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Abstract. This article presents an important task of classification, i.e. mapping surfaces which separate patterns in feature space in the scope 
of radar emitter recognition (RER) and classification. Assigning a tested radar to a particular class is based on defining its location from the 
discriminating areas. In order to carry out the classification process, it is necessary to define metrics in the feature space as it is essential to 
estimate the distance of a classified radar from the centre of the class. The method presented in this article is based on extraction and selection 
of distinctive features, which can be received in the process of specific emitter identification (SEI) of radar signals, and on the minimum dis-
tance classification. The author suggests a RER system which consists of a few independent channels. The task of each channel is to calculate 
the distance of the tested radar from a given class and finally, set the correct identification coefficient for each recognized radar. Thus, a multi-
channel system with independent distance measurement is obtained, which makes it possible to recognize particular radar copies. This system 
is implemented in electronic intelligence (ELINT) system and tested in real battlefield conditions.

Key words: radar emitter recognition (RER), specific emitter identification (SEI), minimum distance classification, ELINT system.
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cedure is the problem to define how to estimate the distance of 
a tested radar emitter signal from the centre of the class taking 
into consideration variance and correlation of vector’s features. 
The RER method also provides a solution when the features of 
radar patterns are not linearly separable. RER method bases 
on the analysis of basic measurable parameters of the radar 
signal (such as RF, PW, PRI) as result of which it is possible 
to extract additional distinctive features. The RER process is 
called specific emitter identification (SEI).

Additionally extracted distinctive features, which are re-
ceived in the process of RER, may be a product of out-of-band 
radiation of radar devices [12]. These features may be of fractal 
type, which is presented in the works [13, 14, 15]. The re-
ceived features may also be a product of inter-pulse modulation 
[16] and intrapulse analysis of a radar signal [17]. Of course, 
there are more complicated approaches, which offer effective 
methods for solving the classification task (i.e. mapping sepa-
rating surfaces). These are based on solving the linear approx-
imation task recurrently, using gradient methods and nonlinear 
approximation [18], nonlinear approximation of random func-
tion [19] and other methods for adaptive regression splines, 
classification and approximation [20, 21]. This is a typical solu-
tion for identification systems such as perceptrons or artificial 
neural network (ANN), e.g., support vector machine networks 
(SVM) [22] using Widrow-Hoff learning algorithms, Adaline 
ANN or the method based on back-propagating errors and 
neural network classifier with low discrepancy optimization 
[23, 24]. Also, the Fourier transform has been widely used in 
radar signal and image processing. Another work [25] presents 
joint time-frequency (JTF) domain analysis as a useful tool for 
improving radar signal and image processing for time-and fre-
quency-varying cases. In [26], quadratic time-frequency anal-
ysis and sequential recognition for SEI is presented. Another 
approach based on three-dimensional distribution feature is 

1.	 Introduction

In the theory of radar signals recognition and their emission 
sources, the main task is to set distinctive patterns of such 
signals and work out methods for their distinguishing [1, 2]. 
In the literature, terms such as source emission patterns sep-
arating surfaces in the measurable features space are widely 
used to describe pattern recognition and pattern classification 
[3, 4, 5]. Taking into account the fact above, radar emitter rec-
ognition and classification is based on defining the location of 
the emission source from the above separating surfaces. Here, 
it is essential to indicate a very significant fact, namely, in order 
to set a distinctive radar signal pattern, radar metrics needs to 
be defined in the measurable feature space of this signal; only 
after that the pattern vector of such a signal in the database can 
be designed [1, 6, 7]. However, what needs to be taken into 
account is the specificity of such a database for ELINT systems 
and electronic warfare (EW), [8, 9, 10]. The specificity of such 
a database is not the subject of the content of this article. Radar 
metrics is based on a distinctive radar signal pattern used to 
calculate the distance of this pattern from the centre of the class. 
Classification in this case is based on calculation of the distance 
of the recognized radar pattern from the centre of the class and 
classifying it to the class with the smallest distance. In order for 
this problem of radar signal classification to be solvable, it is 
necessary to define the class of a radar. Defining classes is not 
only setting the expected average values of basic measurable 
parameters of a radar signal, i.e., radio frequency (RF), pulse 
width (PW) and pulse repetition interval (PRI). This process 
also requires defining variance and correlation of these features 
[11]. The second significant element of the classification pro-
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presented in [27]. Radar emitter signal identification based on 
hierarchical agglomerative clustering is analyzed in [28]. Vector 
neural network (VNN) with a supervised learning algorithm 
suitable for signal classification is very useful for emitter iden-
tification and radar classification process, as shown in [29, 30].

2.	 Multi-channel recognition system  
with an independent distance measurement

During the measurement procedure, radar signals in the form of 
basic vector parameters VB are defined according to (1), where 
nw is the number of pulses in samples which are classified to the 
analysis and k is the number of pulses in a measurement sample. 
As a general rule, in one sample there are 5000 pulses while 
a superheterodyne ELINT receiver is used to record a package 
of radar signals [12].
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The suggested RER system consists of independent 
channels. Each of the channels is assigned to one class of 
the recognized radars. The main task of every single 
channel is to estimate the distance of a tested radar signal 
from its class. The distance of the tested radar signal 
(defined by features’ values of its basic measurable 
parameters) nRBV from a particular class with i  index 
marked as )( BVid . It should be mentioned that it is the 
value estimated as a distance from “ BV  point” to the centre 
of i-class. As a result of the procedure above, the 
measurement of the distance received from channels is the 
base for recognition. The radar is recognized as belonging 
to a particular class with w  index, if 

 )(),(min)( 2B21B1 VVu dddw  . A significant problem 
which comes out in the method above concerns the rule of 
choosing a decision, which is based on defining values of 

different )( BVid functionals. This is a problem which 
concerns mathematical reasoning [31]. In order to solve 
this problem it is assumed that kBV  is a random variable 
which defines features’ values of elements of a radar class 
with k  index and )(E Bkjd V  is an expected value of the 

distance jd for the radar class with k  index. 

3. Defining the distance on impartiality 
condition 

To start with, a particular class G of radars is chosen for 
which the centre of the class )E( BB VV   is defined and 
covariance matrix of the vector features BV from G class, 
according to (2), where T is a sign of matrix transposition. 
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The eigenvalues denoted as k  and orthogonal 
eigenvectors denoted as kt  for each covariance matrix R are 
calculated according to (3) and (4). 
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In order to define the distance of BV  vector from G class, 
Karhunen-Loeve (K-L) transform with transformation 
matrix T are used. The lines of the T matrix are the R 
matrix’s eigenvectors, according to (5), where for BV  
argument there is a result in a form of a transformation 
vector BTV according to (6). 
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Taking into consideration the fact that the base for 
estimation of the distance of BV vector feature from G class 
is the difference BB VVr  , the next step is to define K-
L transform of the estimated difference, according to (7). 
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The eigenvalues denoted as λk and orthogonal eigenvectors 
denoted as tk for each covariance matrix R are calculated ac-
cording to (3) and (4).
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analysis and sequential recognition for SEI is presented. 
Another approach based on Three-Dimensional 
Distribution Feature is presented in the work [27]. There is 
also radar emitter signal identification based on 
hierarchical agglomerative clustering analyzed in [28]. 
Vector Neural Network (VNN) with a supervised learning 
algorithm suitable for signal classification is very useful for 
emitter identification and radar classification process, as 
shown in the work [29,30]. 

2. Multi-channel recognition system with an 
independent distance measurement 

During the measurement procedure, radar signals in the 
form of basic vector parameters BV are defined according 
to (1), where wn is the number of pulses in samples which 
are classified to the analysis and k is the number of pulses 
in a measurement sample. As a general rule, in one sample 
there are 5000 pulses while a superheterodyne ELINT 
receiver is used to record a package of radar signals [12].   
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The suggested RER system consists of independent 
channels. Each of the channels is assigned to one class of 
the recognized radars. The main task of every single 
channel is to estimate the distance of a tested radar signal 
from its class. The distance of the tested radar signal 
(defined by features’ values of its basic measurable 
parameters) nRBV from a particular class with i  index 
marked as )( BVid . It should be mentioned that it is the 
value estimated as a distance from “ BV  point” to the centre 
of i-class. As a result of the procedure above, the 
measurement of the distance received from channels is the 
base for recognition. The radar is recognized as belonging 
to a particular class with w  index, if 

 )(),(min)( 2B21B1 VVu dddw  . A significant problem 
which comes out in the method above concerns the rule of 
choosing a decision, which is based on defining values of 

different )( BVid functionals. This is a problem which 
concerns mathematical reasoning [31]. In order to solve 
this problem it is assumed that kBV  is a random variable 
which defines features’ values of elements of a radar class 
with k  index and )(E Bkjd V  is an expected value of the 

distance jd for the radar class with k  index. 

3. Defining the distance on impartiality 
condition 

To start with, a particular class G of radars is chosen for 
which the centre of the class )E( BB VV   is defined and 
covariance matrix of the vector features BV from G class, 
according to (2), where T is a sign of matrix transposition. 
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The eigenvalues denoted as k  and orthogonal 
eigenvectors denoted as kt  for each covariance matrix R are 
calculated according to (3) and (4). 
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In order to define the distance of BV  vector from G class, 
Karhunen-Loeve (K-L) transform with transformation 
matrix T are used. The lines of the T matrix are the R 
matrix’s eigenvectors, according to (5), where for BV  
argument there is a result in a form of a transformation 
vector BTV according to (6). 
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Taking into consideration the fact that the base for 
estimation of the distance of BV vector feature from G class 
is the difference BB VVr  , the next step is to define K-
L transform of the estimated difference, according to (7). 

  

� (6)

Taking into consideration the fact that the base for estima-
tion of the distance of VB vector feature from G class is the 
difference r = VB ¡ V–B, the next step is to define K–L transform 
of the estimated difference, according to (7).
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition

)(E)(E 2B21B1 VV dd  . 
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T
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},...,2,1{)( B Lind ii VE  (14) 
 

The values of the distance estimated according to (13) in 
spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
emitter signal. 

� (7)

The decorrelation process of the vector’s features’ co-ordi-
nates according to (8) and the normalization process of disper-
sion of co-ordinates’ values according to (9) results in a cor-
relation matrix equal to an identity matrix according to (10).
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  

 

Λ
tttttt

tttttt
tttttt

RtRtRt

t

t
t

tttR

t

t
t

TRTTrrTTrTryy











































































),...,,(
..

............
...
...

],...,,[
...

],...,,[
...

)(E]][[E)(E

21

2211

2222121

1212111

21
2

1

21
2

1

n

n
T
nn

T
n

T
n

n
T

n
TT

n
T

n
TT

n

T
n

T

T

n

T
n

T

T

TTTTT

diag 






 (8) 

 

















































n

nn y

y

y

z

z
z







...
... 2

2

1

1

2

1

z    (9) 

)1,...,1,1(

..
............

...

...

E

..
............

...

...

)'(E

2

2

1

2

2

2

2

22

12

22

1

1

21

21

1

11

21

22212

12111

diag

yyyyyy

yyyyyy

yyyyyy

zzzzzz

zzzzzz
zzzzzz

E

n

nn

n

n

n

n

n

n

n

n

nnnn

n

n





























































zz

 (10) 

 
The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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The values of the distance estimated according to (13) in 
spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
emitter signal. 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
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iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
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iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  

 

Λ
tttttt

tttttt
tttttt

RtRtRt

t

t
t

tttR

t

t
t

TRTTrrTTrTryy











































































),...,,(
..

............
...
...

],...,,[
...

],...,,[
...

)(E]][[E)(E

21

2211

2222121

1212111

21
2

1

21
2

1

n

n
T
nn

T
n

T
n

n
T

n
TT

n
T

n
TT

n

T
n

T

T

n

T
n

T

T

TTTTT

diag 






 (8) 

 

















































n

nn y

y

y

z

z
z







...
... 2

2

1

1

2

1

z    (9) 

)1,...,1,1(

..
............

...

...

E

..
............

...

...

)'(E

2

2

1

2

2

2

2

22

12

22

1

1

21

21

1

11

21

22212

12111

diag

yyyyyy

yyyyyy

yyyyyy

zzzzzz

zzzzzz
zzzzzz

E

n

nn

n

n

n

n

n

n

n

n

nnnn

n

n





























































zz

 (10) 

 
The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 

 

)()(

)()(

...
...00

............
0...0
0...0

],...,,[

)(1)(

)()(

BB
1

BB

BB
1

BB

2

1

1

1
2

1
1

21

1

1

2

1

2

1

2
B

VVRVV

VVTΛTVV

r

t

t
t

tttr

rttr

rtzzV







































































T

TT

T
n

T

T

n

n
T

n

k

T
k

k
k

T

n

k k

T
k

n

k k

k
n

k
k

T yzd










 (11)  

 
As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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The values of the distance estimated according to (13) in 
spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
emitter signal. 
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The d(VB) distance of VB vector from G class is defined 
according to (11), where d(VB) functional defines the distance 
from VB features’ vector of a tested radar to the V–B centre as 
a Mahalanobis distance.
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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the base to define the class of the nearest recognized radar 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  

 

Λ
tttttt

tttttt
tttttt

RtRtRt

t

t
t

tttR

t

t
t

TRTTrrTTrTryy











































































),...,,(
..

............
...
...

],...,,[
...

],...,,[
...

)(E]][[E)(E

21

2211

2222121

1212111

21
2

1

21
2

1

n

n
T
nn

T
n

T
n

n
T

n
TT

n
T

n
TT

n

T
n

T

T

n

T
n

T

T

TTTTT

diag 






 (8) 

 

















































n

nn y

y

y

z

z
z







...
... 2

2

1

1

2

1

z    (9) 

)1,...,1,1(

..
............

...

...

E

..
............

...

...

)'(E

2

2

1

2

2

2

2

22

12

22

1

1

21

21

1

11

21

22212

12111

diag

yyyyyy

yyyyyy

yyyyyy

zzzzzz

zzzzzz
zzzzzz

E

n

nn

n

n

n

n

n

n

n

n

nnnn

n

n





























































zz

 (10) 

 
The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 

 

)()(

)()(

...
...00

............
0...0
0...0

],...,,[

)(1)(

)()(

BB
1

BB

BB
1

BB

2

1

1

1
2

1
1

21

1

1

2

1

2

1

2
B

VVRVV

VVTΛTVV

r

t

t
t

tttr

rttr

rtzzV







































































T

TT

T
n

T

T

n

n
T

n

k

T
k

k
k

T

n

k k

T
k

n

k k

k
n

k
k

T yzd










 (11)  

 
As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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The values of the distance estimated according to (13) in 
spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
emitter signal. 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
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iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
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spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
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iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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The values of the distance estimated according to (13) in 
spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
emitter signal. 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
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iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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As a result of averaging out the received functional ac-
cording to (11), Ed(u) value is received according to (12).
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to use the definition 
of distance )( BVid  for the channel with index 

},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
T

iiiii ))((E BBBB VVVVR  is the covariance matrix of 

iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
elements, fulfill the impartiality condition
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spite of iR  parameter diversity, can be comparable and are 
the base to define the class of the nearest recognized radar 
emitter signal. 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 

 




































































n

k k

k
n

k k

k

n

T

TTT

T

nyy

yy

d

1

2

1

2

1

1
2

1
1

11
BB

1
BBB

EE

...00
............
0...0
0...0

E

][E][E

)]()[(E)(E








yy

ΛTrΛTr

VVRVVV

 (12) 
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},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
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iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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},...,2,1{ Li  according to (13), where 
iBV  is the expected 

value of iG features’ class vector, while 
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iG class. It is also necessary to mention that id  
functionals, which are defined by (14), where iBV  is a 
random variable which defines the values of iG  class 
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The decorrelation process of the vector’s features’ co-
ordinates according to (8) and the normalization process of 
dispersion of co-ordinates’ values according to (9) results 
in a correlation matrix equal to an identity matrix according 
to (10).  
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The )( BVd distance of BV  vector from G class is defined 
according to (11), where )( BVd  functional defines the 
distance from BV  features’ vector of a tested radar to the

BV  centre as a Mahalanobis distance. 
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As a result of averaging out the received functional 
according to (11), )(uEd value is received according to 
(12). 
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The analysis above makes it possible to create a scheme of 
recognition system with the use of K-L transform, which is 
presented in Fig. 1. 
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variance matrix, R+ is Moore-Penrose inverse of covariance 
matrix, according to the relation R+ = TTMT, where M is the 
matrix with (21).
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according to (15), estimation of covariance matrix of 
classes’ patterns according to (16) for each of the 
collections iG  class patterns and defining eigenvalues of 
covariance matrix iR and belonging to them, orthogonal 
eigenvectors according to (17) and (18).  
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The analysis requires the assumption that covariance 
matrices might be nonsingular. Sometimes tests show, that 
covariance matrix can be singular. As a result, it is not 
possible to normalize coordinates of K-L transform 
according to (8). Thus, there is a need to normalize 
coordinates of K-L transform according to (19). 
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This causes that )( BVd  distance of the BV vector from G 
class, defined according to (11), is modified to the form of 
(20), where p is the number of non-zero eigenvalues of 
covariance matrix, R is Moore-Penrose inverse of 
covariance matrix, according to the relation MTTR T

, where M is the matrix with (21). 
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The analysis above makes it possible to create a scheme of 
recognition system with the use of K-L transform, which is 
presented in Fig. 1. 

 
Fig. 1. A scheme of a triple-channel RER system based on K-L 
transform. 

 

5. Calculation results and received RER 
results 

The defined distance )( BVid  for particular recognition 
channels with a coefficient },...,2,1{ Li according to (13) 
and modification of this distance according to (20), is a 
base for classification of the tested radar to an appropriate 
class. In order to compare the received results of RER 
method with other methods described in works 
[7,12,13,15,16,17,32], Correct Identification Coefficient 
(CIC) is set according to (22), where PBn   is the number 
of correct comparisons of basic features’ vectors BV  to 
pattern vectors PV  in a particular class, where N is the 
number of all comparisons divided by the number of test 
collections.  

N
n PBCIC    (22) 

 
The number of PBn   correct comparisons is set according 
to (23), where j

i  function assigns to a pair of vectors 
 ji

PB ,VV  the value which equals ‘1’ if i = j, or the value 
which equals ‘0’ if i ≠ j. The received CIC values are 
presented in Table 4.  
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During the test, the total comes to a few hundreds of radar 
signals recorded in collections with the length of 5000 
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The analysis requires the assumption that covariance 
matrices might be nonsingular. Sometimes tests show, that 
covariance matrix can be singular. As a result, it is not 
possible to normalize coordinates of K-L transform 
according to (8). Thus, there is a need to normalize 
coordinates of K-L transform according to (19). 
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This causes that )( BVd  distance of the BV vector from G 
class, defined according to (11), is modified to the form of 
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The analysis requires the assumption that covariance 
matrices might be nonsingular. Sometimes tests show, that 
covariance matrix can be singular. As a result, it is not 
possible to normalize coordinates of K-L transform 
according to (8). Thus, there is a need to normalize 
coordinates of K-L transform according to (19). 
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The analysis above makes it possible to create a scheme 
of recognition system with the use of K–L transform, which is 
presented in Fig. 1.

number of correct comparisons of basic features’ vectors VB 
to pattern vectors VP in a particular class, and N is the number 
of all comparisons divided by the number of test collections.
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The analysis requires the assumption that covariance 
matrices might be nonsingular. Sometimes tests show, that 
covariance matrix can be singular. As a result, it is not 
possible to normalize coordinates of K-L transform 
according to (8). Thus, there is a need to normalize 
coordinates of K-L transform according to (19). 
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The analysis above makes it possible to create a scheme of 
recognition system with the use of K-L transform, which is 
presented in Fig. 1. 
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The analysis requires the assumption that covariance 
matrices might be nonsingular. Sometimes tests show, that 
covariance matrix can be singular. As a result, it is not 
possible to normalize coordinates of K-L transform 
according to (8). Thus, there is a need to normalize 
coordinates of K-L transform according to (19). 
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This causes that )( BVd  distance of the BV vector from G 
class, defined according to (11), is modified to the form of 
(20), where p is the number of non-zero eigenvalues of 
covariance matrix, R is Moore-Penrose inverse of 
covariance matrix, according to the relation MTTR T

, where M is the matrix with (21). 
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During the test, the total comes to a few hundreds of radar 
signals recorded in collections with the length of 5000 pulses. 
A superheterodyne ELINT receiver was used in the measuring 
procedure. This receiver makes it possible to define value of RF 
with measurement accuracy 0.5 MHz and value of PRI in the 
scope from 2 µs to 20 ms, with measurement accuracy 0.05 µs. 
The recordings came from a dozen or so radars of the same type. 
Three copies were chosen to further analysis and their measurable 
parameters were as follows: RF = 1415 MHz, PW = 11.2 µs 
and the following PRI values i.e. PRImin = 1400.96 µs, 
PRIave = 1745.93 µs and PRImax = 2090.91 µs. The pulse rep-
etition interval value (measured between the arrival times of 
two consecutive pulses on the level of the detection threshold) 
changes sequentially every pair of pulses, taking seven different 
PRI values. The complete cycle of value changes of PRI was 
as follows: PRI1 = 2091 µs, PRI2 = 1738 µs, PRI3 = 1575 µs, 
PRI4 = 1491 µs, PRI5 = 1447 µs, PRI6 = 1420 µs and 
PRI7 = 1401 µs. This is a complete cycle of value changes of the 
PRI in a measurement sample. The method by which it was pos-
sible to receive a complete cycle of changes of PRI values is de-
scribed in the works [12, 28]. As a result of initial measurement 
data processing, VB vectors are received according to (1). On the 
basis of the received VB vectors, pattern vectors VP are also re-
ceived. The method which is also used in this process is called the 
Holdout method. This method divides the available collection into 
two disjoint sets i.e. a set which is used to learn the classificator 
and a set to test the classificator. The usual division of the avail-
able data collection is as follows: 2/3 of available data is in the 
learning set and 1/3 is in the test set [12]. The identification pro-
cess is carried out on the basis of the distance measurement with 
the use of the minimum-distance classification, according to the 
presented method. In order to assess the quality of the classifica-
tion process the CIC index is defined. In the final process of iden-
tification, fast-decision identification algorithm (FDIA) of radar 
emission source is used in relational ELINT database (DB). The 
FDIA algorithm mentioned above is a three-stage parametrized 
by implementation of three different ways to define the similarity 
degree of the signal vector to the pattern in the database and by 
the possibility to define three-stage value of decision function. 
As a result this algorithm working in the classification process 

Fig. 1. A scheme of a triple-channel RER system based on K–L 
transform

5.	 Calculation results and received RER results

The defined distance di(VB) for particular recognition channels 
with a coefficient i 2 {1, 2, …, L} according to (13) and modifi-
cation of this distance according to (20), is a base for classifica-
tion of the tested radar to an appropriate class. In order to com-
pare the received results of RER method with other methods 
described in works [7, 12, 13, 15‒17, 32], correct identification 
coefficient (CIC) is set according to (22), where nB¡P is the 
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of radar types, the following CIC values are received i.e.: 88% 
and 92% for three different values of decision function. In case 
of identification of copies, the following CIC values are received: 
26%, 47% and 63%. The mechanism of FDIA algorithm and the 
received identification results are described in [7] in detail.

The received estimation results are presented in Tables 1‒3 
and illustrated in Figs. 2‒4. Appropriately crossed columns 
and lines of each VB vector and radar patterns in the form of 
VP vectors, present the degree of their similarity defined by 
the distance value. The less value of this distance means the 
bigger similarity of VB vector to the pattern. Also, in Figs. 2‒4 
there are minimum values of the distance di(VB) marked with 
a red dotted ellipse in each Gi class. The received minimum 

Fig. 2. 3D graphic illustration of the received values of distances in 
L1 channel for 16 comparisons of the radar copy No. 1 in G1 class

Fig. 3. 3D graphic illustration of the received distance values in L2 
channel for 16 comparisons of the radar copy No. 2 in G2 class

Fig. 4. 3D Graphic illustration of the received distance values in L3 
channel for 16 comparisons of the radar copy No. 3 in G3 class

Table 4 
CIC values of RER method for three recognized radar copies  

in G1÷ G3 classes

CICRER G1 class G2 class G3 class

VB 0,234 0,194 0,264

VP 0,534 0,614 0,498

Table 3  
The results of distance calculations for a radar copy No. 3 in L3 

channel for 16 comparisons in G3 class

d3(VB – VP) VB (for G3 class)

VP

(for G3 class)

10,349 11,105 15,705 13,401

11,258 10,217 32,061 12,715

15,804 32,012 10,249 17,058

13,432 12,617 16,994 10,315

Table 2  
The results of distance calculations for a radar copy No. 2 in L2 

channel for 16 comparisons in G2 class

d2(VB – VP) VB (for G2 class)

VP

(for G2 class)

0,001 14,717 12,391 3,793

4,732 10,022 11,207 2,721

2,389 11,197 10,01 6,322

4,796 12,717 16,329 0,008

Table 1  
The results of distance calculations for a radar copy No. 1 in L1 

channel for 16 comparisons in G1 class

d1(VB – VP) VB (for G1 class)

VP

(for G1 class)

10,714 11,647 4,302 3,374

11,821 10,798 3,567 6,995

13,267 13,414 0,516 4,273

15,278 16,728 4,178 0,612
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distances show at the same time the number of correct com-
parisons of basic features’ vectors to pattern vectors in the 
class. In each class (G1÷G3) 16 comparisons of these vectors 
are carried out and CIC is calculated. The results are pre-
sented in Table 4 and illustrated graphically in Fig. 5. Ac-
cording to the SEI methods listed in this section, the received 
RER results are as follows: the use of out-of-band radiation 
described in the work [12] the CIC value for RER is about 
90%. The method based on fractal features described in the 
work [15] the CIC value is 91.6% for Mahalanobis metric and 
96.7% for Euclidean and Hamming metrics. Very similar RER 
results are received in the work [13], where RER also bases on 
the analysis of fractal features. The method based on inter-pulse 
analysis described in the work [16] increases the CIC coeffi-
cient up to 70%, and the method based on intrapulse analysis 
described in the work [17] makes it possible to receive RER 
results reaching 90% level. Data modeling applied to RER and 
identification is presented in the work [32]. In this work the 
value of CIC equals 98%. In the work [7], the fast identification 
algorithm for RER is presented. This algorithm is parametrized 
in three stages by implementation of three different ways to 
define the similarity degree of the signal vector to the pattern 
in the database. Based on this algorithm, the CIC value is 63%.

In order to depict it clearly, CIC values received in other 
RER methods which appeared in this section are presented in 
Fig. 6.

It needs to be emphasized with full conviction that referring 
to the works above, during the RER procedure, the same re-
cordings of a few hundred radar signals coming from the same 
type of radars are used. Only by this approach it is possible to 
compare the received results. It needs to be emphasized that 
the methods listed above, differ from each other as concerns 
the test procedure, the compilation level, calculation time and 
algorithm complexity. However, the main difference is that in 
the process of generating distinctive features, it is possible to 
achieve different distinctive features from a radar signal. In that 
way, a quasi-optimum radar signal pattern appeared.

6.	 Conclusion

The received measurement data have a significant influence on 
the specific identification process of radar, in which it is aimed 
to receive very high level of radar emitter signal identification. 
Ultimately, signal source identification which is 100%, should 
be characterized by the maximization of explicitness of RER 
procedure. It is not a trivial matter to achieve such a result. It 
is also known that stochastic context-free grammars (SCFG) 
appear promising for the recognition and threat assessment of 
complex radar emitters in radar systems, but the computational 
requirements for learning their production rule probabilities can 
be very onerous [33]. As shown in [34], a self-organizing map 
and the maximum likelihood gamma mixture model classi-
fier and adopted Bayesian formalism are too complicated for 
direct analytical use in automatic radar recognition. The pre-
sented RER method is realized on the basis of MatLab soft-
ware package and received vectors are recorded in a dedicated 
database for ELINT system. The received CIC value indicates 
that there has been a noticeable rise in the radar signal correct 
identification. Comparing the received results of the identi-
fication process with other methods, it may be admitted that 

Fig. 5. Graphic illustration of CIC calculations for three radar copies 
in given classes G1÷G3 of triple-channel RER system

Fig. 6. Graphic illustration of CIC values for other RER methods
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the presented RER method based on multi-channel recogni-
tion system makes it possible to receive the CIC coefficient 
which equals 61.4%. In order to increase the CIC coefficient 
value, in further works on RER use in SEI process, a common 
similarity matrix will be defined. This matrix will include the 
complexity of algorithms which are used in the RER method, 
estimation time, the requirements of the equipment platform 
and other requirements, which are significant in the process 
of quality estimation of a particular method. Thus, it will be 
possible to count automatically the similarities between vectors 
of basic measurable parameters for different radar copies of 
the same type. For ELINT systems working in real conditions, 
on a contemporary battlefield the automation of RER process 
and explicit identification of every single emitter in real time 
(with minimum time burden) are currently primary challenges 
for ELINT specialists.
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