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Abstract. A study on computer aided diagnosis of posterior cruciate ligaments is presented in this paper. The diagnosis relies on T1-weighted 
magnetic resonance imaging. During the image analysis stage, the ligament region is automatically detected, localized, and extracted using fuzzy 
segmentation methods. Eight geometric features are defined for the ligament object. With a clinical reference database containing 107 cases 
of both healthy and pathological cases, a Fisher linear discriminant is used to select 4 most distinctive features. At the classification stage we 
employ five different soft computing classifiers to evaluate the feature vector suitability for the computerized ligament diagnosis. Among the 
classifiers we introduce and specify the particle swarm optimization based Sugeno-type fuzzy inference system and compare its performance 
to other established classification systems. The classification accuracy metrics: sensitivity, specificity, and Dice index all exceed 90% for each 
classifier under consideration, indicating high level of the proposed feature vector relevance in the computer aided ligaments diagnosis.
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Usually, in case of PCLs injuries, the fibers of the liga-
ment tear apart over its entire length, which results in ligament 
swelling. Therefore, the swelling of the ligament is a funda-
mental criterion of the PCL rupture. Among the PCL injuries 
complete tears (occur in approximately 40% of cases), partial 
tears (50%) and avulsion tears (7%) are distinguished [6–8]. 
In this case the diagnostic method of choice is the magnetic 
resonance imaging (MRI, the elementary method for diagnostics 
of the knee joint, especially the cruciate ligaments injuries). MRI 
allows the visualization of PCLs throughout their length and 
gives the possibility to assess the shape and internal structure of 
cruciate ligaments in a completely non-invasive manner. MRI of 
the knee joint is typically performed on T1-weighted sequences 
and different varieties of T2-weighted sequences, usually in three 
planes: transverse, coronal and sagittal. The pathological PCL 
has a striated appearance whereas the normal PCL has a uniform 
low intensity signal. It has a slightly arcuate shape and smoothly 
goes from attachment to the femur to attachment to the tibia. 
PCL is well visible in the sagittal plane. Usually this structure 
appears on 4‒6 slices of the T1- or T2-weighted MRI sequences 
of the knee joint [9]. For that reason, in this paper the computer-
ized analysis of PCLs is applied to MRI of the knee joint.

A review of the literature shows that there is a lack of works 
describing the methods of computer assisted diagnosis of cru-
ciate ligaments. Many publications are focused on the two most 
important problems: the process of reconstruction [7, 8, 10–13], 
and then the rehabilitation [8, 14–16] of the ACL and PCL, re-
spectively. This paper is a continuation of work presented in [17–
19] and fills in this gap providing in the first step a description of 
feature extraction of both, normal and pathological structures of 
the posterior cruciate ligament and then a comparative analysis 
of selected classifiers in the computerized diagnostics of those 
ligaments. The article describes how, on the basis of MRI images 
of the knee joint, the radiologist or orthopedist may, in a non-in-

1.	 Introduction

The primary function of the joints in the human body is to en-
sure the smooth movement of the limbs. The knee joint is the 
largest and most complex of these joints. The anatomy of the 
knee joint is the reason for which it is considered in the medical 
theory as very sensitive, fragile and frequently susceptible to 
injuries [1]. Anterior cruciate ligaments (ACL) and posterior 
cruciate ligaments (PCL) are elements of this joint. These liga-
ments are particularly vulnerable to injuries. Cruciate ligaments 
connect very strongly the femur and the tibia. ACLs and PCLs 
are also a vital stabilizer of the knee. The main functions of both 
cruciate ligaments are as follows: they ensure proper kinematics 
of the knee joint, take care of the smooth movement of the knee 
joint and protect the articular cartilage [2, 3]. These ligaments 
(especially PCL) also stabilize the knee against excessive varus 
or valgus angulation. Cruciate ligaments of the knee joint al-
ways remain partially strained as a result of the non-uniform 
shape and unequal length of their fibers. For this reason these 
ligaments are vulnerable to injuries, especially in the case of 
abrupt and unnatural movements of the knee [4, 5].

Nowadays, injuries of cruciate ligaments are a plague for 
both athletes and nonathletes (especially for active people and 
the elderly). ACL and PCL injuries constitute approximately 
60% and 25% of knee injuries, respectively [6]. Generally in-
juries of the cruciate ligaments are a common cause of chronic 
knee instability and usually limit even ordinary daily activities, 
such as walking on uneven surfaces. A problem with the ACL 
or PCL formerly meant the end of an active life. Nowadays it 
has changed, but it is still particularly important to make a fast 
and correct diagnosis.
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vasive way, obtain some important information relevant to the 
diagnosis of PCL. From the clinical point of view, the proposed 
method can be particularly helpful in cases of doubt relating to 
PCL pathology (partial tears), where the visual assessment may 
be questionable. This information, may significantly improve 
and facilitate the process of diagnosis of those ligaments.

The paper introduces several novelties. First, the paper is 
presenting the feature extraction process of the PCLs. It intro-

duces new elements to the feature vector describing the PCLs. 
Second, the paper describes the discriminant analysis and fea-
ture space reduction followed by comparative analysis of five 
selected classifiers in the computer diagnostics of the ligaments. 
It indicates the most important diagnostic features of the liga-
ment. Among the soft computing classifiers we introduce and 
specify the novel particle swarm optimization based fuzzy in-
ference system and compare its performance with some well 
known and established classification tools. The evaluation stage 
relies on a clinical reference database containing 107 knee joint 
MRI cases each with expert assessment on potential cruciate 
ligament pathology.

The PCL feature extraction process contains several phases 
(Fig. 1). First, the preprocessing of medical images (T1-weighted 
MRI of the knee joint in the sagittal plane) is performed. It in-
cludes stages required to obtain a two-dimensional region of in-
terest (2D ROI), since the extraction of 2D ROI can significantly 
reduce the computational complexity. Then, the extraction phase 
is implemented. Finally, the feature vector of the PCL is created 
and validated. In this paper the procedure of finding a 2D ROI 
and the procedure of PCL extraction are not described in detail. 
A detailed description thereof can be found in [20, 21].

The paper is organized as follows. Section 2 describes the 
PCL feature extraction process. Five Classifiers employed for the 
computer aided PCL diagnosis are introduced and described in 
Section 3. The clinical database used for evaluation is presented 
in Section 4 along with the results obtained at both, the feature 
extraction, and classification stages. The methodology and re-
sults are discussed in Section 4. Section 5 concludes the paper.

2.	 Feature extraction

A properly selected set of features is key to the development 
of a computer assisted diagnosis system. Such set can greatly 
facilitate the diagnosis of selected anatomical structures. In 
other words the main purpose of extracting a feature vector 
describing the PCL structures is to classify these structures 
into normal or pathological ones. In this paper, only a diag-
nostically sensitive set of features, that differentiates one class 
from the others, has been described. These features belong to 
two main groups: features based on the 2D ROI (Figs. 2a, b, e) 
containing the extracted ligament structures: PCLa/ROIa ratio 
(the ratio of the extracted ligament area to the 2D ROI area), 

Fig. 1. Block diagram of the study

Fig. 2. Features based on the 2D ROI containing the extracted PCL structure, a) selected slice from the T1-weighted MRI with marked 2D 
ROI, b) 2D ROI containing the normal PCL, c) area of the normal extracted ligament (PCLa), d) perimeter of the normal extracted ligament 
(PCLp}), e) 2D ROI containing the pathological PCL, f) area of the pathological extracted ligament (PCLa), g) perimeter of the pathological 

extracted ligament (PCLp)

a) b) c) d) e) f) g)
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PCLp/ROIp ratio (the ratio of the extracted ligament perim-
eter to the 2D ROI perimeter) and features based on the skel-
eton of the extracted PCL: B/A ratio (B-length/A-length – the 
modified Feret ratio in vertical, where B-length denotes the 
maximum distance between a straight line linking the top and 
bottom edges of the skeleton and A-length denotes the max-
imum distance between a straight line connecting the start and 
end point of the skeleton), B/ICDFEMUR (where the ICDFEMUR 
denotes the intercondylar distance for the femur), B/ICDTIBIA 
(where the ICDTIBIA denotes the intercondylar distance for the 
tibia), B/ROIHEIGHT (where the ROIHEIGHT denotes the height 
of the 2D ROI containing the PCL), B/ROIWIDTH (where the 
ROIWIDTH denotes the width of the 2D ROI containing the 
PCL), B/max(ROIHEIGHT, ROIWIDTH) (where max(.) returns 
the largest element).

The surface area of the extracted structure of the ligament 
(Figs. 2c, f) seems to be the most natural feature. However, this 
feature is diagnostically useful only when being independent 
of the size of the patient’s knee joint. Otherwise, it may lead 
to misclassification of the extracted ligament (a large area of 
a normal PCL in case of a large knee joint size can be misdi-
agnosed as pathological structure). Therefore, it is necessary 
to relate the area of the extracted PCL structure to the area of 
the 2D ROI containing this structure. The 2D ROI depends on 
the anatomy of the knee joint. Thus, the feature that contains 
information about the area of the ligament, and takes into ac-
count the size of the patient is the PCLa/ROIa ratio. In order to 
calculate this ratio, it is necessary to determine the area of the 
ligament (PCLa). Depending on the slice thickness, the PCL 
structure may be visible in 4‒6 slices in the sagittal plane. All 
these slices are subjected to the area extraction procedure. For 
each patient the slice containing the largest area of the extracted 
ligament has been selected.

A very similar procedure has been used to calculate the 
second feature based on the 2D ROI – the PCLp/ROIp ratio, 
where PCLp (Figs. 2d, g) denotes the perimeter of the extracted 
ligament (for the slice containing the largest area of the ex-
tracted PCL), and ROIp denotes the perimeter of the 2D ROI. 
Also in this case it is necessary to relate the perimeter of the 
extracted PCL structure to the perimeter of the 2D ROI in order 
to make the feature independent of the size of the knee joint.

As mentioned above, the second group of features is based 
on the skeleton of the extracted ligament (Figs. 3b, e). On the 

basis of this skeleton, two elementary lengths may be deter-
mined: A-length and B-length, respectively. A-length denotes 
the maximum distance between a straight line connecting the 
start and end point of the skeleton (Figs. 3c, f). B-length de-
notes the maximum distance (perpendicular to A-length) be-
tween the top and bottom edge of the skeleton (Figs. 3c, f). In 
practical applications it is important to calculate the B/A ratio. 
This ratio features a high discriminant power, especially in the 
diagnostics of PCL tissue.

Next two features make use of the information about the 
intercondylar distance for both the head of the femur (ICD-
FEMUR) and the head of the tibia (ICDTIBIA), respectively. The 
intercondylar distance is the distance between the left and right 
condyle of the femoral or tibial head (Fig. 4). On the basis of the 
information about the B-length and both intercondylar distances 
ICDFEMUR and ICDTIBIA, two diagnostically useful ratios can 
be calculated: B/ICDFEMUR and B/ICDTIBIA respectively.

Both B/ICDTIBIA and B/ICDFEMUR ratios are well suited 
for practical tasks. Nevertheless these two ratios have a basic 
disadvantage, the entire T1-weighted MRI knee joint slice 
(256£256 pixels) has to be subjected to the analysis. There-
fore, both these expressions are modified to B/ROIHEIGHT 
and B/ROIWIDTH, where ROIHEIGHT and ROIWIDTH denote 
the 2D ROI height and width, respectively. In this case, the 
analysed region is reduced by over 6 times (100£100 pixels). 
Preliminary studies indicate comparable results.

a) b) c) d) e) f)

Fig. 3. Features based on the skeleton of the extracted PCL structure, a) 2D ROI containing the normal PCL, b) skeleton of the normal extracted 
ligament, c) skeleton with marked A- and B-length for normal PCL, d) 2D ROI containing the pathological PCL, e) skeleton of the pathological 

extracted ligament, f) skeleton with marked A- and B-length for pathological PCL

Fig. 4. Selected slice from the T1-weighted MRI with marked inter-
condylar distances ICDFEMUR and ICDTIBIA
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3.	 Classification

Five different soft computing classifiers have been used at the 
decision making process: the artificial neural network multi-
layer perceptron (MLP), the support vector machine (SVM), 
the adaptive neuro-fuzzy inference system (ANFIS), the particle 
swarm optimized fuzzy inference system (PSO-FIS), and the 
particle swarm optimized ANFIS (PSO-ANFIS). Each one is 
supplied with features selected from the entire set described in 
Section 2. The feature selection process involves Fisher linear 
discriminant (FLD). Structures and specifications of classifiers 
have been – where necessary – established experimentally with 
various settings involved. The efficiency metrics were analysed 
as main factors with another identified in architectural sim-
plicity and low operating time.

3.1. Feature selection. Fisher linear discriminant. The feature 
vector has been subjected to the Fisher linear discriminant anal-
ysis [23] at a confidence level p = 0.05. The reference set for 
FLD analysis is constructed using the entire clinical database 
available at the experimental stage and described in Section 4. 
The FLD analysis has reduced the number of features to 4, 
yielding the following vector:
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tures to 4, yielding the following vector:



PCLp/ROIp

B/A
B/ICDT IBIA

B/max(ROIHEIGHT , ROIWIDT H )


 .

Thus, each classifier under consideration has four inputs sup-
plied with selected features and a single output producing a
binary decision.

3.2. Multilayer perceptron. The MLP classifier [24] consists
of 2 hidden layers with 5 and 3 units, respectively. All hidden
neurons have hyperbolic tangent activation function. The out-
put activation function has a linear form φ(x) = x cut off at 0
and 1. The real-valued output yMLP is binarized by threshold-
ing at 0.5 to produce the decision YMLP:

YMLP =

{
1 ⇔ yMLP ≥ 0
0 ⇔ yMLP < 0.

(1)

YMLP = 1 refers to the healthy PCL, whilst YMLP = 0 indicates a
pathological case. The backpropagation with adaptive learning
rate is used for MLP training.

3.3. Support vector machine. The SVM classifier is used as
a second classification tool [25, 26]. SVM divides the problem
space into two subspaces by determining a hyperplane sepa-
rating the training samples. Here we use a canonic two-class
SVM.

3.4. Adaptive neuro-fuzzy inference system. The ANFIS
merges artificial neural networks and fuzzy inference systems
for decision making purposes including clustering and classifi-
cation [27]. Here, we employ a Sugeno-type [28] fuzzy infer-
ence system (FIS) with Gaussian input membership functions
and linear output membership functions, initiated using fuzzy
a c-means data clustering [29]. The number of membership
functions per FIS input/output is set to 4, since it consistently
provides the best efficiency metrics in a range of [2,5].

3.5. Particle swarm based fuzzy inference system. The
PSO is a swarm intelligence technique for optimization prob-
lems [30]. It involves basic agent and swarm behavior princi-
ples [31] in order to perform intelligent survey through a mul-
tidimensional problem space. PSO is willingly employed for
classification, pattern recognition, and machine learning ap-
proaches also in the medical image analysis domain [32, 33,
34, 35, 36].

In this paper we propose a fuzzy inference system (FIS) [37]
trained in terms of a PSO. The Sugeno-type FIS [28] uses three
Gaussian membership functions per each input and three linear
output membership functions. The knowledge base consists of
34 = 81 fuzzy rules with unique combinations of four inputs’
linguistic values (antecedent). Each PSO particle is character-
ized by its location x = {xi : i = 1 . . .N}, where N denotes the
feature space dimensionality. Each feature corresponds to a
single FIS parameter in terms of input and output membership

functions, as well as fuzzy rules expressions (Fig. 5). A par-
ticle from Fig. 5 operates in a 201-dimensional feature space,
though we have also tested different FIS settings with auto-
matic space dimensionality adjustment. Note, that there is a set
of constraints limiting some coordinates (i.e. σ > 0 for every
input Gaussian function; in the knowledge base segment each
rule consequent C ∈ {1,2,3} and each rule weight W ∈ [0,1]).

A particle x is evaluated in terms of a fitness function f it(x)
as a mean squared error (MSE) over a training set T subjected
to fuzzy inference using x-related FIS:

f it(x) = MSE(x,T ) =
1

||T || ∑
t∈T

(y− yt)
2 , (2)

where y denotes the FIS output value, whilst yt ∈ {0,1} is the
expert assessment of the t-th case.

The following agent and swarm parameters and mechanisms
have been established during the classifier testing:

• the swarm consists of 50 particles moving around in 500 it-
erations, unless the best fitness reaches 0.01 or it did not
improve throughout the last 250 iterations.

• Particles are initiated pseudorandomly with all individual
coordinates’ constraints secured.

• The particle velocity calculation is affected by three factors:
(a) inertia with intensity decreasing in time, (b) particle’s
best location memory, (c) particle neighborhood’s best loca-
tion memory [30].

• The particle maximum velocity is limited in terms of each
coordinate in order to secure the swarm stability.

3.6. Particle swarm based artificial neuro-fuzzy inference
system. Two latter classifiers were combined in order to in-
troduce the fifth tool: the PSO-ANFIS [38]. Namely, when
the ANFIS training is finished (Section 3.4), it is passed in
several copies (10% of the swarm population) to the PSO-FIS
approach. The remainder of the swarm is initiated pseudo-
randomly as described in Section 3.5. All agent and swarm
parameters are set as in the PSO-FIS case. During the PSO
training the original ANFIS is subjected to changes, also in
terms of the number and formulae of fuzzy rules.

3.7. Classifier training and testing procedure. Each classi-
fier training and testing procedure involves a k-fold cross vali-
dation scheme with various k. The reference database is each
time divided into k groups and then in each of the k experi-
ments a single group is used as a testing set, whilst the remain-
der constitute a training set [39]. The classification efficiency
is evaluated using sensitivity, specificity, and Dice index mea-
sures:

Sen =
T P

T P+FN
·100%, (3)

Spec =
T N

T N +FP
·100%, (4)

D =
2 ·T P

2 ·T P+FN +FP
·100%, (5)

where T P,FN,T N,FP denote the number of true positive,
false negative, true negative and false positive PCL pathology
detections, respectively.
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3.3. Support vector machine. The SVM classifier is used as 
a second classification tool [25, 26]. SVM divides the problem 
space into two subspaces by determining a hyperplane separating 
the training samples. Here we use a canonic two-class SVM.

3.4. Adaptive neuro-fuzzy inference system. The ANFIS 
merges artificial neural networks and fuzzy inference systems 
for decision making purposes including clustering and classi-
fication [27]. Here, we employ a Sugeno-type [28] fuzzy infer-
ence system (FIS) with Gaussian input membership functions 
and linear output membership functions, initiated using fuzzy 
a c-means data clustering [29]. The number of membership 
functions per FIS input/output is set to 4, since it consistently 
provides the best efficiency metrics in a range of [2, 5].

3.5. Particle swarm based fuzzy inference system. The PSO is 
a swarm intelligence technique for optimization problems [30]. 
It involves basic agent and swarm behavior principles [31] in 
order to perform intelligent survey through a multidimensional 
problem space. PSO is willingly employed for classification, 
pattern recognition, and machine learning approaches also in 
the medical image analysis domain [32–36].

In this paper we propose a fuzzy inference system (FIS) [37] 
trained in terms of a PSO. The Sugeno-type FIS [28] uses three 
Gaussian membership functions per each input and three linear 
output membership functions. The knowledge base consists of 
34 = 81 fuzzy rules with unique combinations of four inputs’ 
linguistic values (antecedent). Each PSO particle is charac-
terized by its location x = fxi: i = 1 …Ng, where N denotes 
the feature space dimensionality. Each feature corresponds to 
a single FIS parameter in terms of input and output membership 
functions, as well as fuzzy rules expressions (Fig. 5). A par-

Fig. 5. Specification of the PSO-FIS particle. Input segment denotations: inputj – j-th FIS input, mfk – Gaussian membership function for k-th 
fuzzy value with parameters μ, σ. Knowledge base segment denotations: rulej – j-th fuzzy rule with weight W and consequent C. Output segment 

denotations: mfj – membership function for k-th output fuzzy value with parameters pk: k = 0…4
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ticle from Fig. 5 operates in a 201-dimensional feature space, 
though we have also tested different FIS settings with auto-
matic space dimensionality adjustment. Note, that there is a set 
of constraints limiting some coordinates (i.e. σ > 0 for every 
input Gaussian function; in the knowledge base segment each 
rule consequent C 2 f1, 2, 3g and each rule weight W 2 [0, 1]).

A particle x is evaluated in terms of a fitness function fit(x) 
as a mean squared error (MSE) over a training set T subjected 
to fuzzy inference using x-related FIS:
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of 2 hidden layers with 5 and 3 units, respectively. All hidden
neurons have hyperbolic tangent activation function. The out-
put activation function has a linear form φ(x) = x cut off at 0
and 1. The real-valued output yMLP is binarized by threshold-
ing at 0.5 to produce the decision YMLP:

YMLP =

{
1 ⇔ yMLP ≥ 0
0 ⇔ yMLP < 0.

(1)

YMLP = 1 refers to the healthy PCL, whilst YMLP = 0 indicates a
pathological case. The backpropagation with adaptive learning
rate is used for MLP training.

3.3. Support vector machine. The SVM classifier is used as
a second classification tool [25, 26]. SVM divides the problem
space into two subspaces by determining a hyperplane sepa-
rating the training samples. Here we use a canonic two-class
SVM.

3.4. Adaptive neuro-fuzzy inference system. The ANFIS
merges artificial neural networks and fuzzy inference systems
for decision making purposes including clustering and classifi-
cation [27]. Here, we employ a Sugeno-type [28] fuzzy infer-
ence system (FIS) with Gaussian input membership functions
and linear output membership functions, initiated using fuzzy
a c-means data clustering [29]. The number of membership
functions per FIS input/output is set to 4, since it consistently
provides the best efficiency metrics in a range of [2,5].

3.5. Particle swarm based fuzzy inference system. The
PSO is a swarm intelligence technique for optimization prob-
lems [30]. It involves basic agent and swarm behavior princi-
ples [31] in order to perform intelligent survey through a mul-
tidimensional problem space. PSO is willingly employed for
classification, pattern recognition, and machine learning ap-
proaches also in the medical image analysis domain [32, 33,
34, 35, 36].

In this paper we propose a fuzzy inference system (FIS) [37]
trained in terms of a PSO. The Sugeno-type FIS [28] uses three
Gaussian membership functions per each input and three linear
output membership functions. The knowledge base consists of
34 = 81 fuzzy rules with unique combinations of four inputs’
linguistic values (antecedent). Each PSO particle is character-
ized by its location x = {xi : i = 1 . . .N}, where N denotes the
feature space dimensionality. Each feature corresponds to a
single FIS parameter in terms of input and output membership

functions, as well as fuzzy rules expressions (Fig. 5). A par-
ticle from Fig. 5 operates in a 201-dimensional feature space,
though we have also tested different FIS settings with auto-
matic space dimensionality adjustment. Note, that there is a set
of constraints limiting some coordinates (i.e. σ > 0 for every
input Gaussian function; in the knowledge base segment each
rule consequent C ∈ {1,2,3} and each rule weight W ∈ [0,1]).

A particle x is evaluated in terms of a fitness function f it(x)
as a mean squared error (MSE) over a training set T subjected
to fuzzy inference using x-related FIS:

f it(x) = MSE(x,T ) =
1

||T || ∑
t∈T

(y− yt)
2 , (2)

where y denotes the FIS output value, whilst yt ∈ {0,1} is the
expert assessment of the t-th case.

The following agent and swarm parameters and mechanisms
have been established during the classifier testing:

• the swarm consists of 50 particles moving around in 500 it-
erations, unless the best fitness reaches 0.01 or it did not
improve throughout the last 250 iterations.

• Particles are initiated pseudorandomly with all individual
coordinates’ constraints secured.

• The particle velocity calculation is affected by three factors:
(a) inertia with intensity decreasing in time, (b) particle’s
best location memory, (c) particle neighborhood’s best loca-
tion memory [30].

• The particle maximum velocity is limited in terms of each
coordinate in order to secure the swarm stability.

3.6. Particle swarm based artificial neuro-fuzzy inference
system. Two latter classifiers were combined in order to in-
troduce the fifth tool: the PSO-ANFIS [38]. Namely, when
the ANFIS training is finished (Section 3.4), it is passed in
several copies (10% of the swarm population) to the PSO-FIS
approach. The remainder of the swarm is initiated pseudo-
randomly as described in Section 3.5. All agent and swarm
parameters are set as in the PSO-FIS case. During the PSO
training the original ANFIS is subjected to changes, also in
terms of the number and formulae of fuzzy rules.

3.7. Classifier training and testing procedure. Each classi-
fier training and testing procedure involves a k-fold cross vali-
dation scheme with various k. The reference database is each
time divided into k groups and then in each of the k experi-
ments a single group is used as a testing set, whilst the remain-
der constitute a training set [39]. The classification efficiency
is evaluated using sensitivity, specificity, and Dice index mea-
sures:

Sen =
T P

T P+FN
·100%, (3)

Spec =
T N

T N +FP
·100%, (4)

D =
2 ·T P

2 ·T P+FN +FP
·100%, (5)

where T P,FN,T N,FP denote the number of true positive,
false negative, true negative and false positive PCL pathology
detections, respectively.
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where y denotes the FIS output value, whilst yt 2 f0, 1g is the 
expert assessment of the t-th case.

The following agent and swarm parameters and mechanisms 
have been established during the classifier testing:
●	 the swarm consists of 50 particles moving around in 500 

iterations, unless the best fitness reaches 0.01 or it did not 
improve throughout the last 250 iterations.

●	 Particles are initiated pseudorandomly with all individual 
coordinates’ constraints secured.

●	 The particle velocity calculation is affected by three factors: 
(a) inertia with intensity decreasing in time, (b) particle’s 
best location memory, (c) particle neighborhood’s best lo-
cation memory [30].

●	 The particle maximum velocity is limited in terms of each 
coordinate in order to secure the swarm stability.

3.6. Particle swarm based artificial neuro-fuzzy inference 
system. Two latter classifiers were combined in order to in-
troduce the fifth tool: the PSO-ANFIS [38]. Namely, when the 
ANFIS training is finished (Section 3.4), it is passed in several 
copies (10% of the swarm population) to the PSO-FIS approach. 
The remainder of the swarm is initiated pseudorandomly as de-
scribed in Section 3.5. All agent and swarm parameters are set 
as in the PSO-FIS case. During the PSO training the original 
ANFIS is subjected to changes, also in terms of the number and 
formulae of fuzzy rules.

3.7. Classifier training and testing procedure. Each classifier 
training and testing procedure involves a k-fold cross validation 
scheme with various k. The reference database is each time 
divided into k groups and then in each of the k experiments 
a single group is used as a testing set, whilst the remainder con-
stitute a training set [39]. The classification efficiency is eval-
uated using sensitivity, specificity, and Dice index measures:

	

P. Zarychta, P. Badura and E. Pietka

tures to 4, yielding the following vector:



PCLp/ROIp

B/A
B/ICDT IBIA

B/max(ROIHEIGHT , ROIWIDT H )


 .

Thus, each classifier under consideration has four inputs sup-
plied with selected features and a single output producing a
binary decision.

3.2. Multilayer perceptron. The MLP classifier [24] consists
of 2 hidden layers with 5 and 3 units, respectively. All hidden
neurons have hyperbolic tangent activation function. The out-
put activation function has a linear form φ(x) = x cut off at 0
and 1. The real-valued output yMLP is binarized by threshold-
ing at 0.5 to produce the decision YMLP:

YMLP =

{
1 ⇔ yMLP ≥ 0
0 ⇔ yMLP < 0.

(1)

YMLP = 1 refers to the healthy PCL, whilst YMLP = 0 indicates a
pathological case. The backpropagation with adaptive learning
rate is used for MLP training.

3.3. Support vector machine. The SVM classifier is used as
a second classification tool [25, 26]. SVM divides the problem
space into two subspaces by determining a hyperplane sepa-
rating the training samples. Here we use a canonic two-class
SVM.

3.4. Adaptive neuro-fuzzy inference system. The ANFIS
merges artificial neural networks and fuzzy inference systems
for decision making purposes including clustering and classifi-
cation [27]. Here, we employ a Sugeno-type [28] fuzzy infer-
ence system (FIS) with Gaussian input membership functions
and linear output membership functions, initiated using fuzzy
a c-means data clustering [29]. The number of membership
functions per FIS input/output is set to 4, since it consistently
provides the best efficiency metrics in a range of [2,5].

3.5. Particle swarm based fuzzy inference system. The
PSO is a swarm intelligence technique for optimization prob-
lems [30]. It involves basic agent and swarm behavior princi-
ples [31] in order to perform intelligent survey through a mul-
tidimensional problem space. PSO is willingly employed for
classification, pattern recognition, and machine learning ap-
proaches also in the medical image analysis domain [32, 33,
34, 35, 36].

In this paper we propose a fuzzy inference system (FIS) [37]
trained in terms of a PSO. The Sugeno-type FIS [28] uses three
Gaussian membership functions per each input and three linear
output membership functions. The knowledge base consists of
34 = 81 fuzzy rules with unique combinations of four inputs’
linguistic values (antecedent). Each PSO particle is character-
ized by its location x = {xi : i = 1 . . .N}, where N denotes the
feature space dimensionality. Each feature corresponds to a
single FIS parameter in terms of input and output membership

functions, as well as fuzzy rules expressions (Fig. 5). A par-
ticle from Fig. 5 operates in a 201-dimensional feature space,
though we have also tested different FIS settings with auto-
matic space dimensionality adjustment. Note, that there is a set
of constraints limiting some coordinates (i.e. σ > 0 for every
input Gaussian function; in the knowledge base segment each
rule consequent C ∈ {1,2,3} and each rule weight W ∈ [0,1]).

A particle x is evaluated in terms of a fitness function f it(x)
as a mean squared error (MSE) over a training set T subjected
to fuzzy inference using x-related FIS:

f it(x) = MSE(x,T ) =
1

||T || ∑
t∈T

(y− yt)
2 , (2)

where y denotes the FIS output value, whilst yt ∈ {0,1} is the
expert assessment of the t-th case.

The following agent and swarm parameters and mechanisms
have been established during the classifier testing:

• the swarm consists of 50 particles moving around in 500 it-
erations, unless the best fitness reaches 0.01 or it did not
improve throughout the last 250 iterations.

• Particles are initiated pseudorandomly with all individual
coordinates’ constraints secured.

• The particle velocity calculation is affected by three factors:
(a) inertia with intensity decreasing in time, (b) particle’s
best location memory, (c) particle neighborhood’s best loca-
tion memory [30].

• The particle maximum velocity is limited in terms of each
coordinate in order to secure the swarm stability.

3.6. Particle swarm based artificial neuro-fuzzy inference
system. Two latter classifiers were combined in order to in-
troduce the fifth tool: the PSO-ANFIS [38]. Namely, when
the ANFIS training is finished (Section 3.4), it is passed in
several copies (10% of the swarm population) to the PSO-FIS
approach. The remainder of the swarm is initiated pseudo-
randomly as described in Section 3.5. All agent and swarm
parameters are set as in the PSO-FIS case. During the PSO
training the original ANFIS is subjected to changes, also in
terms of the number and formulae of fuzzy rules.

3.7. Classifier training and testing procedure. Each classi-
fier training and testing procedure involves a k-fold cross vali-
dation scheme with various k. The reference database is each
time divided into k groups and then in each of the k experi-
ments a single group is used as a testing set, whilst the remain-
der constitute a training set [39]. The classification efficiency
is evaluated using sensitivity, specificity, and Dice index mea-
sures:

Sen =
T P

T P+FN
·100%, (3)

Spec =
T N

T N +FP
·100%, (4)

D =
2 ·T P

2 ·T P+FN +FP
·100%, (5)

where T P,FN,T N,FP denote the number of true positive,
false negative, true negative and false positive PCL pathology
detections, respectively.
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tures to 4, yielding the following vector:



PCLp/ROIp

B/A
B/ICDT IBIA

B/max(ROIHEIGHT , ROIWIDT H )


 .

Thus, each classifier under consideration has four inputs sup-
plied with selected features and a single output producing a
binary decision.

3.2. Multilayer perceptron. The MLP classifier [24] consists
of 2 hidden layers with 5 and 3 units, respectively. All hidden
neurons have hyperbolic tangent activation function. The out-
put activation function has a linear form φ(x) = x cut off at 0
and 1. The real-valued output yMLP is binarized by threshold-
ing at 0.5 to produce the decision YMLP:

YMLP =

{
1 ⇔ yMLP ≥ 0
0 ⇔ yMLP < 0.

(1)

YMLP = 1 refers to the healthy PCL, whilst YMLP = 0 indicates a
pathological case. The backpropagation with adaptive learning
rate is used for MLP training.

3.3. Support vector machine. The SVM classifier is used as
a second classification tool [25, 26]. SVM divides the problem
space into two subspaces by determining a hyperplane sepa-
rating the training samples. Here we use a canonic two-class
SVM.

3.4. Adaptive neuro-fuzzy inference system. The ANFIS
merges artificial neural networks and fuzzy inference systems
for decision making purposes including clustering and classifi-
cation [27]. Here, we employ a Sugeno-type [28] fuzzy infer-
ence system (FIS) with Gaussian input membership functions
and linear output membership functions, initiated using fuzzy
a c-means data clustering [29]. The number of membership
functions per FIS input/output is set to 4, since it consistently
provides the best efficiency metrics in a range of [2,5].

3.5. Particle swarm based fuzzy inference system. The
PSO is a swarm intelligence technique for optimization prob-
lems [30]. It involves basic agent and swarm behavior princi-
ples [31] in order to perform intelligent survey through a mul-
tidimensional problem space. PSO is willingly employed for
classification, pattern recognition, and machine learning ap-
proaches also in the medical image analysis domain [32, 33,
34, 35, 36].

In this paper we propose a fuzzy inference system (FIS) [37]
trained in terms of a PSO. The Sugeno-type FIS [28] uses three
Gaussian membership functions per each input and three linear
output membership functions. The knowledge base consists of
34 = 81 fuzzy rules with unique combinations of four inputs’
linguistic values (antecedent). Each PSO particle is character-
ized by its location x = {xi : i = 1 . . .N}, where N denotes the
feature space dimensionality. Each feature corresponds to a
single FIS parameter in terms of input and output membership

functions, as well as fuzzy rules expressions (Fig. 5). A par-
ticle from Fig. 5 operates in a 201-dimensional feature space,
though we have also tested different FIS settings with auto-
matic space dimensionality adjustment. Note, that there is a set
of constraints limiting some coordinates (i.e. σ > 0 for every
input Gaussian function; in the knowledge base segment each
rule consequent C ∈ {1,2,3} and each rule weight W ∈ [0,1]).

A particle x is evaluated in terms of a fitness function f it(x)
as a mean squared error (MSE) over a training set T subjected
to fuzzy inference using x-related FIS:

f it(x) = MSE(x,T ) =
1

||T || ∑
t∈T

(y− yt)
2 , (2)

where y denotes the FIS output value, whilst yt ∈ {0,1} is the
expert assessment of the t-th case.

The following agent and swarm parameters and mechanisms
have been established during the classifier testing:

• the swarm consists of 50 particles moving around in 500 it-
erations, unless the best fitness reaches 0.01 or it did not
improve throughout the last 250 iterations.

• Particles are initiated pseudorandomly with all individual
coordinates’ constraints secured.

• The particle velocity calculation is affected by three factors:
(a) inertia with intensity decreasing in time, (b) particle’s
best location memory, (c) particle neighborhood’s best loca-
tion memory [30].

• The particle maximum velocity is limited in terms of each
coordinate in order to secure the swarm stability.

3.6. Particle swarm based artificial neuro-fuzzy inference
system. Two latter classifiers were combined in order to in-
troduce the fifth tool: the PSO-ANFIS [38]. Namely, when
the ANFIS training is finished (Section 3.4), it is passed in
several copies (10% of the swarm population) to the PSO-FIS
approach. The remainder of the swarm is initiated pseudo-
randomly as described in Section 3.5. All agent and swarm
parameters are set as in the PSO-FIS case. During the PSO
training the original ANFIS is subjected to changes, also in
terms of the number and formulae of fuzzy rules.

3.7. Classifier training and testing procedure. Each classi-
fier training and testing procedure involves a k-fold cross vali-
dation scheme with various k. The reference database is each
time divided into k groups and then in each of the k experi-
ments a single group is used as a testing set, whilst the remain-
der constitute a training set [39]. The classification efficiency
is evaluated using sensitivity, specificity, and Dice index mea-
sures:

Sen =
T P

T P+FN
·100%, (3)

Spec =
T N

T N +FP
·100%, (4)

D =
2 ·T P

2 ·T P+FN +FP
·100%, (5)

where T P,FN,T N,FP denote the number of true positive,
false negative, true negative and false positive PCL pathology
detections, respectively.
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tures to 4, yielding the following vector:



PCLp/ROIp

B/A
B/ICDT IBIA

B/max(ROIHEIGHT , ROIWIDT H )


 .

Thus, each classifier under consideration has four inputs sup-
plied with selected features and a single output producing a
binary decision.

3.2. Multilayer perceptron. The MLP classifier [24] consists
of 2 hidden layers with 5 and 3 units, respectively. All hidden
neurons have hyperbolic tangent activation function. The out-
put activation function has a linear form φ(x) = x cut off at 0
and 1. The real-valued output yMLP is binarized by threshold-
ing at 0.5 to produce the decision YMLP:

YMLP =

{
1 ⇔ yMLP ≥ 0
0 ⇔ yMLP < 0.

(1)

YMLP = 1 refers to the healthy PCL, whilst YMLP = 0 indicates a
pathological case. The backpropagation with adaptive learning
rate is used for MLP training.

3.3. Support vector machine. The SVM classifier is used as
a second classification tool [25, 26]. SVM divides the problem
space into two subspaces by determining a hyperplane sepa-
rating the training samples. Here we use a canonic two-class
SVM.

3.4. Adaptive neuro-fuzzy inference system. The ANFIS
merges artificial neural networks and fuzzy inference systems
for decision making purposes including clustering and classifi-
cation [27]. Here, we employ a Sugeno-type [28] fuzzy infer-
ence system (FIS) with Gaussian input membership functions
and linear output membership functions, initiated using fuzzy
a c-means data clustering [29]. The number of membership
functions per FIS input/output is set to 4, since it consistently
provides the best efficiency metrics in a range of [2,5].

3.5. Particle swarm based fuzzy inference system. The
PSO is a swarm intelligence technique for optimization prob-
lems [30]. It involves basic agent and swarm behavior princi-
ples [31] in order to perform intelligent survey through a mul-
tidimensional problem space. PSO is willingly employed for
classification, pattern recognition, and machine learning ap-
proaches also in the medical image analysis domain [32, 33,
34, 35, 36].

In this paper we propose a fuzzy inference system (FIS) [37]
trained in terms of a PSO. The Sugeno-type FIS [28] uses three
Gaussian membership functions per each input and three linear
output membership functions. The knowledge base consists of
34 = 81 fuzzy rules with unique combinations of four inputs’
linguistic values (antecedent). Each PSO particle is character-
ized by its location x = {xi : i = 1 . . .N}, where N denotes the
feature space dimensionality. Each feature corresponds to a
single FIS parameter in terms of input and output membership

functions, as well as fuzzy rules expressions (Fig. 5). A par-
ticle from Fig. 5 operates in a 201-dimensional feature space,
though we have also tested different FIS settings with auto-
matic space dimensionality adjustment. Note, that there is a set
of constraints limiting some coordinates (i.e. σ > 0 for every
input Gaussian function; in the knowledge base segment each
rule consequent C ∈ {1,2,3} and each rule weight W ∈ [0,1]).

A particle x is evaluated in terms of a fitness function f it(x)
as a mean squared error (MSE) over a training set T subjected
to fuzzy inference using x-related FIS:

f it(x) = MSE(x,T ) =
1

||T || ∑
t∈T

(y− yt)
2 , (2)

where y denotes the FIS output value, whilst yt ∈ {0,1} is the
expert assessment of the t-th case.

The following agent and swarm parameters and mechanisms
have been established during the classifier testing:

• the swarm consists of 50 particles moving around in 500 it-
erations, unless the best fitness reaches 0.01 or it did not
improve throughout the last 250 iterations.

• Particles are initiated pseudorandomly with all individual
coordinates’ constraints secured.

• The particle velocity calculation is affected by three factors:
(a) inertia with intensity decreasing in time, (b) particle’s
best location memory, (c) particle neighborhood’s best loca-
tion memory [30].

• The particle maximum velocity is limited in terms of each
coordinate in order to secure the swarm stability.

3.6. Particle swarm based artificial neuro-fuzzy inference
system. Two latter classifiers were combined in order to in-
troduce the fifth tool: the PSO-ANFIS [38]. Namely, when
the ANFIS training is finished (Section 3.4), it is passed in
several copies (10% of the swarm population) to the PSO-FIS
approach. The remainder of the swarm is initiated pseudo-
randomly as described in Section 3.5. All agent and swarm
parameters are set as in the PSO-FIS case. During the PSO
training the original ANFIS is subjected to changes, also in
terms of the number and formulae of fuzzy rules.

3.7. Classifier training and testing procedure. Each classi-
fier training and testing procedure involves a k-fold cross vali-
dation scheme with various k. The reference database is each
time divided into k groups and then in each of the k experi-
ments a single group is used as a testing set, whilst the remain-
der constitute a training set [39]. The classification efficiency
is evaluated using sensitivity, specificity, and Dice index mea-
sures:

Sen =
T P

T P+FN
·100%, (3)

Spec =
T N

T N +FP
·100%, (4)

D =
2 ·T P

2 ·T P+FN +FP
·100%, (5)

where T P,FN,T N,FP denote the number of true positive,
false negative, true negative and false positive PCL pathology
detections, respectively.
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where TP, FN, TN, FP denote the number of true positive, 
false negative, true negative and false positive PCL pathology 
detections, respectively.

4.	 Results and discussion

4.1. Materials. The study has been tested on 107 clinical T1- 
-weighted MRI studies of the knee joint. The MRI data (17‒24 
slices per volume) have been acquired in the sagittal plane for 
females and males at different age. This clinical group consisted 
of 62 normal and 45 pathological cases of PCLs. The patholog-
ical cases included the following injuries: ligament rupture of 
the “shaving brush” type, partial tear, extensive partial tear and 
ligament displacement as a result of femur head fracture (in-
cluding complete PCL’s interruption) [40].

4.2. Feature extraction results. The analysis of the study re-
sults was based on the assessment performed by three indepen-
dent experts: two radiologists and one orthopedist. These ex-
perts represent three medical centres (hospitals). Fig. 6 shows 
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Fig. 5. Specification of the PSO-FIS particle. Input segment denotations: input j – j-th FIS input, m fk – Gaussian membership function for
k-th fuzzy value with parameters µ,σ . Knowledge base segment denotations: rule j – j-th fuzzy rule with weight W and consequent C. Output
segment denotations: m f j – membership function for k-th output fuzzy value with parameters pk : k = 0 . . .4

4. Results and Discussion
4.1. Materials. The study has been tested on 107 clinical T1-
weighted MRI studies of the knee joint. The MRI data (17-24
slices per volume) have been acquired in the sagittal plane for
females and males at different age. This clinical group con-
sisted of 62 normal and 45 pathological cases of PCLs. The
pathological cases included the following injuries: ligament
rupture of the "shaving brush" type, partial tear, extensive par-
tial tear and ligament displacement as a result of femur head
fracture (including complete PCL’s interruption) [40].

4.2. Feature extraction results. The analysis of the study re-
sults was based on the assessment performed by three indepen-
dent experts: two radiologists and one orthopedist. These ex-
perts represent three medical centres (hospitals). Fig. 6 shows
a comparison, in the form of scatterplots, of the values of el-
ements of the feature vector: PCLa/ROIa, PCLp/ROIp, B/A,
B/ICDFEMUR, B/ICDT IBIA, B/ROIHEIGHT , B/ROIWIDT H ,
B/max(ROIHEIGHT , ROIWIDT H ). In Fig. 6 the X-axis repre-
sents the values determined by experts (average value of three
marks given by the experts) while the Y-axis specifies the au-
tomatically calculated values of the individual ratios.

Based on each of these ratios, two cases can be distin-
guished: normal and pathological, respectively. The analysis
of scatterplots shown in Figs. 6 indicates that for the normal
PCLs the results are more concentrated around the mean (the
variances calculated for each of ratios of the segmented struc-
tures are lower). Whereas, for the pathological cases of PCLs
the scattering of the results is large (variances are several times
higher than for the normal cases).

4.3. Classification results. Each of the five classifiers de-
scribed in Section 3 was subjected to a k-fold cross valida-
tion procedure with three different k: 3, 10 and 107. The lat-

a) b)

c) d)

e) f)

g) h)

Fig. 6. Scatterplots of the following ratios: a) PCLa/ROIa
b) PCLp/ROIp c) B/A d) B/ICDFEMUR e) B/ICDT IBIA
f) B/ROIHEIGHT g) B/ROIWIDT H h) B/max(ROIHEIGHT ,
ROIWIDT H )
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Fig. 5. Specification of the PSO-FIS particle. Input segment denotations: input j – j-th FIS input, m fk – Gaussian membership function for
k-th fuzzy value with parameters µ,σ . Knowledge base segment denotations: rule j – j-th fuzzy rule with weight W and consequent C. Output
segment denotations: m f j – membership function for k-th output fuzzy value with parameters pk : k = 0 . . .4

4. Results and Discussion
4.1. Materials. The study has been tested on 107 clinical T1-
weighted MRI studies of the knee joint. The MRI data (17-24
slices per volume) have been acquired in the sagittal plane for
females and males at different age. This clinical group con-
sisted of 62 normal and 45 pathological cases of PCLs. The
pathological cases included the following injuries: ligament
rupture of the "shaving brush" type, partial tear, extensive par-
tial tear and ligament displacement as a result of femur head
fracture (including complete PCL’s interruption) [40].

4.2. Feature extraction results. The analysis of the study re-
sults was based on the assessment performed by three indepen-
dent experts: two radiologists and one orthopedist. These ex-
perts represent three medical centres (hospitals). Fig. 6 shows
a comparison, in the form of scatterplots, of the values of el-
ements of the feature vector: PCLa/ROIa, PCLp/ROIp, B/A,
B/ICDFEMUR, B/ICDT IBIA, B/ROIHEIGHT , B/ROIWIDT H ,
B/max(ROIHEIGHT , ROIWIDT H ). In Fig. 6 the X-axis repre-
sents the values determined by experts (average value of three
marks given by the experts) while the Y-axis specifies the au-
tomatically calculated values of the individual ratios.

Based on each of these ratios, two cases can be distin-
guished: normal and pathological, respectively. The analysis
of scatterplots shown in Figs. 6 indicates that for the normal
PCLs the results are more concentrated around the mean (the
variances calculated for each of ratios of the segmented struc-
tures are lower). Whereas, for the pathological cases of PCLs
the scattering of the results is large (variances are several times
higher than for the normal cases).

4.3. Classification results. Each of the five classifiers de-
scribed in Section 3 was subjected to a k-fold cross valida-
tion procedure with three different k: 3, 10 and 107. The lat-
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Fig. 6. Scatterplots of the following ratios: a) PCLa/ROIa
b) PCLp/ROIp c) B/A d) B/ICDFEMUR e) B/ICDT IBIA
f) B/ROIHEIGHT g) B/ROIWIDT H h) B/max(ROIHEIGHT ,
ROIWIDT H )
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a comparison, in the form of scatterplots, of the values of ele-
ments of the feature vector: PCLa/ROIa, PCLp/ROIp, B/A, 
B/ICDFEMUR, B/ICDTIBIA, B/ROIHEIGHT, B/ROIWIDTH,  
B/max(ROIHEIGHT, ROIWIDTH). In Fig. 6 the X-axis represents 
the values determined by experts (average value of three marks 
given by the experts) while the Y-axis specifies the automati-
cally calculated values of the individual ratios.

Based on each of these ratios, two cases can be distin-
guished: normal and pathological, respectively. The analysis 
of scatterplots shown in Figs. 6 indicates that for the normal 
PCLs the results are more concentrated around the mean (the 
variances calculated for each of ratios of the segmented struc-
tures are lower). Whereas, for the pathological cases of PCLs 
the scattering of the results is large (variances are several times 
higher than for the normal cases).

4.3. Classification results. Each of the five classifiers described 
in Section 3 was subjected to a k-fold cross validation procedure 
with three different k: 3, 10 and 107. The latter choice corre-
sponds to a leave-one-out cross validation as a special case of 
a k-fold scheme. In order to increase the evaluation reliability, 
each k-fold cross validation experiment was repeated N = 20 
times, each with its own independent dataset organized into k 
groups. The classification efficiency summary is gathered in 
Table 1. The average numbers of TP, FP, TN, FN and com-
bined sensitivity and specificity values are presented in the 
table, as well as the best case metrics throughout N runs in 
terms of a Dice index.

The mean classification sensitivity ranges between 94.8 and 
98.4%, specificity between 90.1 and 93.3%, and Dice index 
between 94.1 and 96.8% throughout all classifiers and cross 
validations. The most accurate, consistent, and repeatable re-
sults are yielded by the SVM classifier followed by the ANFIS, 
which indicates their relatively low sensitivity to initiation. 
On the other hand, the MLP system offers the lowest classi-
fication efficiency. Despite lower level of repeatability, the 
PSO-FIS was able to produce structures with a 100% sensi-
tivity. According to Table 1, differences between the employed 
soft computing classifiers are relatively small. The statistical 
significance analysis over obtained Dice index values has been 
performed using a Wilcoxon signed-rank test. In each cross 
validation scheme the SVM classifier outperforms all other 
classifiers at a confidence level of p = 0.05. The other classi-
fiers mostly do not differ significantly in various cross vali-
dation schemes except the k = 107 case. A matrix of p-values 
obtained during verification of a null hypothesis for each pair 
of classifiers in a leave-one-out scheme (k = 107) is presented 
in Table 2, whilst corresponding Dice index box plot is shown 
in Fig. 7. The PSO-ANFIS tool features significant advantage 
here over all remaining classifiers (MLP, ANFIS, PSO-FIS). 
The classification accuracy metrics consistently exceeding 
90% prove a high discriminant power of features describing 
cruciate ligaments.

The training time consumption reaches the largest level of 
ca. 30 s (performed on a workstation with CPU @ 3.40GHz, 
16GB RAM, 64-bit Windows 7 OS and Matlab 7.14. – R2012a) 

Table 1 
Classification efficiency summary. Each classifier is evaluated in three modes of a k-fold cross validation k = (3, 10, 107). 

Each cross-validation is repeated N = 20 times with different database partitions. The left side of the table presents the averaged metrics, 
the right side – the best case metrics in terms of a Dice index
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Table 1
Classification efficiency summary. Each classifier is evaluated in three modes of a k-fold cross validation (k = 3,10,107). Each cross-validation is repeated

N = 20 times with different database partitions. The left side of the table presents the averaged metrics, the right side – the best case metrics in terms of a Dice
index

Average in N runs Best case in N runs
k T P FP T N FN Sen [%] Spec [%] D [%] T P FP T N FN Sen [%] Spec [%] D [%]

MLP
3 58.8±4.6 4.1±1.8 40.9±1.8 3.2±4.6 94.8 90.9 94.1 60 1 44 2 96.8 97.8 97.6
10 59.8±1.6 3.4±1.5 41.6±1.5 2.2±1.6 96.4 92.6 95.5 61 2 43 1 98.4 95.6 97.6

107 60.0±0.9 3.4±1.3 41.6±1.3 2.0±0.9 96.8 92.3 95.7 61 2 43 1 98.4 95.6 97.6
SVM

3 60.9±0.3 3.2±0.4 41.8±0.4 1.1±0.3 98.2 92.8 96.6 61 3 42 1 98.4 93.3 96.8
10 61.0±0.0 3.1±0.3 41.9±0.3 1.0±0.0 98.4 93.1 96.7 61 3 42 1 98.4 93.3 96.8

107 61.0±0.0 3.0±0.0 42.0±0.0 1.0±0.0 98.4 93.3 96.8 61 3 42 1 98.4 93.3 96.8
ANFIS

3 60.2±1.4 3.8±1.2 41.2±1.2 1.8±1.4 97.2 91.7 95.6 61 2 43 1 98.4 95.6 97.6
10 60.8±0.4 3.6±0.7 41.4±0.7 1.2±0.4 98.0 91.9 96.1 61 2 43 1 98.4 95.6 97.6

107 60.8±0.4 4.2±0.9 40.8±0.9 1.2±0.4 98.1 90.6 95.7 61 2 43 1 98.4 95.6 97.6
PSO-FIS

3 60.0±1.5 3.8±0.9 41.2±0.9 2.0±1.5 96.9 91.4 95.4 62 3 42 0 100.0 93.3 97.6
10 60.1±1.3 4.4±1.3 40.6±1.3 1.9±1.3 96.9 90.1 95.0 62 4 41 0 100.0 91.1 96.9

107 60.6±0.7 4.3±1.3 40.7±1.3 1.4±0.7 97.8 90.4 95.5 61 2 43 1 98.4 95.6 97.6
PSO-ANFIS

3 60.0±1.1 3.4±1.3 41.6±1.3 2.0±1.1 96.8 92.4 95.7 61 1 44 1 98.4 97.8 98.4
10 60.2±1.1 3.6±0.9 41.4±0.9 1.8±1.1 97.2 91.9 95.7 61 2 43 1 98.4 95.6 97.6

107 60.7±0.6 3.3±0.9 41.7±0.9 1.3±0.6 97.9 92.7 96.3 61 2 43 1 98.4 95.6 97.6

ter choice corresponds to a leave-one-out cross validation as a
special case of a k-fold scheme. In order to increase the eval-
uation reliability, each k-fold cross validation experiment was
repeated N = 20 times, each with its own independent dataset
organized into k groups. The classification efficiency summary
is gathered in Table 1. The average numbers of T P, FP, T N,
FN and combined sensitivity and specificity values are pre-
sented in the table, as well as the best case metrics throughout
N runs in terms of a Dice index.

The mean classification sensitivity ranges between 94.8 and
98.4%, specificity between 90.1 and 93.3%, and Dice index
between 94.1 and 96.8% throughout all classifiers and cross
validations. The most accurate, consistent, and repeatable re-
sults are yielded by the SVM classifier followed by the AN-
FIS, which indicates their relatively low sensitivity to initia-
tion. On the other hand, the MLP system offers the lowest
classification efficiency. Despite lower level of repeatability,
the PSO-FIS was able to produce structures with a 100% sen-
sitivity. According to Table 1, differences between the em-
ployed soft computing classifiers are relatively small. The
statistical significance analysis over obtained Dice index val-
ues has been performed using a Wilcoxon signed-rank test. In
each cross validation scheme the SVM classifier outperforms
all other classifiers at a confidence level of p = 0.05. The
other classifiers mostly do not differ significantly in various
cross validation schemes except the k = 107 case. A matrix of
p-values obtained during verification of a null hypothesis for
each pair of classifiers in a leave-one-out scheme (k = 107) is
presented in Table 2, whilst corresponding Dice index box plot

Table 2
A matrix of p-values obtained during the statistical significance analysis
using Wilcoxon signed-rank test of all methods in terms of a Dice index

(leave-one-out cross validation scheme). A table cell is highlighted with a
gray background if a null hypothesis is rejected and two datasets of results

differ significantly at a confidence level of p = 0.05

MLP SVM ANFIS PSO-
FIS

PSO-
ANFIS

MLP 0.001 0.305 0.962 0.038
SVM 0.001 0.000 0.001 0.019

ANFIS 0.305 0.000 0.636 0.019
PSO-FIS 0.962 0.001 0.636 0.035

PSO-ANFIS 0.038 0.019 0.019 0.035

is shown in Fig. 7. The PSO-ANFIS tool features significant
advantage here over all remaining classifiers (MLP, ANFIS,
PSO-FIS). The classification accuracy metrics consistently ex-
ceeding 90% prove a high discriminant power of features de-
scribing cruciate ligaments.

The training time consumption reaches the largest level of
ca. 30 s (performed on a workstation with CPU @ 3.40GHz,
16GB RAM, 64-bit Windows 7 OS and Matlab 7.14. –
R2012a) in case of PSO-based classifiers specified as in Sec-
tion 3. The particle fitness calculation procedure can be iden-
tified as the most time consuming part here since it requires
a FIS/ANFIS evaluation per individual particle using all train-
ing vectors. Such an operation individually takes ca. 1 ms ,
yet multiplied by the number of particles (here 50) consumes
ca. 50 ms per iteration and by the number of iterations (here
500) – ca. 25 s per training.
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in case of PSO-based classifiers specified as in Section 3. The 
particle fitness calculation procedure can be identified as the 
most time consuming part here since it requires a FIS/ANFIS 
evaluation per individual particle using all training vectors. 
Such an operation individually takes ca. 1 ms, yet multiplied 
by the number of particles (here 50) consumes ca. 50 ms per 
iteration and by the number of iterations (here 500) – ca. 25 s 
per training.

sensitivity and specificity regardless of the employed clas-
sifier. The obtained results indicate that this concept may 
improve the diagnostic process of the PCL structures though 
its performance has to be confirmed using a study employing 
a larger set of cases of various difficulty level. The future 
work should focus on creating an intelligent, clinically ap-
plicable system dedicated to image analysis of the knee joint 
and advanced diagnostics of the cruciate ligaments with the 
methodology described in this paper standing for the first 
part of a full system.
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Table 1
Classification efficiency summary. Each classifier is evaluated in three modes of a k-fold cross validation (k = 3,10,107). Each cross-validation is repeated

N = 20 times with different database partitions. The left side of the table presents the averaged metrics, the right side – the best case metrics in terms of a Dice
index

Average in N runs Best case in N runs
k T P FP T N FN Sen [%] Spec [%] D [%] T P FP T N FN Sen [%] Spec [%] D [%]

MLP
3 58.8±4.6 4.1±1.8 40.9±1.8 3.2±4.6 94.8 90.9 94.1 60 1 44 2 96.8 97.8 97.6
10 59.8±1.6 3.4±1.5 41.6±1.5 2.2±1.6 96.4 92.6 95.5 61 2 43 1 98.4 95.6 97.6

107 60.0±0.9 3.4±1.3 41.6±1.3 2.0±0.9 96.8 92.3 95.7 61 2 43 1 98.4 95.6 97.6
SVM

3 60.9±0.3 3.2±0.4 41.8±0.4 1.1±0.3 98.2 92.8 96.6 61 3 42 1 98.4 93.3 96.8
10 61.0±0.0 3.1±0.3 41.9±0.3 1.0±0.0 98.4 93.1 96.7 61 3 42 1 98.4 93.3 96.8

107 61.0±0.0 3.0±0.0 42.0±0.0 1.0±0.0 98.4 93.3 96.8 61 3 42 1 98.4 93.3 96.8
ANFIS

3 60.2±1.4 3.8±1.2 41.2±1.2 1.8±1.4 97.2 91.7 95.6 61 2 43 1 98.4 95.6 97.6
10 60.8±0.4 3.6±0.7 41.4±0.7 1.2±0.4 98.0 91.9 96.1 61 2 43 1 98.4 95.6 97.6

107 60.8±0.4 4.2±0.9 40.8±0.9 1.2±0.4 98.1 90.6 95.7 61 2 43 1 98.4 95.6 97.6
PSO-FIS

3 60.0±1.5 3.8±0.9 41.2±0.9 2.0±1.5 96.9 91.4 95.4 62 3 42 0 100.0 93.3 97.6
10 60.1±1.3 4.4±1.3 40.6±1.3 1.9±1.3 96.9 90.1 95.0 62 4 41 0 100.0 91.1 96.9

107 60.6±0.7 4.3±1.3 40.7±1.3 1.4±0.7 97.8 90.4 95.5 61 2 43 1 98.4 95.6 97.6
PSO-ANFIS

3 60.0±1.1 3.4±1.3 41.6±1.3 2.0±1.1 96.8 92.4 95.7 61 1 44 1 98.4 97.8 98.4
10 60.2±1.1 3.6±0.9 41.4±0.9 1.8±1.1 97.2 91.9 95.7 61 2 43 1 98.4 95.6 97.6

107 60.7±0.6 3.3±0.9 41.7±0.9 1.3±0.6 97.9 92.7 96.3 61 2 43 1 98.4 95.6 97.6

ter choice corresponds to a leave-one-out cross validation as a
special case of a k-fold scheme. In order to increase the eval-
uation reliability, each k-fold cross validation experiment was
repeated N = 20 times, each with its own independent dataset
organized into k groups. The classification efficiency summary
is gathered in Table 1. The average numbers of T P, FP, T N,
FN and combined sensitivity and specificity values are pre-
sented in the table, as well as the best case metrics throughout
N runs in terms of a Dice index.

The mean classification sensitivity ranges between 94.8 and
98.4%, specificity between 90.1 and 93.3%, and Dice index
between 94.1 and 96.8% throughout all classifiers and cross
validations. The most accurate, consistent, and repeatable re-
sults are yielded by the SVM classifier followed by the AN-
FIS, which indicates their relatively low sensitivity to initia-
tion. On the other hand, the MLP system offers the lowest
classification efficiency. Despite lower level of repeatability,
the PSO-FIS was able to produce structures with a 100% sen-
sitivity. According to Table 1, differences between the em-
ployed soft computing classifiers are relatively small. The
statistical significance analysis over obtained Dice index val-
ues has been performed using a Wilcoxon signed-rank test. In
each cross validation scheme the SVM classifier outperforms
all other classifiers at a confidence level of p = 0.05. The
other classifiers mostly do not differ significantly in various
cross validation schemes except the k = 107 case. A matrix of
p-values obtained during verification of a null hypothesis for
each pair of classifiers in a leave-one-out scheme (k = 107) is
presented in Table 2, whilst corresponding Dice index box plot

Table 2
A matrix of p-values obtained during the statistical significance analysis
using Wilcoxon signed-rank test of all methods in terms of a Dice index

(leave-one-out cross validation scheme). A table cell is highlighted with a
gray background if a null hypothesis is rejected and two datasets of results

differ significantly at a confidence level of p = 0.05

MLP SVM ANFIS PSO-
FIS

PSO-
ANFIS

MLP 0.001 0.305 0.962 0.038
SVM 0.001 0.000 0.001 0.019

ANFIS 0.305 0.000 0.636 0.019
PSO-FIS 0.962 0.001 0.636 0.035

PSO-ANFIS 0.038 0.019 0.019 0.035

is shown in Fig. 7. The PSO-ANFIS tool features significant
advantage here over all remaining classifiers (MLP, ANFIS,
PSO-FIS). The classification accuracy metrics consistently ex-
ceeding 90% prove a high discriminant power of features de-
scribing cruciate ligaments.

The training time consumption reaches the largest level of
ca. 30 s (performed on a workstation with CPU @ 3.40GHz,
16GB RAM, 64-bit Windows 7 OS and Matlab 7.14. –
R2012a) in case of PSO-based classifiers specified as in Sec-
tion 3. The particle fitness calculation procedure can be iden-
tified as the most time consuming part here since it requires
a FIS/ANFIS evaluation per individual particle using all train-
ing vectors. Such an operation individually takes ca. 1 ms ,
yet multiplied by the number of particles (here 50) consumes
ca. 50 ms per iteration and by the number of iterations (here
500) – ca. 25 s per training.

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 7. Dice index box plot for a leave-one-out (k = 107) cross vali-
dation scheme. Each box covers a 25th to 75th percentile range with 
median value given and indicated by a central line and extreme values 

bordered by whiskers

5.	 Conclusions

The proposed workflow merges image analysis techniques 
to obtain a set of features describing the PCL structures and 
then employs classification stage for the computer aided PCL 
diagnosis. This approach can be helpful in clinical evalua-
tion of PCL, especially in doubtful cases, where the visual 
assessment may be questionable. However, the effectiveness 
of the method in such challenging cases has to be investigated 
thoroughly. The proposed way provides a reliable and fast 
diagnosis of posterior cruciate ligaments, which plays very 
important role in the process of treatment and rehabilitation. 
The study conducted on selected features suitability for the 
PCL pathology assessment indicates relatively high level of 
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