasticity. The associated microro-
tational motions, spin, couple stress inertia, couple stress and distributed
body couples were defined. Micropolar thermoelasticity also has become
an important field of research these days. Eringen derived equations of
motion, constitutive equations and boundary conditions for a class of mi-
cromorphic elastic solids whose microelements can undergo expansions or
contractions defined as stretch [2]. He also defined and proposed a theory
of thermomicrostretch fluids and bubbly liquids [3]. Microstretch and mi-
cropolar continua and all other aspects of micropolar studies can be found
in Eringen’s foundational treatise entitled Microcontinuum Field Theories

[4]. Micropolar thermoelastcity and stretch have attracted the attention
of many authors. Marin formulated some theorems on elastostatics of mi-
cropolar material with voids [5]. He investigated the behaviour of porous
solids in which the matrix material is elastic and the interstices are voids
of materials. In a more recent paper Marin [6] considered the concept of
domain of influence in the context of displacement and microrotation fields
along with the microstretch function. Marin and Lupu [7] on the other
hand discussed the problem of harmonic vibrations of micropolar elastic
materials under thermoelasticity. Marin and Marinescu [8] studied ther-
moelasticity of initially stressed bodies. Kumar [9] examined the problem
of wave propagation in a micropolar viscoelastic medium under generalized
thermoelasticity. Singh [10] studied plane wave propagation in a homo-
geneous transversely isotropic thermally conducting elastic solid with two
relaxation times. Singh and Kumar [11] investigated the problem of reflec-
tion and refraction of plane waves at an interface between micropolar elastic
solid and viscoelastic solid. Kumar and Deswal [12] discussed the problem
of surface wave propagation in a micropolar thermoelastic medium. Kumar
and Singh [13] studied effects of stretch in wave propagation in a micropolar
material again under generalized thermoelasticity. Kumar and Tomar [14]
studied aspects of reflected and refracted micropolar waves. Aouadi [15]
considered a medium with a microstructure and derived general equations
of motion and constitutive equations. On the other hand, Suiker, Borst
and Chang [16] derived a second-gradient micro-polar constitutive theory
on micro-mechanical modelling of granular medium. Majewski [17] dealt



On wave propagation in a random micropolar. . . 23

with seismic rotation waves in a micropolar elastic earth. In fact varieties
of papers on wave propagation in micropolar elastic, micropolar thermoe-
lastic and coupled micropolar elastic media are being frequently reported
in the literature. It is not found necessary to cite more of these recent pub-
lications simply because they fall exclusively to the non-random domain.

The present paper instead proposes to focus on the procedure to eval-
uate effects of random variation of parameters of the inhomogeneous mi-
cropolar medium on propagation of waves and associated phenomena. To
date none other than a single paper by Mitra and Bhattacharyya [18] has
appeared in the literature dwelling on randomness in relation to waves in
micropolar medium.

The present paper therefore aims at investigating wave propagation phe-
nomenon in a random generalized thermal micropolar elastic medium, and
associated statistical properties such as second moment and its application.
The parameters representing inhomogeneities of the coupled medium are
assumed to vary slightly from their mean values. The originality of the pa-
per lies in attempting to measure effects of random variations of parameters
on wave propagation in the micropolar generalized thermoelastic medium
following procedures of the authors’ earlier paper [18].

The heat conduction equation and the coupling model have been chosen
under the generalized thermoelasticity proposed by Lord and Shulman [19]
and Green-Lindsay [20]. The details of L-S and G-L theories of generalized
thermoelasticity can be found in Ignaczak and Starzewski [21] and need
not to be repeated here. Generalized thermoelasticity attempts at nulli-
fying the physical anomaly of classical thermoelasticity which insists that
thermal speed assumes infinite speed at infinity ([21], p. xii). Consequently
two relaxation parameters t0, t1, appear in the generalized model heat con-
duction equation.

The methodology adopted is the smooth perturbation technique enun-
ciated by Keller [22]. Karal and Keller [23], Keller and Karal [24], Chow
[25], Chen and Tien [26] and many others used it in studying elastic, elec-
tromagnetic, thermal and other waves. Bhattacharyya [27,28] and Bera
[29] pursued the method in the study of wave propagation phenomena in
the coupled media.

In fact the study of problems of wave propagation in random media
flourished since the time of Chernov [30]. He first suggested adoption of an
exponentially decaying form for a two-point dielectric correlation function.
Beran and McCoy [31] proposed the technique of iterative perturbation in
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studying mean field variations in the dielectric and other media. Beran,
Frankenthal, Deshmukh and Whitman studied propagation of radiation
in time-dependent three-dimensional random media [32]. Sobczyk studied
elastic wave propagation in a discrete random medium [33]. He developed
a general formalism of the analysis of coherent elastic waves in terms of
scatters. In fact, Wenzel [34], Sobczyk, Wedrychowicz and Spencer [35],
Frankenthal and Beran [36], Uscinski [37] and Frisch [38] have made ex-
tensive studies on various aspects of randomness in physical sciences, wave
propagation phenomena and random characteristics of media. In particular,
Chen and Soong [39] worked on covariance properties of waves propagat-
ing in a medium. A detailed discussion on properties and applications of
random differential equations can be found, among others, in the treatise
of Soong [40]. Akira Ishimaru discussed the development of the theory of
wave propagation and scattering in random media in his landmark treatise
on the subject [41]. Choudhury, Basu and Bhattacharyya discussed the
phenomenon of wave propagation in a rotating random granular medium
under generalized thermoelasticity [42]. On the basis of these citations one
cannot but admit the importance of the study of randomness in applied
mathematics and physical sciences. The present paper however proposes to
discuss randomness in respect of waves in a micropolar medium impressed
by a generalized thermoelastic field.

2 The problem

Using the smooth perturbation technique [22] the field equations have been
put in the form

L(~x, t)V (~x, t) = F (~x, t) , (1)

L = L0 + εL1 + ε2L2 , (2)

where: L – random linear operator, V – field vector, F – non-random
source, L0 – unperturbed part of L, L1, L2 – first and second order pertur-
bation of L respectively, and ε – small parameter measuring the scale of ran-
dom fluctuation of generalized thermo-micropolar elastic inhomogeneities
of the medium.

Then employing iterative operations [23] it can be shown that the mean
field 〈V 〉 satisfies the equation

[L0 + ε〈L1〉 + ε2{〈L2〉 + 〈L1〉L−1
0 〈L′

1〉 − 〈L1L−1
0 L′

1〉}]〈V 〉 = F (3)
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with
L0Gij(~x, ~x′, t, t′) = δ(~x, ~x′)δ(t, t′)δij . (4)

Here〈V (~x, t)〉 is defined as the mean field quantity being the statistical
average of the field vectors, an ensemble average. Also Gij is the appro-

priate Green’s matrix (computed in the infinite domain) for L0, δ(~x, ~x′) is
the Dirac delta function and δij is the Kronecker delta. Equation (3) is
evidently an integro-differential equation, as in terms of G0, L−1

0 becomes

L−1
0 f =

∫

G(~x, ~x′)f(~x′)d~x′.

The present analysis aims at investigating the effects of random inhomo-
geneities on the propagation of waves in an interacting generalized thermo-
micropolar elastic medium. The equations of motion, constitutive equa-
tions and boundary conditions for the micropolar elastic field have been
derived by Eringen [2]. The generalized thermal coupling is assumed to
vary randomly only in the perturbed field. It may be recorded here that
this assumption was necessitated to facilitate computation of the associated
Green’s matrix [18,25,42]. Therefore L0 effectively represents the linear
partial differential operator involving parameters of the unperturbed mi-
cropolar elastic medium only. Operator L acts on the displacement vector
~u, the microrotation vector ~φ and θ, the temperature. Six different types
of body waves, which propagate in the non-random medium, depend upon
the random inhomogeneities of the medium. The dispersion equations for
these six longitudinal and transverse types of waves have been obtained.
They involve terms up to the order of ε2, since 〈L1〉 6= 0 in this case. How-
ever, finally the effect of randomness comes to alter the wave number to the
order of ε2 only. Theoretically therefore the effect of randomness comes to
be small to the order of ε2. Deviations in the propagation constants from
their unperturbed values have been calculated in terms of δl, δn, δc, δs. for
different types of waves defined in the text in Sec. 4. These quantities in-
volve auto- and cross-correlation functions between micropolar elastic and
generalized thermal field parameters. Assuming simple auto-correlation
functions only for density and two thermo-mechanical coupling parameters
in the forms [25,29]

Rρρ(r) = 〈ρ2
1〉e−

r
a and Rmm(r) = 〈ρ2

1〉e−
r
b , Rmm∗(r)e

−
r

b1 ,

where 〈ρ2
1〉 is the mean square value of the perturbation density ρ1, and

a, b, b1 are correlation lengths of inhomogeneities, and all other parameters



26 M. Mitra and R.K. Bhattacharyya

viz., λ, µ, α, etc., to be nonrandom, it has been shown that body waves
for which the deviations are measured in terms of δc, δs, attenuate for high
frequencies. It has been proved earlier [18] that second moments of the
form 〈¯̄vT v̄〉−〈¯̄vT 〉〈v̄〉 is a small quantity of the order of ε only but certainly
larger than the order of ε2, (v being the solution of the equation Lv(~x) = 0
referred to in Sec. 9). The same result applies in this case too. Components
of associated Green’s matrix which were computed earlier have been quoted
in Appendix I as a ready reference. The various integrals viz., a11, b63, etc.
involving correlation functions between different micropolar, elastic and
generalized thermal parameters have been reduced to radial forms; these
are presented in Sec. 6. In all these cases, lengthy and cumbersome com-
putations become unavoidable. Radial transformations ensure symmetrical
propagation of radiations in all directions in the infinite medium.

Field equations for a micropolar elastic medium under the influence of
a generalized thermal field are written explicitly. The displacement equa-
tion of motion in the randomly varying inhomogeneous micropolar elastic
medium is written following Eringen [1] and Chow [25] as

(λ + µ)~∇(~∇ · ~u) + (µ + κ)∇2~u + ~∇λ(~∇ · ~u) + ~∇µ × (~∇ × ~u)

+ (~∇(2µ + κ) · ~∇)~u + ~∇ × (κ~φ) − ~∇[m{θ + t1θ̇}] + ~f = ρ~̈u .
(5)

The microrotation equation of motion is represented by [1]

κ(~∇ × ~u) + (α + β)~∇(~∇ · ~φ) + (~∇α(~∇ · ~φ)) + γ∇2~φ

+ ~∇β × (~∇ × ~φ) + {~∇(β + γ) · ~∇}~φ − 2κ~φ + ~l = ρj ~̈φ .
(6)

Finally the generalized thermal equation is written following Ignaczak and
Ostoja-Starzewski [21], Bera [29], and Singh [10] as

η[θ̇ + t0θ̈] = ~∇ · [ν ~∇θ] − θ0m~∇ · [~̇u + δlkt0~̈u] + q , (7)

where θ̇ = θ(−→x ,t)
∂t , θ̈ = ∂2θ(−→x ,t)

∂t2 , etc. Here
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~u(~x, t) – displacement vector,
~φ(~x, t) – microrotation vector,
θ(~x, t) – temperature,
m(~x) – thermomechanical coupling parameter,
= (λ + µ)ᾱ, ᾱ – thermal expansion coefficient,
(α, β, γ, κ)(~x) – micropolar elastic moduli,
(λ, µ)(~x) = Lame′ – elastic parameters,
ρ(~x) – mass density,
j – a nonrandom micropolar constant such that

j ≥ 0,
~f(~x, t), .~l(~x, t), q(~x, t) – body force, body couple per unit mass and heat

source respectively,
η(~x) = ρc, c – specific heat,
ν(~x) – thermal diffusivity,
v = – solution of the differential equation Lv(~x) = 0,
v0 – solution of the differential equation Lv0(~x) = 0,
θ0 – constant reference temperature,
t0 – initial thermal relaxation time,
t1(~x) – thermal relaxation time, t1 ≥ t0 ≥ 0,
δlk = 1, t1 = 0, k = 1 – for Lindsay-Shulman (L-S) model of general-

ized thermoelasticity,
δlk = 0, t1 > 0, k = 2 – for Green-Lindsay (G-L) model of generalized

thermoelasticity.
Let the differential operators (M, N, R), (P, Q), (K, S) act respectively on
~u, ~φ, and θ. Then field Eqs. (5)–(7) can be put in matrix form:

LV (~x, t) =







M P K
N Q 0
R 0 S






(~x, t)







~u(~x, t)
~φ(~x, t)
T (~x, t)






= F (~x, t) =







~f(~x, t)
~l(~x, t)
q(~x, t)






. (8)

Differential operators (M, P, K, N, Q, R, S)(~x, t) are explicitly defined as

M~u = ρ∂2~u
∂t2 − (λ + µ)~∇(~∇ · ~u) − (µ + κ)∇2~u − ~∇λ(~∇ · ~u)

−~∇µ × (~∇ × ~u) − (~∇(2µ + κ) · ~∇)~u,

P ~φ = −~∇ × (κ~φ),

Kθ = ~∇
[

m(θ + t1
∂θ
∂t )

]

= ~∇(mθ) + ~∇(mt1
∂θ
∂t ) =

[

~∇(m×) + ~∇(mt1
∂
∂t)

]

θ,

N~u = −κ(~∇ × ~u),



28 M. Mitra and R.K. Bhattacharyya

Q~φ = ρj ∂2 ~φ
∂t2 − (α + β)~∇(~∇ · ~φ) − ~∇α(~∇ · ~φ) − γ∇2~φ − ~∇β × (~∇ × ~φ)

−(~∇(β + γ) · ~∇)~φ + 2κ~φ ,

R~u = θ0m~∇ ·
[

∂~u
∂t + δlkt0

∂2~u
∂t2

]

=

[

θ0m~∇ ·
(

∂
∂t + δlkt0

∂2

∂t2

)]

~u ,

Sθ = η

(

∂θ

∂t
+ t0

∂2θ

∂t2

)

− ~∇ · (ν∇θ) =

[

η

(

∂

∂t
+ t0

∂2

∂t2

)

− ~∇ · (ν ~∇)

]

θ .

(9)
Next let us assume

V (~x, t) =







~u(~x)
~φ(~x)
θ(~x)






e−iωt = V0(~x)e−iωt, (say) (10)

and

F (~x, t) =







~f0(~x)
~l0(~x)
q0(~x)






e−iωt = F0(~x)e−iωt . (11)

Here ω is the frequency of propagating wave and i =
√

−1. The mean field
Eq. (3), involving the Green’s matrix, can be put in the form

[

L0(~x) + ε〈L1(~x)〉 + ε2

{

〈L2(~x)〉 + 〈L1(~x)〉L−1
0 (|~x − ~x′|)〈L1(~x′)〉

−〈L1(~x)L−1
0 (|~x − ~x′|)L1(~x′)〉

}]

〈V0(~x′)〉 = F0 ,
(12)

where the associated Green’s tensor is the kernel of the nonrandom operator
equation represented by

L0Gij(~x, ~x′) = δ(~x, ~x′)δij . (13)

Then Eqs. (10) and (11) redefine operators (M, P, K, N, Q, R, S)(~x, t) as

M = −ρω2 − (λ + µ)~∇(~∇·) − (µ + κ)∇2 − ~∇λ(~∇·) − ~∇µ × (~∇×) −
(

~∇(2µ +

κ) · ~∇
)

,

P = −~∇ × (κ),

K = ~∇(m×) − iω~∇(mt1) = ~∇(m×) − iω~∇(m•), m• = mt1(say),

N = −κ(~∇×)
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Q = −ρjω2−(α+β)~∇(~∇·)−~∇α(~∇·)−γ∇2−~∇β×(~∇×)−{~∇(β+γ)·~∇}+2κ

R = −ωθ0m~∇ ·
[

i + δlkt0ω)

]

= −iωθ0

[

1 − iδlkt0ω)

]

m(~∇·),

S = −iω(1−it0ω)η−(~∇·
(

ν∇)

)

.

(14)

3 Solution

Let us assume plane wave propagation in the medium and set






~u(~x)
~φ(~x)
θ(~x)






=







~A
~B
C






ei~k·~x (15)

Here ~k indicates direction of the propagating wave and
∣

∣

∣

~k
∣

∣

∣ = k is the

wave number. Then the physical parameters λ, µ, ρ, α, β, γ, κ, η, ν, m, and
m• = t1m, are random functions of ~x(x, y, z), and since random deviations
are small, we write, following, Karal and Keller [22] and Chow [25]:

(λ, µ, ρ, α, β, γ, κ, η, ν, m, m•) = (λ0, µ0, ρ0, α0, β0, γ0, κ0, η0, ν0,

m0 = 0, m•

0 = 0)+ε(λ1, µ1, ρ1, α1, β1, γ1, κ1, η1, ν1, m1, m•

1)(~x) , (16)

where (λ0, ...., ν0) are constants and (λ1, ....., ν1, m1, m•
1) are functions of ~x

representing random fluctuations of the corresponding quantities such that

〈λ1, ......, ν1〉 = 0 . (17)

Conditions (16) and (17) ensure that fluctuations from nonrandom values
of parameters remain small. It is further assumed that

m = εm1(~x), such that 〈m1(~x)〉 = m2, (say), m2 6= 0 ,

and m• = εm•

1(~x), such that 〈m•

1(~x)〉 = m3, (say), m3 6= 0 . (18)

The last two assumptions confirm that the generalized thermal field is taken
to be weakly random. A new parameter m•(~x) = (t1m)(~x), is introduced
characterizing the random thermal coupling with the micropolar elastic
medium. By the help of Eqs. (16)–(18) one gets

L0 =







M0 P0 0
N0 Q0 0
0 0 S0






, (19)
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L1(~x) =







M1 P1 K1

N1 Q1 0
R1 0 S1






(~x) (20)

and
M0 = −ρ0ω2 − (λ0 + µ0)~∇(~∇·) − (µ0 + κ0)∇2 ,

P0 = −κ0(~∇×) = N0 ,

Q0 = (2κ0 − ρ0jω2) − (α0 + β0)~∇(~∇·) − γ0∇2 ,

S0 = −iω(1 − it0ω)η0 − ν0∇2 . (21)

The deterministic operators save S0 are independent of generalized ther-
mal relaxation parameters and the thermo-mechanical parameters. How-
ever the perturbed operators K1, R1, S1, are characterized by m1, m•

1, t0, t1,
such that
M1 = −ρ1ω2 − (λ1 + µ1)~∇(~∇·) − (µ1 + κ1)∇2 − ~∇λ1(~∇·) − ~∇µ1 × (~∇×) −
{~∇(2µ1 + κ1) · ~∇}
P1 = −~∇ × (κ1),

K1 = ~∇(m1) − iω~∇m•
1 ,

N1 = −κ1(~∇×) ,

Q1 = −ρ1jω2 − (α1 +β1)~∇(~∇·)− ~∇α1(~∇·)−γ1∇2 − ~∇β1 × (~∇×)− (~∇(β1 +
γ1) · ~∇) + 2κ1 ,

R1 = −iωθ0(1 − iδlkt0ω)m1( ~∇·) ,

S1 = −iω(1 − it0ω)η1 − {~∇ · (ν1∇)} .
(22)

A computational note is given below:

S = −iω(1 − it0ω)η − (~∇ · (ν∇)

= −iω(1 − it0ω)(η0 + εη1) − ~∇ · [(ν0 + εν1)~∇]

= −iω(1 − it0ω)η0 − ~∇ · (ν0
~∇) − εiω(1 − it0ω)η1 − ε~∇ · (ν1

~∇)

= {−iω(1 − it0ω)η0 − ν0∇2] + {−εiω(1 − it0ω)η1ε~∇ · (ν1
~∇)}

= S0 + εS1] .

By virtue of Eqs. (17)–(18) one obtains

〈L1〉 =







0 0 (m2 − iωm3)~∇
0 0 0

−iωθ0(1 − iδlkt0ω)m2(~∇·) 0 0






6= 0, (23)
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where

m2 = 〈m1(~x)〉 = const. 6= 0, m3 = 〈m•

1(~x)〉 = const. 6= 0 and 〈L2〉 = 0 .
(24)

Thus Eq. (3) involves first and second perturbation terms; with vanishing
body force, body couple and the heat source, Eq. (12) reduces to

[

L0(~x) + ε〈L1(~x)〉 + ε2

{

〈L1(~x)〉L−1
0 (|~x − ~x′|)〈L1(~x′)〉

−〈L1(~x)L−1
0 (|~x − ~x′|)L1(~x′)〉

}]

〈V0(~x′)〉 = 0 .

(25)

The components of Green’s tensor corresponding to L−1
0 are given by (say),

Gij =







G0 G1 0
G2 G3 0
0 0 G4






. (26)

The components G0(r), G1(r), G2(r), and G3(r) have already been evalu-
ated [18] and have been given in the Appendix I. The component G4(r) is
defined by

∇2G4(r) +
iω(1 − iωt0)η0

ν0
G4(r) = δ(~x − ~x′)δij .

Hence

G4(r) = −eiβr

4πr
I3 , (27)

where

β =

[

iω(1 − iωt0)η0

ν0

]

1
2

,

and I3 is the identity matrix.
Hence

β =
√

ωη0

2ν0

{[

√

ω2t2
0 − 1 + ωt0

]

1
2

+ i

[

√

ω2t2
0 − 1 − ωt0

]

1
2
}

= β1 + iβ2(say).

(28)

It is observed that Gi(r), i = 0, 1, 2, 3 are independent of thermo-mechanical
coupling parameter m(~x) and generalized thermoelastic relaxation times
t0, t1, and m•(~x). On the other hand G4(r) is independent of m(~x) but
depends upon the generalized thermoelastic relaxation time t0. Substituting
(15) in the mean field Eq. (25) one gets the following three vector equations:
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[ρ0ω2 ~A − (λ0 + µ0)(~k · ~A)~k − (µ0 + κ0)k2 ~A] + iκ0(~k × ~B) − ε(im2 + ωm3)C~k

+ε2
[

ωθ0(1 − ωt0δlk)m2(m2 − iωm3)(~k · ~A)
]

∫

[

(~∇G4)
]

e−i~k·~rd~r

−ε2
∫







〈[M1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+P1{G2(M ′
1

~A + P ′
1

~B + K ′
1C) + G3(N ′

1
~A + Q′

1
~B)}

+K1G4(R′
1

~A + S′
1C)]〉






e−i~k·~rd~r = 0,

(29)

iκ0(~k × ~A) − [(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k · ~B)~k]

−ε2
∫

[

〈[N1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+Q1{G2(M ′
1

~A + P ′
1

~B + K ′
1C) + G3(N ′

1
~A + Q′

1
~B)}]〉

]

e−i~k·~rd~r = 0,

(30)
and
[iω(1 − it0ω)η0 − ν0k2]C − εωθ0(1 − iωt0δlk)m2(~k · ~A)

+ε2[ωθ0(1 − iωt0δlk)m2(m2 − iωm3)]C
∫

[(~∇ · G0
~k)]e−i~k·~rd~r

−ε2
∫

[

〈[R1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+S1G4(R′
1

~A + S′
1C)]〉

]

e−i~k·~rd~r = 0.

(31)
Eliminating C from (29) and (30) with the help of (31) one gets the fol-
lowing two equations:

[ρ0ω2 ~A − (λ0 + µ0)(~k · ~A)~k − (µ0 + κ0)k2 ~A] + iκ0(~k × ~B)

−ε2 ωθ0(1 − iωt0δlk)m2(im2 + ωm3)(~k · ~A)
iω(1 − it0ω)η0 − ν0k2

~k

+ε2
[

ωθ0(1 − ωt0δlk)m2(m2 − iωm3)(~k · ~A)
]

∫

[

(~∇G4)
]

e−i~k·~rd~r

−ε2
∫







[〈M1G0M ′
1〉 ~A + 〈M1G0P ′

1〉 ~B + 〈M1G1N ′
1〉 ~A

+〈M1G1Q′
1〉 ~B + 〈P1G2M ′

1〉 ~A + 〈P1G2P ′
1〉 ~B

+〈P1G3N ′
1〉 ~A + 〈P1G3Q′

1〉 ~B + 〈K1G4R′
1〉 ~A]






e−i~k·~rd~r = 0, (32)

and
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iκ0(~k × ~A) − [(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k · ~B)~k]

−ε2
∫







〈N1G0M ′
1〉 ~A + 〈N1G0P ′

1〉 ~B + 〈N1G1N ′
1〉 ~A

+〈N1G1Q′
1〉 ~B + 〈Q1G2M ′

1〉 ~A + 〈Q1G2P ′
1〉 ~B

+〈Q1G3N ′
1〉 ~A + 〈Q1G3Q′

1〉 ~B






e−i~k·~rd~r = 0 .

(33)
Some computations of the form

〈M1GoM ′

1〉 ~A = e−i~k·~x′〈M1GoM ′

1〉( ~Aei~k·~x′

) ,

are shown in the Appendix II. The integral in the third term of (32)

=

∫

[~∇(G4(r)]e−i~k·~rd~r

= −ik̂

∫

∝

0
eiβr sin krdr, β = β1 + iβ2, β1 = Reβ, β2 = Imβ. (34)

=
−ik̂

2

[

β1 + k

β2
2 + (β1 + k)2

− β1 − k

β2
2 + (β1 − k)2

+iβ2

(

1

β2
2 + (β1 − k)2

− 1

β2
2 + (β1 + k)2

)]

. (35)

Hence (32) can be rewritten as

[ρ0ω2 ~A − (λ0 + µ0)(~k · ~A)~k − (µ0 + κ0)k2 ~A] + iκ0(~k × ~B)

−ε2 ωθ0(1 − iωt0δlk)m2(im2 + ωm3)(~k · ~A)
iω(1 − it0ω)η0 − ν0k2

~k

−ε2
[

ωθ0(1 − ωt0δlk)m2(im2 + ωm3)(~k · ~A)
⌢
k
]

∫

∝

0
eiβr sin krdr

−ε2
∫







[〈M1G0M ′
1〉 ~A + 〈M1G0P ′

1〉 ~B + 〈M1G1N ′
1〉 ~A

+〈M1G1Q′
1〉 ~B + 〈P1G2M ′

1〉 ~A + 〈P1G2P ′
1〉 ~B

+〈P1G3N ′
1〉 ~A + 〈P1G3Q′

1〉 ~B + 〈K1G4R′
1〉 ~A]






e−i~k·~rd~r = 0. (36)

Thus we are left with two vector Eqs. (36) and (33), determining the prop-
agation of waves in the interacting random medium. It is to be noted that
none of these equations include any term of the order of ε even though
〈L1〉〈V0(~x)〉 6= 0. Effects of randomness therefore is small to the order of ε2.
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4 Analysis of first perturbation dispersion
equations

We get back to considering Eqs. (29)–(31) to ε-order terms only, assuming
without loss of generality:

~k = (k, 0, 0), ~A = (A1, A2, 0), ~B = (B1, B2, B3) . (37)

Hence (29)–(31) reduce to

[ρ0ω2 ~A−(λ0+µ0)(~k · ~A)~k−(µ0+κ0)k2 ~A]+iκ0(~k× ~B)−ε(im2+ωm3)C~k = 0,
(38)

iκ0(~k × ~A) − [(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k · ~B)~k] = 0, (39)
and
[iω(1 − it0ω)η0 − ν0k2]C − εωθ0(1 − iωt0δlk)m2(~k ~A) = 0. (40)

Eliminating C as before from Eq. (38) one gets

[ρ0ω2 ~A − (λ0 + µ0)(~k · ~A)~k − (µ0 + κ0)k2 ~A] + iκ0(~k × ~B)

−ε2(im2 + ωm3)
ωθ0(1 − iωt0δlk)m2(~k · ~A)

iω(1 − it0ω)η0 − ν0k2
~k = 0 .

(41)

Thus (39) and (41) represent two dispersion equations. Terms to the order
ε however disappears from these equations. The equations almost reduce to
two deterministic equations except for the presence of a second perturbation
term in (41) inducing a weak thermoelastic influence on propagation of
waves. These equations lead to the following six equations:

[ρ0ω2 −(λ0 +2µ0 +κ0)k2]A1 −ε2(im2 +ωm3)
ωθ0(1 − iωt0δlk)m2k2

iω(1 − it0ω)η0 − ν0k2
A1 = 0 ,

(42)
[ρ0ω2 − (µ0 + κ0)k2]A2 + iκ0kB3 = 0 , (43)

iκ0kB2 = 0 .

This last equation indicates
B2 = 0 . (44)

This indicates that microrotation waves do not propagate along the direc-
tion of B2. Also Eq. (39) gives three Eqs. (45), (46), and (47):

(2κ0 − ρ0jω2 + γ0k2) + (α0 + β0)k2]B1 = 0 (45)

and
(2κ0 − ρ0jω2 + γ0k2)B2 = 0 .
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This indicates that B2 = 0, but

2κ0 − ρ0jω2 + γ0k2 6= 0 . (46)

This confirms that there is no propagation along the direction of B2. The
third equation is

iκ0kA2 − (2κ0 − ρ0jω2 + γ0k2)B3 = 0 . (47)

The dispersion equation for longitudinal waves propagating along the di-
rection of ~k is represented by (42), that is, by

[

ρ0ω2−(λ0+2µ0+κ0)k2
]

−ε2(im2+ωm3)
ωθ0(1 − iωt0δlk)m2k2

iω(1 − it0ω)η0 − ν0k2
= 0 . (48)

This is a fourth degree equation in the wave number k. From Eq. (48) effects
of randomness of the generalized thermal field determined by the presence
of m2, and m3 is discernible to terms to the order of ε2.

Equation (45) determines the propagation of microrotation waves along
the direction of B1; the wave number is determined by

k2 =
ρ0jω2 − 2κ0

α0 + β0 + γ0
. (49)

Waves having amplitudes A2 and B3 are coupled by Eqs. (43) and (47).
Eliminating A2 and B3 one gets the dispersion equation for the propagation
of coupled waves in the form

A2

B3
= − iκ0k

ρ0ω2 − (µ0 + κ0)k2
=

2κ0 − ρ0jω2 + γ0k2

iκ0k
,

or
[

ρ0ω2 − (µ0 + κ0)k2
][

2κ0 − ρ0jω2 + γ0k2
]

= κ2
0k2 . (50)

This equation which is again a fourth degree equation in the wave number
k however determines the dispersion equation of waves propagating in the
non-thermal micropolar elastic medium. Equation (48) only includes one
ε2-order term which represents small generalized thermal effects. Equations
(48), (49), and (50) can easily be solved numerically.
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5 Analysis of dispersion equations

We proceed to analyze dispersion Eqs. (33) and (36). Each term of the

form
∫

〈M1G0M ′
1〉 ~Aei~k·~x′

contains linear functions of the displacement am-
plitudes, A1, A2, A3, and the microrotation amplitudes B1, B2, B3. Each
of the integrals involves correlation functions between different micropolar
elastic and generalized thermal parameters including the generalized ther-
momechanical coupling parameters m and m•. It is observed that none

of the integrands of the forms 〈M1G0M ′
1〉 ~Aei~k·~x′

contains the perturbed
operator S1. Thus wave propagation in the coupled random medium is in-
dependent of the perturbation in the classical thermal parameters η(~x) and
ν(~x). Moreover the only integrand representing effects of random variation

of generalized thermal field is 〈K1G4R′
1〉 ~Aei~k·~x′

. The integrand involves the
random coupling variable m•. In a latter section we will analyze (33) and

(36) retaining the integral
∫

〈K1G4R′
1〉 ~Aei~k·~x′

d~x′ and making all other cor-
relation functions vanish.

Now equations (36) and (33) give rise to six equations. Then terms of
the order ε2 in each of these equations are arranged as linear combinations
of five amplitudes A1, A2, B1, B2, B3, the coefficients of each of which being
integrals involving different correlation functions. Rewriting one gets:

[

ρ0ω2 − (λ0 + 2µ0 + κ0)k2

]

A1 − ε2 ωθ0(1−iωt0δlk)m2(im2+ωm3)k2

iω(1−it0ω)η0−ν0k2 A1

−ε2ωθ0(1 − iωt0δlk)m2(im2 + ωm3)kA1
∫

∝

0 eiβr sin krdr
−ε2[a11A1 + a12A2 + b11B1 + b12B2 + b13B3] = 0 ,

(51)

[ρ0ω2 − (µ0 + κ0)k2]A2 − iκ0kB3

−ε2[a21A1 + a22A2 + b21B1 + b22B2 + b23B3] = 0 , (52)

iκ0kB2 − ε2[a31A1 + a32A2 + b31B1 + b32B2 + b33B3] = 0 , (53)

[ρ0jω2 − 2κ0 − (α0 + β0 + γ0)k2]B1

−ε2[a41A1 + a42A2 + b41B1 + b42B2 + b43B3] = 0 , (54)

(ρ0jω2−2κ0−γ0k2)B2−ε2[a51A1+a52A2+b51B1+b52B2+b53B3] = 0 , (55)

iκ0kA2 + (ρ0jω2 − 2κ0 − γ0k2)B3

−ε2[a61A1 + a62A2 + b61B1 + b62B2 + b63B3] = 0 . (56)
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The integrands in the coefficients, alj and blk(l = 1, 2, ..., 6; j = 1, 2; k =
1, 2, 3), are long expressions involving: (i) components of Green’s tensor
and their first and second order derivatives with respect to Cartesian co-
ordinates, and (ii) various correlation functions (there are 49+2 in all, the
last two being the auto-correlation function of the non-generalized thermo-
mechanical coupling parameter and the cross-correlation function between
the two thermo-mechanical coupling parameters) and their first and second
order derivatives with respect to Cartesian coordinates.

6 Transformation to radial forms

The transformation of these integrals from Cartesian to radial forms are
therefore carried out under the substitutions

~r = ~x − ~x′ = (ξ, η, ζ) = (r cos θ, r sin θ cos φ, r sin θ sin φ)

so that
∂

∂x
=

∂

∂ξ
= − ∂

∂x′
, etc. (57)

The Green’s tensor and the correlation functions are all functions of r =
|~r| alone. Thus 30 coefficients alj and blk are all functions of the wave
number k alone. The expressions for a11, a22, a62, b23, b51, b63, which enter
into the dispersion relations governing wave propagation in the medium are
transformed into radial forms; the other coefficients which involve similar
lengthy and cumbersome expressions are omitted. The expression for a11

dependent on thermal parameters is computed as
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(58)

where

R1(r) = 〈(λ1 + µ1)(λ′
1 + 2µ′

1 + κ′
1)〉 ,

R2(r) = 〈(µ1 + κ1)(λ′
1 + 2µ′

1 + κ′
1)〉 ,

Rλρ(r) = 〈λ1ρ′

1〉, Rmm(r) = 〈mm′〉, Rmm•(r) = 〈mm•′〉, etc.

λ1 = λ1 (~x), λ′
1 = λ′

1 (~x′),
m1 = m1(~x), m•

1 = m1t = m•
1(~x),

m′
1 = m1(~x′), m•

1
′ = m1t = m•

1(~x′), etc.
(59)

and

f =
sin kr

kr
, f ′ =

df

d(kr)

(G1)′

11 =
d(G1)11

dr
, R′

1 =
dR1

dr
, etc. (60)

R7(r) =
〈

(α1 + β1) (2κ′

1 − jω2ρ′

1)
〉

.

The radial expressions for coefficients a22, a62, b23, b51, b63, which are inde-
pendent of thermal field can be found in [18]. However the expression for
b63 is reproduced illustratively as also as a ready reference for the analysis
given below.
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(61)

where
R7(r) =

〈

(α1 + β1) (2κ′
1 − jω2ρ′

1)
〉

,
R8(r) = 〈(α1 + β1 + γ1)γ′

1〉,
R9(r) =

〈

(β1 + 4γ1) (2κ′
1 − jω2ρ′

1)
〉

,
R10(r) =

〈

(β1 + 2γ1) (2κ′
1 − jω2ρ′

1)
〉

,

R11(r) = 〈(2κ1 − jω2ρ1)(2κ′

1 − jω2ρ′

1)〉 =

= 4〈κ1κ′

1〉 − 2jω2[〈ρ1κ′

1〉 + 〈ρ′

1κ′

1〉
]

+ j2ω4〈ρ1ρ′

1〉. (62)

7 Analysis of equations (51)–(56)

(i) Let
k2 = k2

l + ε2δl , (63)

where

k2
l =

ρ0ω2

α0 + β0 + γ0
(64)

be taken as a solution of Eqs. (51)–(56). Substituting in (54) one gets the
equation

{−
[

2κ0 − ρ0jω2 + (α0 + β0 + γ0)
]

k2
l }B1

−ε2{
[

a41A1 + a42A2 +
[

b41 + (α0 + β0 + γ0)δl

]

B1 +

b42B2 + b43B3

]

k=kl
} = 0.
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Hence

B1 ≈ O(ε2) . (65)

Similarly it can be shown from Eq. (57) that

B2 ≈ O(ε2) . (66)

From (52) one gets

[

ρ0ω2 − (µ0 + κ0)k2
l

]

A2 − iκ0klB3

−ε2
[

a21A1 +
{

a22 + (µ0 + κ0)δl

}

A2 + b21B1 + b22B2+

{b23 − iκ0
2kl

}B3
]

k=kl
= 0 .

Similarly from (56) one gets

iκ0klA2 + (ρ0jω2 − 2κ0 − γ0k2
l )B3

−ε2
[

a61A1 + (a62 + iκ0
2kl

)A2 + b61B1 + b62B2 + (γ0δl + b63)B3
]

k=kl
= 0.

Thus from these two equations it can be concluded that for finite A1

A2 ≈ O(ε2) and B3 ≈ O(ε2) . (67)

Lastly the first Eq. (51) becomes, on neglecting A2, B1, B2, and B3, as these
amplitudes are small to the order ε2 only:

[

ρ0ω2 − (λ0 + 2µ0 + κ0)(k2
l + ε2δl)

]

A1

−ε2 ωθ0(1−iωt0δlk)m2(im2+ωm3)k2
l

iω(1−it0ω)η0−ν0k2
l

A1

−ε2ωθ0(1 − iωt0δlk)m2(im2 + ωm3)klA1
∫

∝

0 eiβr sin klrdr

−ε2[a11]k=kl
A1 = 0.

Rewriting, one obtains, assuming A1 to be finite,

−(λ0 + 2µ0 + κ0)ε2δlA1 + ε2D3A1 + ε2D4A1 − ε2a11(kl)A1 = 0 ,

where

D3(kl) = −ωθ0(1 − iωt0δlk)m2(im2 + ωm3)k2

iω(1 − it0ω)η0 − ν0k2 ,

D4(kl) = −ωθ0(1 − iωt0δlk)m2(im2 + ωm3)kl
∫

∝

0 eiβr sin klrdr .
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Hence

δl =
D3(kl) + D4(kl) − a11(kl)

λ0 + 2µ0 + κ0
. (68)

where

D3(kl) = −ωθ0(1 − iωt0δlk)m2(im2 + ωm3)k2

iω(1 − it0ω)η0 − ν0k2

=
−ωθ0m2

2k2(1 − it0ω)
[

(ωη0 − ν0k2) + it0ωη0
]

(ωη0 − ν0k2)2 + (t0ωη0)2 , t1 = 0, δlk = 1, (L − S),

=
−ωθ0m2k2[(m2 − iωm3)(ωη0 − ν0k2) + it0ωη0

]

(ωη0 − ν0k2)2 + (t0ωη0)2 , δlk = 0, t1 > 1, (G − L).

(69)
and

D4(kl) = −ωθ0(1 − iωt0δlk)m2(im2 + ωm3)kl

∫

∝

0 eiβr sin klrdr
= −ωθ0m2

2kl[t0ω + i]
∫

∝

0 eiβr sin klrdr, t1 = 0, δlk = 1, (L − S),
= −ωθ0m2kl[ωm3 + im2]

∫

∝

0 eiβr sin klrdr, t1 > 0, δlk = 0, (G − L).
(70)

Thus Eq. (68) determines δl given by (63). The integral in D4 can be easily
evaluated. The change in wave number δl which is small therefore depends
upon the random variation of the generalized thermal field and measured
in terms of statistical means, m2, m3, for both L-S and G-L theories. For
L-S, the change depends upon m2 only, and for G-L upon m2, m3, (for,
L-S, t1 = 0, δlk = 1, k = 1, and for G-L, t1 > 0, δlk = 0, k = 2. Generalized
thermal relaxation times t0 and t1 satisfy ([10,21,29,42]) the inequalities
t1 ≥ t0 ≥ 0).

Thus it is observed that for waves for which the wave number k satis-
fies Eqs. (63)–(64), the amplitude A1 is important in comparison to other
amplitudes A2, B1, B2, and B3. Therefore Eq. (63), which represents longi-
tudinal type of displacement waves, is modified due to random fluctuation
of inhomogeneities of the medium such that the wave number is increased
by ε2 δl

2kl
.

(ii) Next let us consider waves for which

k2 = k2
n + ε2δn, where k2

n =
ρ0jω2 − 2κ0

α0 + β0 + γ0
. (71)
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From (51) one gets

[ρ0ω2 − (λ0 + 2µ0 + κ0)k2
n]A1 − ε2(λ0 + 2µ0 + κ0)δnA1

−ε2 ωθ0(1 − iωt0δlk)m2(im2 + ωm3)k2
n

iω(1 − it0ω)η0 − ν0k2 A1

−ε2ωθ0(1 − iωt0δlk)m2(im2 + ωm3)knA1
∫

∝

0 eiβr sin knrdr

−ε2[a11A1 + a12A2 + b11B1 + b12B2 + b13B3]k=kn = 0 .

This shows that
A1 ≈ O(ε2) . (72)

From (53) it follows that

[

iκ0 +
ε2δn

2k2
n

iκ0

]

knB2 − ε2[a31A1 + a32A2 + b31B1 + b32B2 + b33B3
]

= 0.

This shows that
B2 ≈ O(ε2) . (73)

Also from (52) and (56) it can be shown that for finite B1,

[

ρ0ω2 − (µ0 + κ0)k2
n

]

A2 − iκ0knB3 − ε2δn(µ0 + κ0)A2 − ε2δn

2k2
n

iκ0knB3

−ε2
[

a21A1 + a22A2 + b21B1 + b22B2 + b23B3

]

= 0
(73a)

and

iκ0knA2 + (ρ0jω2 − 2κ0 − γ0k2
n)B3 + ε2δn

2k2
n

iκ0knA2 − ε2δnγ0B3

−ε2
∫ [

a61A1 + a62A2 + b61B1 + b62B2 + b63B3
]

= 0 ,
(73b)

respectively. From these two Eqs. (73a) and (73b) it is clear that

A2 ≈ O(ε2) and B3 ≈ O(ε2) . (74)

Equation (54) however, determines δn, since

−ε2δn(α0 + β0 + γ0)B1

−ε2
∫ [

a41A1 + a42A2 + b41B1 + b42B2 + b43B3
]

= 0

and (A1, A2, B2, B3) ≈ O(ε2). Hence, if B1 is finite, then

δn =
−b41

α0 + β0 + γ0
. (75)
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Therefore, δn = 0 if b41 = 0 and amplitude B1 is finite.
It is observed that for the waves represented by (71), the amplitude B1

is important in comparison to the amplitudes A1, A2, B2, and B3. These
are amplitudes of longitudinal type microrotation waves propagating in the
random generalized thermoelastic micropolar field but are scarcely affected
by the random inhomogeneities of the medium.

(iii) Next let us examine the propagation of elastic waves for which

k2 = k2
c + ε2δc, k2

c =
ρ0ω2

λ0 + 2µ0
, (76)

and

k2 = k2
s + ε2δs, k2

s =
ρ0ω2

µ0
. (77)

Substituting (76) in (51) one observes

[−κ0ρ0ω2 − ε2(λ0 + 2µ0 + κ0)(λ0 + 2µ0)δc]A1

−ε2 ωθ0(1 − iωt0δlk)m2(im2 + ωm3)k2
c

iω(1 − it0ω)η0 − νok2
c

(λ0 + 2µ0)A1

−ε2ωθ0(1 − iωt0δlk)m2(im2 + ωm3)(λ0 + 2µ0)kcA1
∫

∝

0 eiβr sin krdr

−ε2(a11A1 + a12A2 + b11B1 + b12B2 + b13B3)(λ0 + 2µ0) = 0 .

Hence
A1 ≈ O(ε2) . (78a)

Substituting (76) in (55) it can be similarly shown that

B2 ≈ O(ε2) . (78b)

From (54) one can similarly conclude that

B1 ≈ O(ε2) . (79)

Two equations (52) and (56) are coupled with the transverse amplitudes
A2 and B3 such that

[ρ0ω2 − (µ0 + κ0)k2]A2 − iκ0kB3 − ε2(b22B2 + b23B3) = 0

and

iκ0kA2 + (ρ0jω2 − 2κ0 − γ0k2)B3 − ε2(b62B2 + b63B3) = 0 .
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Eliminating A2 and B3 one obtains the dispersion equation for two sets
of transverse type of displacement and microrotation waves propagating in
the uncoupled micropolar elastic medium and independent of thermal field,
as no thermal parameter is involved in any of the integrals b22, b23, b62, and
b63, given by

[

ρ0ω2 − (µ0 + κ0)k2
](

ρ0jω2 − 2κ0 − γ0k2
)

− κ2
0k2

−ε2

[

a22(ρ0jω2 − 2κ0 − γ0k2) + b63

[

ρ0ω2 − (µ0 + κ0)k2
]

+iκ0k(a62 − b23)

]

= 0.

(80)

This equation involves integrals a22, a62, b23, and b63 each involving correla-
tion functions between non-thermal medium-parameters only. Substituting
(76) in (80) and neglecting terms to the order ε2, the deviation δc can be
computed from:
[

ρ0ω2 − (µ0 + κ0)k2
c

](

ρ0jω2 − 2κ0 − γ0k2
c

)

− κ2
0k2

c

−ε2γ0δc
[

ρ0ω2 − (µ0 + κ0)k2
c

]

− ε2(µ0 + κ0)δc
(

ρ0jω2 − 2κ0 − γ0k2
c

)

− ε2κ2
0δc

−ε2

[

a22
(

ρ0jω2 − 2κ0 − γ0k2
c

)

+ b63
[

ρ0ω2 − (µ0 + κ0)k2
c

]

+iκ0(a62 − b23)kc

]

= 0 .

If ε2 = 0, then we know
[

ρ0ω2 − (µ0 + κ0)k2
c

](

ρ0jω2 − 2κ0 − γ0k2
c

)

− κ2
0k2

c = 0 .

Hence δc and similarly δs are obtained in the forms:

δc ≈ −b63
[

ρ0ω2 − (µ0 + κ0)k2
c

]

+ a22
(

ρ0jω2 − 2κ0 − γ0k2
c

)

+ (a62 − b23)iκ0kc

γ0
[

ρ0ω2 − (µ0 + κ0)k2
c

]

+ (µ0 + κ0)
(

ρ0jω2 − 2κ0 − γ0k2
c

)

+ κ2
0

,

(81)
and

δs ≈ −b63

[

ρ0ω2 − (µ0 + κ0)k2
s

]

+ a22

(

ρ0jω2 − 2κ0 − γ0k2
s

)

+ (a62 − b23)iκ0ks

γ0
[

ρ0ω2 − (µ0 + κ0)k2
s

]

+ (µ0 + κ0)
(

ρ0jω2 − 2κ0 − γ0k2
s

)

+ κ2
0

.

(82)
Both δc and δs are complex quantities. Computing real and imaginary parts
one can write:

k = kc +
ε2δc

2kc
= kc + ε2 Reδc

2kc
+ iε2 Imδc

2kc
, (83)
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and

k = ks +
ε2δs

2ks
= kc + ε2 Reδs

2ks
+ iε2 Imδs

2ks
. (84)

Hence for longitudinal waves

i~k ~x = ikx = ix

[

kc +
ε2δc

2kc

]

= ix

[

kc + ε2 Reδc

2kc
+ iε2 Imδc

2kc

]

,

and for transverse waves

i~k ~x = ikx = ix

[

ks +
ε2δs

2ks

]

= ix

[

ks + ε2 Reδs

2ks
+ iε2 Imδs

2ks

]

.

Thus change in the wave number and attenuation occurs in both cases,
having attenuation factors of the forms

exp

[

− ε2x

2
Im

(

δc

kc
,

δs

ks

)]

. (85)

It may be recalled here that the only term in Eq. (36) that might contribute
to some effect of thermal parameters on δc,s is

∫

〈K1G4R′
1〉( ~Aei~k·~x′

)d~x′

= −ωθ0(1 − iδlkt0ω)(~k ~A)ei~k ~x
∫ {~∇

[

G4(r)Rmm(r)
]

−iω~∇
[

G4(r)Rmm•

]}

e−i~k′·~rd~r .

This term clearly does not add anything to a22 since in our case ~k ~A =
(kA1, 0, 0). Therefore the integrals a22, a62, b23 and b63 are all independent of

the thermal field. However the integral
∫

〈K1G4R′
1〉( ~Aei~k·~x′

)d~x′ contributes
an additional term to a11 which is

−4iπωθ0(1−iδlkt0ω)k

∫

∝

0

[

(Rmm−iωRmm•)G′

4+(R′

mm−iωR′

mm•)G4

]

r2f ′dr .

This term has already been included in the radial expression for a11 in (58).

8 Attenuation of high frequency nonthermal waves

in a particular case

This topic has already been discussed in [18]. However for the sake of
continuity of discussion, the salient features are briefly enumerated below.
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It may be noted that the expressions derived for δc and δs do not depend
on generalized thermal parameters. Hence the phenomenon of propagation
of transverse type of displacement and microrotation waves in the random
micropolar elastic medium is considered taking

Rρρ(r) = 〈ρ2
1〉e−r

a 6= 0, a〉0 , (86)

and making all other auto- and cross-correlation functions vanish. (Auto-
correlation functions 〈κ1κ′

1〉, 〈β1β′
1〉, 〈γ1γ′

1〉, signifying effects of random vari-
ation of micropolar elastic properties of the medium appear several times in
b63 making calculations unmanageably lengthy and cumbersome and hence
are omitted). Then

b63(kc) =
4jπω2〈ρ2

1〉
kc

∫

∝.

0
re−

r
a

[

G4(r)
]

33
sin(kcr)dr (87)

and

a22(kc) = a62(kc) = b23(kc) = 0 . (88)

where [G4(r)]33 has already been evaluated [18]. Components including
[G4(r)]33 of the associated Green’s tensor have been reproduced in the
App. III for ready-reference.

For large ω the approximate values of k2
c , k2

s , k2
m, and k2

n were computed
to show that transverse type of displacement waves attenuate. In a similar
way it was shown that high frequency transverse type microrotation waves
attenuate if j > 1. Results indicate that body waves of these types attenuate
due to randomness as they propagate through the medium, only in the non-
thermal environment.

9 Computation of the dispersion of the field from
the mean field

In this section we propose to give an outline of the procedure to evaluate
an expression for dispersion of the field from the mean field. It is assumed
that v0(~x) and v(~x) represent solutions of operator equations L0v0(~x) = 0
and Lv(~x) = 0 respectively, where L = L0 + εL1 + ε2L2 + O(ε3).

Following Karal and Keller ([23], Eq. (5)) it can be easily shown that

v = v0 + εL−1
0 L1v0 + ε2(L−1

0 L1L1
0l1 + L−1

0 l2)v0 + O(ε2) . (89a)



On wave propagation in a random micropolar. . . 47

Hence

v̄T = v̄T
0 + ε(L−1

0 L1v0)T + ε2
[

(L−1
0 L1L−1

0 L1v0)
T

+ (L−1
0 L2v0)

T
]

+ O(ε3) ,

(89b)
where vT is the transpose of v and v̄T is the complex conjugate of vT .
Therefore

v̄T v = v̄T
0 v0 + ε

[

(L−1
0 L1v0)T v0 + v̄T

0 (L−1
0 L1v0)

]

+ε2

[

(L−1
0 L1v0)

T
(L−1

0 L1v0) + (L−1
0 L1L−1

0 L1v0)T v0

+(L−1
0 L2v0)T v0 + v̄T

0 (L−1
0 L1L−1

0 L1v0) + v̄T
0 (L−1

0 L2v0)

]

+ O(ε3)

We take expectation of this equation taking that 〈L1〉 = 0, so that

〈

v̄T
0 (L−1

0 L1v0)
〉

= v̄T
0 L−1

0 〈L1〉 v0 = 0

and
〈

(L−1
0 L1v0)T v0

〉

=
(

L−1
0 〈L1〉 v0

)T
v0 = 0 .

The condition 〈L1〉 = 0 with the help of Eq. (23), leads to

m2 = iωm3 and 1 = it0ω,

taking δlk = 1 and assuming ω to be complex. Combining these two rela-
tions one gets

m2 = im3 × 1

it0
.

Hence
m3 = t0m2 . (90)

Therefore

v̄T v = v̄T
0 v0 + ε2

[〈

(L−1
0 L1v0)

T
(L−1

0 L1v0)

〉

+

〈

(L−1
0 L1L−1

0 L1v0)
T

v0

〉

+

〈

(L−1
0 L2v0)

T
v0

〉

+
〈

v̄T
0 (L−1

0 L1L−1
0 L1v0)

〉

+
〈

v̄T
0 (L−1

0 L2v0)
〉

]

+ O(ε3) . (91)
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From (89a) we obtain on taking the expectation

〈v〉 = v0 + ε2
[

〈

L−1
0 L1L−1

0 L1v0

〉

+
〈

L−1
0 L2v0

〉

]

+ O(ε3) .

Hence

v0 = 〈v〉 − ε2
[

〈

L−1
0 L1L−1

0 L1v0

〉

+
〈

L−1
0 L2v0

〉

]

+ O(ε3) .

and by iteration it follows that

v0 = 〈v〉 − ε2
[ 〈

L−1
0 L1L−1

0 L1

〉

〈v〉 +
〈

L−1
0 L2

〉

〈v〉
]

+ O(ε3) (92)

and

v̄T
0 =

〈

v̄T
〉

− ε2
[〈

(

L−1
0 L1L−1

0 L1 〈v〉
)T〉

+

〈

(

L−1
0 L2 〈v〉

)T〉]

+ O(ε3)

(93)
Thus

v̄T
0 v0 =

〈

v̄T
〉

〈v〉 − ε2
[〈

(

L−1
0 L1L−1

0 L1 〈v〉
)T〉

〈v〉 +
〈

v̄T
〉

×
〈(

L−1
0 L1L−1

0 L1 〈v〉
)〉

+

〈

(

L−1
0 L2 〈v〉

)T〉

〈v〉

+
〈

v̄T
〉 〈(

L−1
0 L2 〈v〉

)〉]

+ O(ε3) (94)

Substituting Eqs. (92)–(94) into (91) we obtain the expression

〈

v̄T v
〉

−
〈

v̄T
〉

〈v〉 = ε2
[〈

(L−1
0 L1 〈v〉)

T
(L−1

0 L1 〈v〉)
〉]

+ O(ε3) , (95)

which is equal to sum of variances of real and imaginary parts of all the
components of v. This relation holds only under the condition that m3 =
t0m2. Taking in general

L = (Mlj), (lj) = 1, 2, 3 (96)

L−1
0 f =

∫

(Glj)ei~k · ~x′

d~x′ , (97)

〈v(~x)〉 = [Aj ]ei~k · ~x , (98)
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~k = ~k1 + i~k2 , k1 , k2 ≡ real , (99)

〈L1〉 = 0 ,

it has been shown that
〈

v̄T v
〉

−
〈

v̄T
〉

〈v〉 = ε2e−2Im~k · ~x (
∑ |Cl|2)

= ε2e−2Im~k ~xℓ (Al) .
(100)

where ℓ (Al) ≥ 0 is seen from (92) to be a bilinear function of the ampli-
tudes Al. Then Eq. (100) shows that the dispersion (

√
variance) of the field

from the mean field represented by the plane wave (98), is a small quantity
of order ε and that it decays as the wave propagates in those cases where
Im k > 0. It follows that [18] the field may differ from the plane wave mean
field by a quantity of order ε with finite probability.

10 Variance for micropolar generalized thermo-

elastic wave propagation in the random medium

This analysis is next applied to the waves in the random micropolar gen-
eralized thermoelastic medium. In this case

(101)

where
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Let us write
(

L−1
0 L1 〈v〉

)T
= ei~k2 · ~x ei~k1 · ~x(c1 + id1 , c2 + id2) , (102)

where ci, di, are linear functions of A1, A2, B1, B2, and B3. Then it can be
shown as before that

(L−1
0 L1 〈v〉)

T
(L−1

0 L1 〈v〉) = e−2(Imk)x ℓ (Al , Bl)

where ℓ(Al , Bl) is clearly a non-negative, bilinear function of Al and Bl.
Hence the amount of dispersion of waves from the mean field comes out to
be εe−(Imk)x

√
ℓ.

It may be concluded that the dispersion of the wave field from the
mean field may be obtained following this procedure in many other cases
examined by employing Keller’s perturbation theory.

11 The uncoupled problem

This section proposes to outline, approximately following Chow [25] the
method of examining the uncoupled random micropolar generalized-thermal
problem. With this end in view the ~u−term is dropped from the tempera-
ture Eq. (7), so that the reduced temperature equation becomes

η(~x)
[

θ̇(~x, t) + t0θ̈(~x, t)
]

= ~∇
{

ν(~x)~∇[θ(~x, t)]
}

+ q .
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The objective is to study the random elasticity-displacement Eq. (5) inde-
pendently. The three dispersion equations (29)–(31) now become:

[

ρ0ω2 ~A − (λ0 + µ0)(~k ~A)~k − (µ0 + κ0)k2 ~A
]

+ iκ0(~k × ~B) − ε(im2 + ωm3)C~k

+ε2
[

ωθ0(1 − ωt0δlk)m2(m2 − iωm3)(~k ~A)
]

∫

[

(~∇G4)
]

e−i~k ~rd~r

−ε2
∫







〈[M1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+P1{G2(M ′
1

~A + P ′
1

~B + K ′
1C) + G3(N ′

1
~A + Q′

1
~B)}

+K1G4(R′
1

~A + S′
1C)]〉






e−i~k·~rd~r = 0 ,

(103)

iκ0(~k × ~A) −
[

(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k ~B)~k
]

−ε2
∫

[

〈[N1{G0(M ′
1

~A + P ′
1

~B + K ′
1C) + G1(N ′

1
~A + Q′

1
~B)}

+Q1{G2(M ′
1

~A + P ′
1

~B + K ′
1C) + G3(N ′

1
~A + Q′

1
~B)}]〉

]

e−i~k·~rd~r = 0

(104)
and

[

iω(1 − it0ω)η0 − ν0k2]C = 0 . (105)

Simplified Case I. Equation (105) is easily solvable since C 6= 0. The
first two equations can be analyzed as before or otherwise. Considering
equations up to ε-order terms one gets

[

ρ0ω2 ~A−(λ0+µ0)(~k ~A)~k−(µ0+κ0)k2 ~A
]

+iκ0(~k× ~B)−ε(im2+ωm3)C~k = 0

and

iκ0(~k × ~A) −
[

(2κ0 − ρ0jω2 + γ0k2) ~B + (α0 + β0)(~k ~B)~k
]

= 0 .

The six equations are

[

ρ0ω2 − (λ0 + 2µ0 + κ0)k2]A1 − ε(im2 + ωm3)Ck = 0 ,

[

ρ0ω2 − (µ0 + κ0)k2]A2 + iκ0kB3 = 0 ,

iκ0kB2 = 0

and
[

(2κ0 − ρ0jω2) + (α0 + β0 + γ0)k2]B1 = 0 ,

(2κ0 − ρ0jω2 + γ0k2)B2 = 0 ,
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iκ0kA2 − (2κ0 − ρ0jω2 + γ0k2)B3 = 0 .

It is clear that the amplitude ratio

A1

C
=

ε(im2 + ωm3)k

ρ0ω2 − (λ0 + 2µ0 + κ0)k2
= O(ε)

and is dependent upon expectation values of generalized thermal parame-
ters m and m• = t1m. Moreover A1 is finite but small such that A1 = O(ε).
Also B2 = 0 indicates that there is no propagation along B2. Further B1 6= 0
and B1 ≡ finite, indicates that waves with wave number given by

k2 =
ρ0jω2 − 2κ0

α0 + β0 + γ0

propagate in the medium. Finally the coupled dispersion equation for waves
propagating along A2 and B3 directions is represented by

A2

B3
= − iκ0k

ρ0ω2 − (µ0 + κ0)k2 =
2κ0 − ρ0jω2 + γ0k2

iκ0k
,

[

ρ0ω2 − (µ0 + κ0)k2
][

2κ0 − ρ0jω2 + γ0k2
]

= κ2
0k2 .

Case II. Unlike Chow ([25], cf. Eq. (4.3)), we retain the ε-order term in
(31) to get

[

iω(1 − it0ω)η0 − ν0k2]C − εωθ0(1 − iωt0δlk)m2(~k ~A) = 0 . (106)

Then Eqs. (103), (104), and (105) can be analyzed as in Sec. 4 or otherwise.

12 Summary and conclusions

1. The integrand of a11 only is dependent on generalized thermal param-
eters including thermomechanical auto-correlation function and the
cross-correlation function between thermomechanical and generalized
thermomechanical coupling parameters. This dependence holds good
both for L-S and G-L thermoelastic fields.

2. Numerical solutions can be easily obtained by setting

Rmm(r) = 〈ρ2
1〉e−

r
b , Rmm(r) = 〈ρ2

1〉e−
r
b .
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3. On the other hand integrands of a22, a62, b23, and b63 are clearly
independent of auto- and cross-correlation functions Rmm(r) and
Rmm•(r).

4. The three vector wave equations considered up to first order pertur-
bation only leads to the dispersion equation for the wave propagation
in the deterministic micropolar elastic medium. However effects of
generalized thermal field are discernible only if the second order per-
turbation term is retained in this dispersion equation. This will be
evident from the Eq. (48) of Sec. 4.

5. Equation (64) shows that longitudinal type displacement waves get
modified due to random fluctuation of inhomogeneities of the microp-
olar medium under generalized thermoelasticity such that the wave
number is increased by ε2 δl

2kl
, where δl is a function of Rmm(r) and

Rmm•(r). These results are valid for both L-S and G-L generalized
thermoelasticity.

6. Equation (68) shows that the change in wave number δl depends upon
the random variation of the generalized thermal field and measured in
terms of statistical means, m2 and m3, for both L-S and G-L theories.
For L-S, the change depends upon m2 only, and for G-L upon m2 and
m3.

7. Equation (100) shows that the dispersion (
√

variance) of the field
from the mean field is a small quantity of order ε and that it decays
as the wave propagates in those cases where Im k > 0. This result
holds good only if m3 = t0m2.

8. It is quite clear from Eqs. (70) and (75) that longitudinal type mi-
crorotation waves propagate in the random generalized thermoelastic
micropolar medium but are scarcely affected by the random inhomo-
geneities of the medium, at least up to the domain of second order
perturbation. In this case the amplitude B1 is important in compar-
ison to the amplitudes A1, A2, B2, and B3.

The study of micropolar materials and micropolar generalized-
thermoelasticity in particular has been enormously drawing the in-
terest of applied mathematicians and engineers in recent times. Mi-
cropolar materials include fibrous and granular or composite sub-
stances. The domain of micropolarity is therefore expanding in time.
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The study of micropolar properties in relation to wave propagation
in coupled media therefore has been gaining importance from the
perspective of probable applications in industry, engineering and to
a great extent in earthquake prediction and seismology. Research
studies are being carried out through various methodologies. The
present paper has introduced the smooth perturbation technique [21]
in examining the phenomenon of wave propagation in an infinite ran-
dom generalized thermoelastic micropolar medium. In future certain
other methods, viz., iterative perturbation method [31] or the method
of scatters [37] may be employed in measuring effects of random varia-
tion of parameters. The domain decomposition method developed by
Adomian [43] may also be employed to study micropolar elasticity in
coupled dynamic problems. There is possibility of solving micropolar
coupled elastic problems with the help of fractional calculus theories
[44,45].
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Appendix I

Components of the associated Green’s tensor

The 36+9 components of the Green’s tensor

G =

∣

∣

∣

∣

∣

∣

∣

G1 G2 0
G3 G4 0
0 0 G5

∣

∣

∣

∣

∣

∣

∣

,

where Gi, i = 1, 2, 3, 4, are 3 × 3 matrices, are then obtained and given by
(for ω2 >> κ0(κ0 + 2µ0):

(Gj)kl = (Gj)kkδkl (1)

with (G1)11 = (G1)22 for j = 1, 4;

(Gj)kl = 0 if (k, l) 6= (1, 2), (2, 1); (2)

with (G1)12 = −(G1)21, j = 2, 3;

and (G3)kl = −(G2)kl.

Components of G5 have been defined in (27) and (28).

The independent components (G1)11, (G1)33, (G2)12, (G4)11 and (G4)33

are given by:

(G1)11 =
iκ2

0
2πγ0(µ0 + κ0)2r3

[

r2 − (i + kmr)
(k2

m − k2
c ) (k2

m − k2
s) eikmr

+ r2 − (i +kcr)
(k2

c − k2
m) (k2

c − k2
s)eikcr + r2 − (i + ksr)

(k2
s − k2

m) (k2
s − k2

c )eiksr
]

− 1
4πr3

[

r2k2
s′

+ irks′ −1

µ0k2
s′

eiks′ r − ikc′r −1

(λ0 + 2µ0)k2
c′

eikc′ r

]

(G1)33 = −iκ0
πγ0(µ0 + κ0)22r3

[

i + kmr
(k2

m − k2
c ) (k2

m − k2
s)eikmr + i + kcr

(k2
c − k2

m) (k2
c − k2

s)eikcr

+ i+ksr
(k2

s −k2
m) (k2

s−k2
c )

eiksr
]

+ 1
4πr3

[

2(iks′ r−1)

µ0 k2
s′

eiks′ r − k2
c′

r2+2ikc′r−2

(λ0+2µ0)k2
c′

eikc′ r

]

(G2)12 =
−k0

2πγ0(k2
c − k2

s) (µ0 + k0)r2

[

(i + kcr)eiKcr − (i + ksr)eiKsr
]

The other 9 components have been computed in the text.
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Appendix II

Method of forming products and taking expectation values

〈M1G0M
′

1〉( ~Aei~k·~x′

), etc.

〈N1G0M ′
1〉( ~Aei~k ~x′

)

= κ1
~∇ × G0[−(λ′

1 + µ′
1)(~k ~A)~k − (µ′

1 + κ′
1)k2 ~A+

i~∇′λ′
1(~k ~A) + i ~∇′µ′

1 × (~k × ~A)+i[ ~∇′(2~µ′ + κ′
1)~k] ~A + ρ′

1ω2 ~A]ei~k ~x′

A2
∂(G0)22

∂x − A1
∂(G0)11

∂y )∂(2Rκµ+Rκκ)
∂x′ .
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+ω2Rκρ(−A2
∂(G0)22

∂z , A1
∂(G0)11

∂z , A2
∂(G0)22

∂x − A1
∂(G0)11

∂y )]ei~k·~x′

.

Appendix III

A note on transforming to radial forms

~r = ~x − ~x′ = (ξ, η, ς) = (r cos θ, r sin θ cos φ, r sin θ sin φ);

∂
∂x = ∂

∂ξ , ∂
∂y = ∂

∂η , ∂
∂z = ∂

∂ς ; ∂
∂x′ = − ∂

∂ξ , ∂
∂y′ = − ∂

∂η , ∂
∂z′ = − ∂

∂ς ;

r2 = ξ2 + η2 + ς2; r ∂r
∂ξ = ξ;∴ ∂r

∂ξ = ξ
r , ∂r

∂η = η
r , ∂r

∂ς = ς
r ;

∂
∂x = ∂

∂ξ = ( ∂
∂r )∂r

∂ξ = ξ
r

∂
∂r = cos θ ∂

∂r ;

∂
∂y = η

r
∂
∂r = sin θ cos φ ∂

∂r ; ∂
∂z = ς

r
∂
∂r = sin θ sin φ ∂

∂r ;

∂2

∂x2 = ξ
r

∂
∂r ( ξ

r
∂
∂r ) = cos2 θ ∂2

∂r2 ; ∂2

∂y2 = η
r

∂
∂r (η

r
∂
∂r ) = sin2 θ cos2 φ ∂2

∂r2 ;

∂2

∂z2 = ς
r

∂
∂r ( ς

r
∂
∂r ) = sin2 θ sin2 φ ∂2

∂r2 .

1.
∫ 2π

0 cos2 φdφ = .
∫ 2π

0 sin2 φdφ = π;

2. f(r) = sin kr
kr

3. f ′(r) = d
d(kr)

sin kr
kr ; f ′′(r) = d2

d(kr)2
sin kr

kr

4.
∫ π

0 e−ikr cos θ sin θdθ = 2 sin kr
kr = 2f(r) =

∫ 1
−1 e−ikrxdx

5.
∫ π

0 e−ikr cos θ sin θ cos θdθ = 2if ′(r) =
∫ 1

−1 xe−ikrxdx

6.
∫ π

0 e−ikr cos θ sin θ cos3 θdθ = −2if ′′′(r)
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7.
∫ π

0 e−ikr cos θ sin3 θ cos θdθ = 2i[f ′(r) + f ′′′(r)]

8.
∫ π

0 e−ikr cos θ sin θ cos2 θdθ = −2f ′′(r)

9.
∫ π

0 e−ikr cos θ sin3 θdθ = −2[f(r) + f ′′(r)]

10.
∫ 2π

0 cos3 φdφ =
∣

∣

∣sin φ − 1
3 sin3 φ

∣

∣

∣

2π

0
= 0.

Appendix IV

Finite parts of some integrals [46]

(i) Pf
∫

∞

0
e−pt

t dt = − log p − γ = − log Cp, Rep > 0,
where γ = log C = .577 (Euler’s constant) .

(ii) Pf
∫

∞

0
e−pt

t2 dt = p(log p + γ − 1) .

(iii)
∫

∞

0 e−pt sin bt
t dt = tan−1 b

p , |arg p| < π/2 .

(iv) Pf
∫

∞

0 e−pt cos bt
t dt = −1

2 log(p2 + b2) − γ, |arg p| < π/2 .

(v) Pf
∫

∞

0 e−pt sin bt
t2 dt = −r

1 [θ cos θ + {log r − Ψ(2)} sin θ, |arg p| < π/2 ,

θ = tan−1 b
p , r =

√

p2 + b2.

(vi) Pf
∫

∞

0 e−pt cos bt
t2 dt = −r

1

{

[

log r − Ψ(2)
]

cos θ − θ sin θ

}

, |arg p| < π/2,

Ψ(2) = −γ + 1 + 1
2 .


