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Abstract. In this paper, a new control scheme is proposed to achieve stability for a single-machine infinite-bus power system. A power system 
model simultaneously considering input saturation and time-varying uncertainties is presented. A sufficient condition for the system convergence 
is given and based on this result, a switching excitation control law with auxiliary system is designed. The stability analysis and simulation 
results all show that the developed controller is effective.
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tion to the control problem of nonlinear systems with input 
saturation. In [9], an auxiliary system is employed to address 
input constraints, but only boundedness of the “last modified 
virtual error” is obtained. If the desired value of control input 
greatly exceeds the constraints, then the auxiliary system will 
be unstable and thus the convergence of the “last virtual error” 
to the origin cannot be ensured. In [10], the tanh function and 
the mean-value theorem are used to deal with the saturation 
function, and then the redial basis function i.e. neural network is 
employed to approximate the unknown control gain. However, 
since the tanh function is also a kind of bounded function, when 
there are large disturbances and the desired value of control 
input goes beyond the range of tanh, the efficacy of the designed 
control law may be limited. In [11], dynamic surface control 
is used to equivalently transform a class of nonlinear system 
into a linear system, and then the region of attraction which is 
enlarged to allow some degree of input saturation is estimated 
via a linear matrix inequality method [12]. But this approach 
does not give a solution for a case when the initial condition is 
out of this region of attraction.

This article proposes a new nonlinear robust control frame-
work to tackle the stabilization problem for a class of nonlinear 
system with time-varying uncertainties and input saturation. 
Compared with the prior works, the proposed method ensures 
not only the boundedness of state variables but the global sta-
bility of the closed-loop system. Furthermore, the approach pro-
posed processes the saturation phenomenon directly and does 
not require approximating the saturation function by a smooth 
function, which is often not invertible outside its range.

The paper is organized as follows: the preliminaries and 
a SMIB power system model are described in Section 2. In 
Section 3, a sufficient condition for the convergence of states 
to the origin under saturation is shown in a Theorem, and then 
on the basis of this result, a switching excitation control law 
with auxiliary system (SAEC) is designed, as well as stability 
analysis for the closed-loop system with the designed controller. 
The simulation results are presented in Section 4. Conclusions 
are drawn in Section 5.

1.	 Introduction

Energy issue is one of the most pressing challenges. The main 
contents of this problem include generation, transmission and 
distribution of energy. Power system is regarded as one of the 
most complex systems in the world [1] and in order to obtain 
satisfactory and optimal operating state, many researchers 
have developed various solutions from their different profes-
sional perspectives [2‒5]. This paper studies power system 
transient stability by using model-based control systems tech-
nology [6].

For many years, linear control has been used as a traditional 
soft computing method to design excitation controllers, e.g. 
automatic voltage regulator (AVR) and power system stabilizer 
(PSS). Although these controllers have been simulatively vali-
dated, the robustness can not be ensured because the controllers 
have been designed on the basis of linear power system model 
which is often not applicable in entire operation region. Thus 
it is necessary to preserve nonlinear characteristics of power 
systems and study nonlinear control method. However, there 
are strongly nonlinear couplings between model parameters 
and state variables, and the known values of the parameters 
are often not coincident with the actual situation. Thus, model 
errors are always subsistent and are necessary to be considered 
in control system synthesis from the viewpoints of nonlinear 
robust control [7, 8]. Furthermore, input constraints, such as 
excitation voltage saturation, are unavoidable in practical en-
gineering. If this phenomenon is not considered in controller 
design, the prospective stability and performances of closed-
loop systems may not be ensured because the system dynamic 
behavior is uncontrolled when the desired control input goes 
beyond the limit.

Due to the complex nature of nonlinear systems, in the ex-
isting literatures, most of results on input saturation/constraints 
are based on linear systems. Only few researchers pay atten-
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2.	 Problem statement and system model

Consider the SMIB system with its components as shown in 
Fig. 1. Compared with structure-preserving multi-machine 
model [13, 14], the SMIB model does not directly reflect the 
influences of power network components and loads, instead of 
aggregated node containing the information of these elements. 
Furthermore, the reduced-order model also neglects the flux 
linkages dynamics by using the singular perturbation technique. 
Fortunately, even so, both the theoretical studies and the exper-
imental results have validated the SMIB model are well-suited 
for stability analysis and feedback control design for industrial 
power generators [15, 16]. Based on the above discussions, 
from the perspective of robust control, in order to enhance the 
applicability of excitation control system, time-varying uncer-
tainties indicating the model errors should be considered. More-
over, in practice, actuator saturation is ubiquitous and there 
exist input constraint. Simultaneously ensuring the expected 
performances and the control laws remaining within bounds is 
difficult, and in this case, it is a critical and challenging problem 
for state-feedback control of power systems with input satu-
ration. As such, a nonlinear robust excitation control scheme 
considering excitation input constraint is proposed in this paper.

Thus, on the basis of the classical SMIB model [17, 18] and 
the above statements, the system dynamic model considered in 
this paper is proposed as follows:
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δ̇ = ω,

ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
′2
ds), c

′
xd = Vs/(Td0x

′
ds), P1 (δ ,ω) =

−1/T
′

d0 +ω cotδ , P2 (δ ) = cxd sin2δ , P3 (δ ) = c
′
xd sinδ .

3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x)Q(x)Q(x) S(x)S(x)S(x)
S(x)S(x)S(x)T R(x)R(x)R(x)

]
> 0

is equivalent to Q(x)Q(x)Q(x)−S(x)S(x)S(x)R(x)R(x)R(x)−1S(x)S(x)S(x)T > 0, where xxx ∈ Rn,
Q(x)Q(x)Q(x) = Q(x)Q(x)Q(x)T ∈ Rm×m, 0 < R(x)R(x)R(x) = R(x)R(x)R(x)T ∈ Rs×s, and S(x)S(x)S(x) ∈
Rm×s depend affinely on xxx.

Definition 1: The set C(PPP,ρ) = {xxx | xxxTPPPxxx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory xxx(t), if xxx(0) ∈ C(PPP,ρ) then xxx(t) ∈ C(PPP,ρ),∀t ≥ 0,
where 0 <PPP =PPPT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory xxx(t), if
xxx(0) ∈C then xxx(t)→ 0 as t → ∞.

LEMMA 1. Consider uuu = KKKxxx ∈ Rnu ,KKK ∈ Rnu×n, and
C(PPP,ρ) is an invariant ellipsoid. Then ‖uuu‖ ≤ uc is equivalent

to the inequalities
[

ρ xxx(0)T

xxx(0) PPP−1

]
≥ 0 and

[
PPP KKKT

KKK (u2
c/ρ)III

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ xxx(0)T

xxx(0) PPP−1

]
≥

0 and
[

PPP KKKT

KKK (u2
c/ρ)III

]
≥ 0 can be equivalently transformed into

xxx(0)TPPPxxx(0)≤ ρ and PPP−1/2KKKTKKKPPP−1/2 ≤ (u2
c/ρ)III. Thus, xxx(0)∈

C(PPP,ρ) which is an invariant ellipsoid, one can get xxxTPPPxxx ≤
ρ . Therefore, ‖uuu‖2 = uuuTuuu = xxxTPPP1/2(PPP−1/2KKKTKKKPPP−1/2)PPP1/2xxx ≤
(u2

c/ρ)xxxTPPPxxx ≤ u2
c . This concludes the proof. ��

Definition 3 [11]: For ς ∈ (0,1], the constraint ‖uuu‖ ≤ uc/ς
is an extended version of ‖uuu‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-
ties

[
ρ xxx(0)T

xxx(0) PPP−1

]
≥ 0 and

[
PPP ςKKKT

ςKKK (u2
c/ρ)III

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄īzīzi = [z1, . . . ,zi]

T , i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2z̄2z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2z̄2z̄2).

Step 3: Consider Lyapunov function V3 = V2 +(c3/2)z2
3 +
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trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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 > 0 is 
equivalent to Q(x) ¡ S(x)R(x)–1S(x)T > 0, where x 2 ℝn, 
Q(x)  =  Q(x)T 2 ℝm×m, 0 <  R(x)  =  R(x)T 2 ℝs×s, and 
S(x) 2 ℝm×s depend affinely on x.

Definition 1. The set C(P, ρ) = fxjxTPx ∙ ρg is said to be 
invariant ellipsoid when the following condition holds: For 
a trajectory x(t), if x(0) 2 C(P, ρ) then x(t) 2 C(P, ρ), where 
0 < P = PT 2 ℝn×n and ρ > 0.

Definition 2. The set C is said to be a region of attraction when 
the following condition holds: For a trajectory x(t), if x(0) 2 C 
then x(t) ! 0 as t ! �.

Lemma 1. Consider u = Kx 2 ℝnu, K 2 ℝnu×n, and C(P, ρ) is 
an invariant ellipsoid. Then kuk ∙ uc is equivalent to the 
inequalities 

model [13, 14], the SMIB model does not directly reflect the
influences of power network components and loads, instead
of aggregated node containing the information of these ele-
ments. Furthermore, the reduced-order model also neglects
the flux linkages dynamics by using the singular perturbation
technique. Fortunately, even so, both the theoretical studies
and the experimental results have validated the SMIB model
is well-suited for stability analysis and feedback control de-
sign for industrial power generators [15, 16]. Based on the
above discussions, from the perspective of robust control, in
order to enhance the applicability of excitation control system,
time-varying uncertainties indicating the model errors should
be considered. Moreover, in practice, actuator saturation is u-
biquitous and there exist input constraint. Simultaneously en-
suring the expected performances and the control laws remain-
ing within bounds is difficult, and in this case, it is a critical
and challenging problem for state-feedback control of power
systems with input saturation. As such, a nonlinear robust ex-
citation control scheme considering excitation input constraint
is proposed in this paper.

Thus, on the basis of the classical SMIB model [17, 18] and
the above statements, the system dynamic model considered in
this paper is given as follows:

δ̇ = ω,

ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
′2
ds), c

′
xd = Vs/(Td0x

′
ds), P1 (δ ,ω) =

−1/T
′

d0 +ω cotδ , P2 (δ ) = cxd sin2δ , P3 (δ ) = c
′
xd sinδ .

3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to Q(x)−S(x)R(x)−1S(x)T > 0, where x ∈ Rn,
Q(x) = Q(x)T ∈Rm×m, 0 < R(x) = R(x)T ∈Rs×s, and S(x)∈
Rm×s depend affinely on x.

Definition 1: The set C(P,ρ) = {x | xTPx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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 ¸ 0 and 

model [13, 14], the SMIB model does not directly reflect the
influences of power network components and loads, instead
of aggregated node containing the information of these ele-
ments. Furthermore, the reduced-order model also neglects
the flux linkages dynamics by using the singular perturbation
technique. Fortunately, even so, both the theoretical studies
and the experimental results have validated the SMIB model
is well-suited for stability analysis and feedback control de-
sign for industrial power generators [15, 16]. Based on the
above discussions, from the perspective of robust control, in
order to enhance the applicability of excitation control system,
time-varying uncertainties indicating the model errors should
be considered. Moreover, in practice, actuator saturation is u-
biquitous and there exist input constraint. Simultaneously en-
suring the expected performances and the control laws remain-
ing within bounds is difficult, and in this case, it is a critical
and challenging problem for state-feedback control of power
systems with input saturation. As such, a nonlinear robust ex-
citation control scheme considering excitation input constraint
is proposed in this paper.

Thus, on the basis of the classical SMIB model [17, 18] and
the above statements, the system dynamic model considered in
this paper is given as follows:

δ̇ = ω,

ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
′2
ds), c

′
xd = Vs/(Td0x

′
ds), P1 (δ ,ω) =

−1/T
′

d0 +ω cotδ , P2 (δ ) = cxd sin2δ , P3 (δ ) = c
′
xd sinδ .

3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to Q(x)−S(x)R(x)−1S(x)T > 0, where x ∈ Rn,
Q(x) = Q(x)T ∈Rm×m, 0 < R(x) = R(x)T ∈Rs×s, and S(x)∈
Rm×s depend affinely on x.

Definition 1: The set C(P,ρ) = {x | xTPx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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 ¸ 0 hold.

Proof. Based on the Schur complements, 

model [13, 14], the SMIB model does not directly reflect the
influences of power network components and loads, instead
of aggregated node containing the information of these ele-
ments. Furthermore, the reduced-order model also neglects
the flux linkages dynamics by using the singular perturbation
technique. Fortunately, even so, both the theoretical studies
and the experimental results have validated the SMIB model
is well-suited for stability analysis and feedback control de-
sign for industrial power generators [15, 16]. Based on the
above discussions, from the perspective of robust control, in
order to enhance the applicability of excitation control system,
time-varying uncertainties indicating the model errors should
be considered. Moreover, in practice, actuator saturation is u-
biquitous and there exist input constraint. Simultaneously en-
suring the expected performances and the control laws remain-
ing within bounds is difficult, and in this case, it is a critical
and challenging problem for state-feedback control of power
systems with input saturation. As such, a nonlinear robust ex-
citation control scheme considering excitation input constraint
is proposed in this paper.

Thus, on the basis of the classical SMIB model [17, 18] and
the above statements, the system dynamic model considered in
this paper is given as follows:

δ̇ = ω,

ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
′2
ds), c

′
xd = Vs/(Td0x

′
ds), P1 (δ ,ω) =

−1/T
′

d0 +ω cotδ , P2 (δ ) = cxd sin2δ , P3 (δ ) = c
′
xd sinδ .

3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to Q(x)−S(x)R(x)−1S(x)T > 0, where x ∈ Rn,
Q(x) = Q(x)T ∈Rm×m, 0 < R(x) = R(x)T ∈Rs×s, and S(x)∈
Rm×s depend affinely on x.

Definition 1: The set C(P,ρ) = {x | xTPx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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model [13, 14], the SMIB model does not directly reflect the
influences of power network components and loads, instead
of aggregated node containing the information of these ele-
ments. Furthermore, the reduced-order model also neglects
the flux linkages dynamics by using the singular perturbation
technique. Fortunately, even so, both the theoretical studies
and the experimental results have validated the SMIB model
is well-suited for stability analysis and feedback control de-
sign for industrial power generators [15, 16]. Based on the
above discussions, from the perspective of robust control, in
order to enhance the applicability of excitation control system,
time-varying uncertainties indicating the model errors should
be considered. Moreover, in practice, actuator saturation is u-
biquitous and there exist input constraint. Simultaneously en-
suring the expected performances and the control laws remain-
ing within bounds is difficult, and in this case, it is a critical
and challenging problem for state-feedback control of power
systems with input saturation. As such, a nonlinear robust ex-
citation control scheme considering excitation input constraint
is proposed in this paper.

Thus, on the basis of the classical SMIB model [17, 18] and
the above statements, the system dynamic model considered in
this paper is given as follows:

δ̇ = ω,

ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
′2
ds), c

′
xd = Vs/(Td0x

′
ds), P1 (δ ,ω) =

−1/T
′

d0 +ω cotδ , P2 (δ ) = cxd sin2δ , P3 (δ ) = c
′
xd sinδ .

3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to Q(x)−S(x)R(x)−1S(x)T > 0, where x ∈ Rn,
Q(x) = Q(x)T ∈Rm×m, 0 < R(x) = R(x)T ∈Rs×s, and S(x)∈
Rm×s depend affinely on x.

Definition 1: The set C(P,ρ) = {x | xTPx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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 ¸ 0 can be equivalently transformed into x(0)TPx(0) ∙ ρ 

and P–1/2KTKP–1/2 ∙ (u2
c/ρ)I. Thus, x(0) 2 C(P, ρ) which is 

an invariant ellipsoid, one can get xTPx ∙ ρ. Therefore, 
kuk2 = uTu = xTP1/2(P–1/2KTKP–1/2)P1/2x ∙ (u2

c/ρ)xTPx ∙ u2
c. 

This concludes the proof. □□

Definition 3 [11]. For ϛ 2 (0, 1], the constraint kuk ∙ uc/ϛ is 
an extended version of kuk ∙ uc, in this case, some degree of 
saturation is allowed, namely “ϛ-saturation”.

Lemma 2. “ϛ-saturation” is equivalent to the inequalities 

model [13, 14], the SMIB model does not directly reflect the
influences of power network components and loads, instead
of aggregated node containing the information of these ele-
ments. Furthermore, the reduced-order model also neglects
the flux linkages dynamics by using the singular perturbation
technique. Fortunately, even so, both the theoretical studies
and the experimental results have validated the SMIB model
is well-suited for stability analysis and feedback control de-
sign for industrial power generators [15, 16]. Based on the
above discussions, from the perspective of robust control, in
order to enhance the applicability of excitation control system,
time-varying uncertainties indicating the model errors should
be considered. Moreover, in practice, actuator saturation is u-
biquitous and there exist input constraint. Simultaneously en-
suring the expected performances and the control laws remain-
ing within bounds is difficult, and in this case, it is a critical
and challenging problem for state-feedback control of power
systems with input saturation. As such, a nonlinear robust ex-
citation control scheme considering excitation input constraint
is proposed in this paper.

Thus, on the basis of the classical SMIB model [17, 18] and
the above statements, the system dynamic model considered in
this paper is given as follows:

δ̇ = ω,

ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
′2
ds), c

′
xd = Vs/(Td0x

′
ds), P1 (δ ,ω) =

−1/T
′

d0 +ω cotδ , P2 (δ ) = cxd sin2δ , P3 (δ ) = c
′
xd sinδ .

3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to Q(x)−S(x)R(x)−1S(x)T > 0, where x ∈ Rn,
Q(x) = Q(x)T ∈Rm×m, 0 < R(x) = R(x)T ∈Rs×s, and S(x)∈
Rm×s depend affinely on x.

Definition 1: The set C(P,ρ) = {x | xTPx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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model [13, 14], the SMIB model does not directly reflect the
influences of power network components and loads, instead
of aggregated node containing the information of these ele-
ments. Furthermore, the reduced-order model also neglects
the flux linkages dynamics by using the singular perturbation
technique. Fortunately, even so, both the theoretical studies
and the experimental results have validated the SMIB model
is well-suited for stability analysis and feedback control de-
sign for industrial power generators [15, 16]. Based on the
above discussions, from the perspective of robust control, in
order to enhance the applicability of excitation control system,
time-varying uncertainties indicating the model errors should
be considered. Moreover, in practice, actuator saturation is u-
biquitous and there exist input constraint. Simultaneously en-
suring the expected performances and the control laws remain-
ing within bounds is difficult, and in this case, it is a critical
and challenging problem for state-feedback control of power
systems with input saturation. As such, a nonlinear robust ex-
citation control scheme considering excitation input constraint
is proposed in this paper.

Thus, on the basis of the classical SMIB model [17, 18] and
the above statements, the system dynamic model considered in
this paper is given as follows:

δ̇ = ω,

ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
′2
ds), c

′
xd = Vs/(Td0x

′
ds), P1 (δ ,ω) =

−1/T
′

d0 +ω cotδ , P2 (δ ) = cxd sin2δ , P3 (δ ) = c
′
xd sinδ .

3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to Q(x)−S(x)R(x)−1S(x)T > 0, where x ∈ Rn,
Q(x) = Q(x)T ∈Rm×m, 0 < R(x) = R(x)T ∈Rs×s, and S(x)∈
Rm×s depend affinely on x.

Definition 1: The set C(P,ρ) = {x | xTPx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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Proof. Based on Lemma 1 and the Schur complements, one can 
directly get the above result. □□

Fig. 1. Single-machine infinite-bus power systems
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Lemma 3. [20] For any ε > 0 and e 2 ℝ, the following in-
equality always holds

	

model [13, 14], the SMIB model does not directly reflect the
influences of power network components and loads, instead
of aggregated node containing the information of these ele-
ments. Furthermore, the reduced-order model also neglects
the flux linkages dynamics by using the singular perturbation
technique. Fortunately, even so, both the theoretical studies
and the experimental results have validated the SMIB model
is well-suited for stability analysis and feedback control de-
sign for industrial power generators [15, 16]. Based on the
above discussions, from the perspective of robust control, in
order to enhance the applicability of excitation control system,
time-varying uncertainties indicating the model errors should
be considered. Moreover, in practice, actuator saturation is u-
biquitous and there exist input constraint. Simultaneously en-
suring the expected performances and the control laws remain-
ing within bounds is difficult, and in this case, it is a critical
and challenging problem for state-feedback control of power
systems with input saturation. As such, a nonlinear robust ex-
citation control scheme considering excitation input constraint
is proposed in this paper.

Thus, on the basis of the classical SMIB model [17, 18] and
the above statements, the system dynamic model considered in
this paper is given as follows:

δ̇ = ω,

ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
′2
ds), c

′
xd = Vs/(Td0x

′
ds), P1 (δ ,ω) =

−1/T
′

d0 +ω cotδ , P2 (δ ) = cxd sin2δ , P3 (δ ) = c
′
xd sinδ .

3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to Q(x)−S(x)R(x)−1S(x)T > 0, where x ∈ Rn,
Q(x) = Q(x)T ∈Rm×m, 0 < R(x) = R(x)T ∈Rs×s, and S(x)∈
Rm×s depend affinely on x.

Definition 1: The set C(P,ρ) = {x | xTPx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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model [13, 14], the SMIB model does not directly reflect the
influences of power network components and loads, instead
of aggregated node containing the information of these ele-
ments. Furthermore, the reduced-order model also neglects
the flux linkages dynamics by using the singular perturbation
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order to enhance the applicability of excitation control system,
time-varying uncertainties indicating the model errors should
be considered. Moreover, in practice, actuator saturation is u-
biquitous and there exist input constraint. Simultaneously en-
suring the expected performances and the control laws remain-
ing within bounds is difficult, and in this case, it is a critical
and challenging problem for state-feedback control of power
systems with input saturation. As such, a nonlinear robust ex-
citation control scheme considering excitation input constraint
is proposed in this paper.
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the above statements, the system dynamic model considered in
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ω̇ =−(D/H)ω +(ω0/H)(Pm −Pe)+d1(t),

Ṗe = P1 (δ ,ω)Pe +P2 (δ )+P3 (δ )sat(E f d)+d2(t),

(1)

sat(E f d) = γE f d ,

γ =

{
UB/|E f d |, |E f d | ≥UB,

1, |E f d |<UB,

(2)

where δ is the power angle in rad, ω is the relative speed in
rad/s, Pe is the active power in p.u., E f d is the field excitation
voltage in p.u., UB > 0 is a bound of the field excitation voltage,
di(t) are bounded time-varying uncertainties, that is, there ex-
ist unknown constants d∗

i > 0 such that |di(t)| ≤ d∗
i , i= 1,2; Pm

is the mechanical power in p.u., D is the damping coefficient
in p.u., H is the inertia constant in s, ω0 is the synchronous
speed in rad/s, Td0 and T

′
d0 are the time constants of the ex-

citation winding in s, xd is the d-axis synchronous reactance
in p.u., x

′
d is the d-axis transient reactance of the generator in

p.u., xT and xL are the transformer and the line reactances in
p.u., Vs is the infinite bus voltage in p.u., x

′
ds = x

′
d + xT + xL,

cxd = (xd − x
′
d)Vs

2/(2Td0x
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ds), c

′
xd = Vs/(Td0x
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3. Preliminaries and Controller Design
Before presenting the designed controller, some preliminaries
and the preprocessing of control are given below.

3.1. Preliminaries Generally, power systems are under nor-
mal operating conditions rather than leading power factor oper-
ations which are the rare cases [3,19], thus there exists a small
constant δm such that π/2 > δ > δm > 0 and P3(δ )> 0.

Schur complements [12]: The inequality
[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to Q(x)−S(x)R(x)−1S(x)T > 0, where x ∈ Rn,
Q(x) = Q(x)T ∈Rm×m, 0 < R(x) = R(x)T ∈Rs×s, and S(x)∈
Rm×s depend affinely on x.

Definition 1: The set C(P,ρ) = {x | xTPx ≤ ρ} is said to be
invariant ellipsoid when the following condition holds: For a
trajectory x(t), if x(0) ∈ C(P,ρ) then x(t) ∈ C(P,ρ),∀t ≥ 0,
where 0 < P = PT ∈ Rn×n and ρ > 0.

Definition 2: The set C is said to be a region of attraction
when the following condition holds: For a trajectory x(t), if
x(0) ∈C then x(t)→ 0 as t → ∞.

LEMMA 1. Consider u = Kx ∈ Rnu ,K ∈ Rnu×n, and
C(P,ρ) is an invariant ellipsoid. Then ‖u‖ ≤ uc is equivalent

to the inequalities
[

ρ x(0)T

x(0) P−1

]
≥ 0 and

[
P KT

K (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on the Schur complements,
[

ρ x(0)T

x(0) P−1

]
≥

0 and
[

P KT

K (u2
c/ρ)I

]
≥ 0 can be equivalently transformed

into x(0)TPx(0) ≤ ρ and P−1/2KTKP−1/2 ≤ (u2
c/ρ)I.

Thus, x(0) ∈ C(P,ρ) which is an invariant ellipsoid,
one can get xTPx ≤ ρ . Therefore, ‖u‖2 = uTu =
xTP1/2(P−1/2KTKP−1/2)P1/2x ≤ (u2

c/ρ)xTPx ≤ u2
c . This

concludes the proof. ��
Definition 3 [11]: For ς ∈ (0,1], the constraint ‖u‖ ≤ uc/ς

is an extended version of ‖u‖ ≤ uc, in this case, some degree
of saturation is allowed, namely “ς -saturation".

LEMMA 2. “ς -saturation" is equivalent to the inequali-

ties
[

ρ x(0)T

x(0) P−1
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≥ 0 and
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P ςKT

ςK (u2
c/ρ)I

]
≥ 0 hold.

Proof: Based on LEMMA 1 and the Schur complements, one
can directly get the above result. ��

LEMMA 3. [20] For any ε > 0 and e ∈R, the following
inequality always holds

0 ≤ |e|− e tanh(e/ε)≤ 0.2785ε. (3)

3.2. SAEC Control Scheme Let (δ ∗,0,Pm) and zi be the de-
sired operating point of (δ ,ω,Pe) and the error variables re-
spectively, z̄i = [z1, . . . ,zi]

T, i=1∼4. Denote d̂ j as the estima-
tions of d∗

j , and d̃ j = d∗
j − d̂ j, j = 1,2. When system (1-2) is op-

erating at this point, the relation P2 (δ ∗)+P3 (δ ∗)E∗
f d =Pm/T

′
d0

hold, E∗
f d is constant and fixes the equilibrium value.

Step 1: Define z1 = δ − δ ∗. Choose Lyapunov function
V1 = (c1/2)z2

1, the time derivative of V1 along system trajec-
tories is V̇1 = −p1c1z2

1 + c1z1z2, in which c1 and p1 are posi-
tive constants, α1(z1) = −p1z1 is the virtual control of ω and
z2 = ω −α1(z1).

Step 2: Augment Lyapunov function as V2 =V1 +(c2/2)z2
2,

then V̇2 = −
2
∑

i=1
piciz2

i − c2(ω0/H)z2z3 − c2z2d̂1 tanh(z2/ε1)+

c2z2d1(t), the virtual control of Pe is chosen as α2(z̄2) = Pm +
(H/ω0)[k1z1 + k2z2 + d̂1 tanh(z2/ε1)], where c2, p2 and ε1 are
positive constants, k1 = c1/c2 + p1D/H − p2

1, k2 = p1 + p2 −
D/H, z3 = Pe −α2(z̄2).
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piciz2
i ¡ c2(ω0/H)z2z3 ¡ c2z2d ̂1tanh(z2/ε1) +

+ c2z2d1(t), the virtual control of Pe is chosen as α2(z–2) =  
= Pm + (H/ω0)[k1z1 + k2z2 + d ̂1tanh(z2/ε1)], where c2, p2 and 
ε1 are positive constants, k1 = c1/c2 + p1D/H  –p2

1, k2 = p1  +  
+ p2 ¡ D/H , z3 = Pe ¡ α2(z–2).

Step 3. Consider Lyapunov function V3 = V2 + (c3/2)z2
3 +

+ (1/2)
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Step 3: Consider Lyapunov function V3 = V2 +(c3/2)z2
3 +

(1/2)
2
∑
j=1

d̃2
j . Differentiating V3, one gets

V̇3 =−
3

∑
i=1

piciz2
i + c3P3 (δ )z3z4

+ c2z2d1(t)− c2z2d∗
1 tanh(z2/ε1)

+ c3z3d2(t)− c3z3d∗
2 tanh(z3/ε2)

− (c3H/ω0) f3(z2,z3, d̂1)d1(t)

− (c3H/ω0) f3(z2,z3, d̂1)d∗
1 tanh( f3(z2,z3, d̂1)/ε1),

(4)

the expecting action of sat(E f d) is chosen as

˙̂d1 = c2z2 tanh(z2/ε1)

+ c3(H/ω0) f3(z2,z3, d̂1) tanh( f3(z2,z3, d̂1)/ε1),

˙̂d2 = c3z3 tanh(z3/ε2),

α3(z̄3) = {−P1 (δ ,ω)Pe −P2 (δ )− k3z1

+[k4 + c2ω0/(c3H)]z2 − (k2 + p3)z3

− d̂2 tanh(z3/ε2)− (H/ω0)[k2d̂1 tanh(z2/ε1)

− tanh(z2/ε1)
˙̂d1 − f1(z2, d̂1) f2(z̄3)]

− (H/ω0)[k2 + f1(z2, d̂1)]∗
∗ d̂1(t) tanh( f3(z2,z3, d̂1)/ε1)}/P3 (δ ) ,

(5)

where c3, p3 and ε2 are positive constants, z4 =
sat(E f d) − α3(z̄3), k3 = (H/ω0)(k1 p1 + k2c1/c2),
k4 = (H/ω0)(k1 − k2 p2), f1(z2, d̂1) = (d̂1/ε1)sech2(z2/ε1),
f2(z̄3) = −(c1/c2)z1 − p2z2 − (ω0/H)z3 − d̂1 tanh(z2/ε1),
f3(z2,z3, d̂1) = [k2 + f1(z2, d̂1)]z3.

Step 4: The real excitation controller is designed as

E f d = E f d1 = α3(z̄3). (6)

LEMMA 4. Consider two sets: C1(z̄3,λ ) = {z̄3 |
UB < |α3(z̄3)| ≤UB +λ , sign(z3α3(z̄3)) = −1} and C2(z̄3) =
{z̄3 | P(z̄3)< p3}, in which λ named “saturation coefficien-
t” is a given positive constant, P(z̄3) = P3 (δ )(|α3(z̄3)| −
UB)/|z3|. The set C(z̄3,λ ) = {z̄3 | |α3(z̄3)| ≤UB +λ} is a re-
gion of attraction if C1(z̄3,λ )⊆C2(z̄3).

THEOREM 1. For SMIB power system which is ex-
pressed by the nonlinear dynamic equation (1-2) containing
the influences of input saturation and time-varying uncertain-
ties indicating the model errors, the excitation controller (5-6)
ensures convergence of z̄3 to the origin under “λ level satura-
tion” if z̄3(0) ∈C(z̄3,λ ).

Proof: Based on the designed controller (5-6), the following
three cases are given to prove LEMMA 4 and THEOREM 1.

Case 1: There is no saturation happened, i.e. |α3(z̄3)| ≤UB.
Invoking LEMMA 3 directly for the equation (4), the following
results can be obtained

V̇3 ≤−
3

∑
i=1

piciz2
i +σ , (7)

where σ = 0.2785ε1d∗
1(c2 + c3H/ω0)+0.2785ε2c3d∗

2 .

Case 2: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB +λ , and in the meanwhile sign(z3α3(z̄3))≥ 0. Thus,

V̇3 ≤−
3

∑
i=1

piciz2
i

+ c3P3 (δ ) |z3|sign(z3α3(z̄3))(UB −|α3(z̄3)|)+σ

≤−
3

∑
i=1

piciz2
i +σ .

(8)

Case 3: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB + λ , and also the inequality sign(z3α3(z̄3)) = −1 holds,
i.e. z̄3 ∈ C1(z̄3,λ ). In this case, one can get the following
inequality

V̇3 ≤−
2

∑
i=1

piciz2
i

− c3P3 (δ ) |z3|(p3|z3|/P3 (δ )+UB −|α3(z̄3)|)+σ ,

(9)

and furthermore, if the condition C1(z̄3,λ ) ⊆ C2(z̄3) holds,
then there exists a constant p > 0 such that

V̇3 ≤−
2

∑
i=1

piciz2
i − pc3P3 (δ ) |z3|+σ . (10)

The results of the above three cases conclude the proof of
LEMMA 4 and THEOREM 1. ��

Step 5: Note that, for given parameters λ , pi, ci, ε j,
i = 1,2,3, j = 1,2, how to estimate the region of attraction
C(z̄3,λ ) is the key point. However, our goal in this paper is
not to focus on this estimation, but instead to redesign the ex-
citation control law (5-6) to stabilize the nonlinear system with
input saturation. Then the proposed SAEC control strategy is
presented as follows

L =

{
sign(P(z̄3)−χ), z̄3 ∈C1(z̄3,λ ),
−1, otherwise,

s =

{
1, ‖z̄3‖ ≤ τ or L =−1,
2, otherwise,

ρχ̇ =

{
P(z̄3)−χ + l∆, L �=−1,
0, otherwise,

E f d2 = α3(z̄3,χ) = α3(z̄3)|p3=χ ,

E f d = E f ds,

(11)

where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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d̃ j
2. Differentiating V3, one gets
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Step 3: Consider Lyapunov function V3 = V2 +(c3/2)z2
3 +

(1/2)
2
∑
j=1

d̃2
j . Differentiating V3, one gets

V̇3 =−
3

∑
i=1

piciz2
i + c3P3 (δ )z3z4

+ c2z2d1(t)− c2z2d∗
1 tanh(z2/ε1)

+ c3z3d2(t)− c3z3d∗
2 tanh(z3/ε2)

− (c3H/ω0) f3(z2,z3, d̂1)d1(t)

− (c3H/ω0) f3(z2,z3, d̂1)d∗
1 tanh( f3(z2,z3, d̂1)/ε1),

(4)

the expecting action of sat(E f d) is chosen as

˙̂d1 = c2z2 tanh(z2/ε1)

+ c3(H/ω0) f3(z2,z3, d̂1) tanh( f3(z2,z3, d̂1)/ε1),

˙̂d2 = c3z3 tanh(z3/ε2),
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− d̂2 tanh(z3/ε2)− (H/ω0)[k2d̂1 tanh(z2/ε1)

− tanh(z2/ε1)
˙̂d1 − f1(z2, d̂1) f2(z̄3)]
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where c3, p3 and ε2 are positive constants, z4 =
sat(E f d) − α3(z̄3), k3 = (H/ω0)(k1 p1 + k2c1/c2),
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f2(z̄3) = −(c1/c2)z1 − p2z2 − (ω0/H)z3 − d̂1 tanh(z2/ε1),
f3(z2,z3, d̂1) = [k2 + f1(z2, d̂1)]z3.

Step 4: The real excitation controller is designed as

E f d = E f d1 = α3(z̄3). (6)

LEMMA 4. Consider two sets: C1(z̄3,λ ) = {z̄3 |
UB < |α3(z̄3)| ≤UB +λ , sign(z3α3(z̄3)) = −1} and C2(z̄3) =
{z̄3 | P(z̄3)< p3}, in which λ named “saturation coefficien-
t” is a given positive constant, P(z̄3) = P3 (δ )(|α3(z̄3)| −
UB)/|z3|. The set C(z̄3,λ ) = {z̄3 | |α3(z̄3)| ≤UB +λ} is a re-
gion of attraction if C1(z̄3,λ )⊆C2(z̄3).

THEOREM 1. For SMIB power system which is ex-
pressed by the nonlinear dynamic equation (1-2) containing
the influences of input saturation and time-varying uncertain-
ties indicating the model errors, the excitation controller (5-6)
ensures convergence of z̄3 to the origin under “λ level satura-
tion” if z̄3(0) ∈C(z̄3,λ ).

Proof: Based on the designed controller (5-6), the following
three cases are given to prove LEMMA 4 and THEOREM 1.

Case 1: There is no saturation happened, i.e. |α3(z̄3)| ≤UB.
Invoking LEMMA 3 directly for the equation (4), the following
results can be obtained

V̇3 ≤−
3

∑
i=1

piciz2
i +σ , (7)

where σ = 0.2785ε1d∗
1(c2 + c3H/ω0)+0.2785ε2c3d∗

2 .

Case 2: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB +λ , and in the meanwhile sign(z3α3(z̄3))≥ 0. Thus,

V̇3 ≤−
3

∑
i=1

piciz2
i

+ c3P3 (δ ) |z3|sign(z3α3(z̄3))(UB −|α3(z̄3)|)+σ

≤−
3

∑
i=1

piciz2
i +σ .

(8)

Case 3: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB + λ , and also the inequality sign(z3α3(z̄3)) = −1 holds,
i.e. z̄3 ∈ C1(z̄3,λ ). In this case, one can get the following
inequality

V̇3 ≤−
2

∑
i=1

piciz2
i

− c3P3 (δ ) |z3|(p3|z3|/P3 (δ )+UB −|α3(z̄3)|)+σ ,

(9)

and furthermore, if the condition C1(z̄3,λ ) ⊆ C2(z̄3) holds,
then there exists a constant p > 0 such that

V̇3 ≤−
2

∑
i=1

piciz2
i − pc3P3 (δ ) |z3|+σ . (10)

The results of the above three cases conclude the proof of
LEMMA 4 and THEOREM 1. ��

Step 5: Note that, for given parameters λ , pi, ci, ε j,
i = 1,2,3, j = 1,2, how to estimate the region of attraction
C(z̄3,λ ) is the key point. However, our goal in this paper is
not to focus on this estimation, but instead to redesign the ex-
citation control law (5-6) to stabilize the nonlinear system with
input saturation. Then the proposed SAEC control strategy is
presented as follows

L =

{
sign(P(z̄3)−χ), z̄3 ∈C1(z̄3,λ ),
−1, otherwise,

s =

{
1, ‖z̄3‖ ≤ τ or L =−1,
2, otherwise,

ρχ̇ =

{
P(z̄3)−χ + l∆, L �=−1,
0, otherwise,

E f d2 = α3(z̄3,χ) = α3(z̄3)|p3=χ ,

E f d = E f ds,

(11)

where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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the expecting action of sat(Efd) is chosen as

Robust control for power systems with input saturation

Step 3: Consider Lyapunov function V3 = V2 +(c3/2)z2
3 +
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j=1
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j . Differentiating V3, one gets
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LEMMA 4. Consider two sets: C1(z̄3,λ ) = {z̄3 |
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THEOREM 1. For SMIB power system which is ex-
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Proof: Based on the designed controller (5-6), the following
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Case 3: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
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The results of the above three cases conclude the proof of
LEMMA 4 and THEOREM 1. ��
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i = 1,2,3, j = 1,2, how to estimate the region of attraction
C(z̄3,λ ) is the key point. However, our goal in this paper is
not to focus on this estimation, but instead to redesign the ex-
citation control law (5-6) to stabilize the nonlinear system with
input saturation. Then the proposed SAEC control strategy is
presented as follows

L =

{
sign(P(z̄3)−χ), z̄3 ∈C1(z̄3,λ ),
−1, otherwise,

s =

{
1, ‖z̄3‖ ≤ τ or L =−1,
2, otherwise,

ρχ̇ =

{
P(z̄3)−χ + l∆, L �=−1,
0, otherwise,

E f d2 = α3(z̄3,χ) = α3(z̄3)|p3=χ ,

E f d = E f ds,

(11)

where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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where c3, p3 and ε2 are positive constants, z4 = sat(Efd) ¡ α3(z–3), 
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z3 ¡ d ̂1tanh(z2/ε1), f3(z2, z3, d ̂1) = [k2 + f1(z2, d ̂1)]z3.
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+[k4 + c2ω0/(c3H)]z2 − (k2 + p3)z3
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˙̂d1 − f1(z2, d̂1) f2(z̄3)]
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f2(z̄3) = −(c1/c2)z1 − p2z2 − (ω0/H)z3 − d̂1 tanh(z2/ε1),
f3(z2,z3, d̂1) = [k2 + f1(z2, d̂1)]z3.

Step 4: The real excitation controller is designed as

E f d = E f d1 = α3(z̄3). (6)

LEMMA 4. Consider two sets: C1(z̄3,λ ) = {z̄3 |
UB < |α3(z̄3)| ≤UB +λ , sign(z3α3(z̄3)) = −1} and C2(z̄3) =
{z̄3 | P(z̄3)< p3}, in which λ named “saturation coefficien-
t” is a given positive constant, P(z̄3) = P3 (δ )(|α3(z̄3)| −
UB)/|z3|. The set C(z̄3,λ ) = {z̄3 | |α3(z̄3)| ≤UB +λ} is a re-
gion of attraction if C1(z̄3,λ )⊆C2(z̄3).

THEOREM 1. For SMIB power system which is ex-
pressed by the nonlinear dynamic equation (1-2) containing
the influences of input saturation and time-varying uncertain-
ties indicating the model errors, the excitation controller (5-6)
ensures convergence of z̄3 to the origin under “λ level satura-
tion” if z̄3(0) ∈C(z̄3,λ ).

Proof: Based on the designed controller (5-6), the following
three cases are given to prove LEMMA 4 and THEOREM 1.

Case 1: There is no saturation happened, i.e. |α3(z̄3)| ≤UB.
Invoking LEMMA 3 directly for the equation (4), the following
results can be obtained

V̇3 ≤−
3

∑
i=1

piciz2
i +σ , (7)

where σ = 0.2785ε1d∗
1(c2 + c3H/ω0)+0.2785ε2c3d∗
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Case 2: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB +λ , and in the meanwhile sign(z3α3(z̄3))≥ 0. Thus,

V̇3 ≤−
3
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+ c3P3 (δ ) |z3|sign(z3α3(z̄3))(UB −|α3(z̄3)|)+σ

≤−
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i +σ .
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Case 3: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB + λ , and also the inequality sign(z3α3(z̄3)) = −1 holds,
i.e. z̄3 ∈ C1(z̄3,λ ). In this case, one can get the following
inequality

V̇3 ≤−
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i

− c3P3 (δ ) |z3|(p3|z3|/P3 (δ )+UB −|α3(z̄3)|)+σ ,
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and furthermore, if the condition C1(z̄3,λ ) ⊆ C2(z̄3) holds,
then there exists a constant p > 0 such that

V̇3 ≤−
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∑
i=1

piciz2
i − pc3P3 (δ ) |z3|+σ . (10)

The results of the above three cases conclude the proof of
LEMMA 4 and THEOREM 1. ��

Step 5: Note that, for given parameters λ , pi, ci, ε j,
i = 1,2,3, j = 1,2, how to estimate the region of attraction
C(z̄3,λ ) is the key point. However, our goal in this paper is
not to focus on this estimation, but instead to redesign the ex-
citation control law (5-6) to stabilize the nonlinear system with
input saturation. Then the proposed SAEC control strategy is
presented as follows

L =

{
sign(P(z̄3)−χ), z̄3 ∈C1(z̄3,λ ),
−1, otherwise,

s =

{
1, ‖z̄3‖ ≤ τ or L =−1,
2, otherwise,

ρχ̇ =

{
P(z̄3)−χ + l∆, L �=−1,
0, otherwise,

E f d2 = α3(z̄3,χ) = α3(z̄3)|p3=χ ,

E f d = E f ds,

(11)

where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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Lemma 4. Consider two sets: C1(z–3, λ) = fz–3jUB < jα3(z–3)j 
∙ UB + λ, sign(z3α3(z–3)) = –1g and C2(z–3) = fz–3jP(z–3) < p3g, 
in which λ named “saturation coefficient’’ is a given pos-
itive constant, P(z–3) = P3(δ)(jα3(z–3)j ¡ UB)/jz3j. The set 
C(z–3, λ) = fz–3j jα3(z–3)j ∙ UB + λg is a region of attraction if 
C1(z–3, λ) µ C2(z–3).

Theorem 1. For SMIB power system which is expressed by 
the nonlinear dynamic equation (1–2) containing the influ-
ences of input saturation and time-varying uncertainties indi-
cating the model errors, the excitation controller (5–6) ensures 
convergence of z–3 to the origin under “λ level saturation’’ if 
z–3(0) 2 C(z–3, λ).

Proof. Based on the designed controller (5–6), the following 
three cases are given to prove Lemma 4 and Theorem 1.

Case 1. No saturation occurs, i.e. jα3(z–3)j ∙ UB. Invoking 
Lemma 3 directly for the equation (4), the following results 
can be obtained
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where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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where σ = 0.2785ε1d¤1(c2 + c3H/ω0) + 0.2785ε2c3d¤1.

Case 2. Saturation occurs, i.e. UB < jα3(z–3)j ∙ UB + λ, and in 
the meanwhile sign(z3α3(z–3)) ¸ 0. Thus,

Robust control for power systems with input saturation

Step 3: Consider Lyapunov function V3 = V2 +(c3/2)z2
3 +

(1/2)
2
∑
j=1

d̃2
j . Differentiating V3, one gets

V̇3 =−
3

∑
i=1

piciz2
i + c3P3 (δ )z3z4

+ c2z2d1(t)− c2z2d∗
1 tanh(z2/ε1)

+ c3z3d2(t)− c3z3d∗
2 tanh(z3/ε2)

− (c3H/ω0) f3(z2,z3, d̂1)d1(t)

− (c3H/ω0) f3(z2,z3, d̂1)d∗
1 tanh( f3(z2,z3, d̂1)/ε1),

(4)

the expecting action of sat(E f d) is chosen as

˙̂d1 = c2z2 tanh(z2/ε1)

+ c3(H/ω0) f3(z2,z3, d̂1) tanh( f3(z2,z3, d̂1)/ε1),

˙̂d2 = c3z3 tanh(z3/ε2),

α3(z̄3) = {−P1 (δ ,ω)Pe −P2 (δ )− k3z1

+[k4 + c2ω0/(c3H)]z2 − (k2 + p3)z3

− d̂2 tanh(z3/ε2)− (H/ω0)[k2d̂1 tanh(z2/ε1)

− tanh(z2/ε1)
˙̂d1 − f1(z2, d̂1) f2(z̄3)]

− (H/ω0)[k2 + f1(z2, d̂1)]∗
∗ d̂1(t) tanh( f3(z2,z3, d̂1)/ε1)}/P3 (δ ) ,

(5)

where c3, p3 and ε2 are positive constants, z4 =
sat(E f d) − α3(z̄3), k3 = (H/ω0)(k1 p1 + k2c1/c2),
k4 = (H/ω0)(k1 − k2 p2), f1(z2, d̂1) = (d̂1/ε1)sech2(z2/ε1),
f2(z̄3) = −(c1/c2)z1 − p2z2 − (ω0/H)z3 − d̂1 tanh(z2/ε1),
f3(z2,z3, d̂1) = [k2 + f1(z2, d̂1)]z3.

Step 4: The real excitation controller is designed as

E f d = E f d1 = α3(z̄3). (6)

LEMMA 4. Consider two sets: C1(z̄3,λ ) = {z̄3 |
UB < |α3(z̄3)| ≤UB +λ , sign(z3α3(z̄3)) = −1} and C2(z̄3) =
{z̄3 | P(z̄3)< p3}, in which λ named “saturation coefficien-
t” is a given positive constant, P(z̄3) = P3 (δ )(|α3(z̄3)| −
UB)/|z3|. The set C(z̄3,λ ) = {z̄3 | |α3(z̄3)| ≤UB +λ} is a re-
gion of attraction if C1(z̄3,λ )⊆C2(z̄3).

THEOREM 1. For SMIB power system which is ex-
pressed by the nonlinear dynamic equation (1-2) containing
the influences of input saturation and time-varying uncertain-
ties indicating the model errors, the excitation controller (5-6)
ensures convergence of z̄3 to the origin under “λ level satura-
tion” if z̄3(0) ∈C(z̄3,λ ).

Proof: Based on the designed controller (5-6), the following
three cases are given to prove LEMMA 4 and THEOREM 1.

Case 1: There is no saturation happened, i.e. |α3(z̄3)| ≤UB.
Invoking LEMMA 3 directly for the equation (4), the following
results can be obtained

V̇3 ≤−
3

∑
i=1

piciz2
i +σ , (7)

where σ = 0.2785ε1d∗
1(c2 + c3H/ω0)+0.2785ε2c3d∗

2 .

Case 2: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB +λ , and in the meanwhile sign(z3α3(z̄3))≥ 0. Thus,

V̇3 ≤−
3

∑
i=1

piciz2
i

+ c3P3 (δ ) |z3|sign(z3α3(z̄3))(UB −|α3(z̄3)|)+σ

≤−
3

∑
i=1

piciz2
i +σ .

(8)

Case 3: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB + λ , and also the inequality sign(z3α3(z̄3)) = −1 holds,
i.e. z̄3 ∈ C1(z̄3,λ ). In this case, one can get the following
inequality

V̇3 ≤−
2

∑
i=1

piciz2
i

− c3P3 (δ ) |z3|(p3|z3|/P3 (δ )+UB −|α3(z̄3)|)+σ ,

(9)

and furthermore, if the condition C1(z̄3,λ ) ⊆ C2(z̄3) holds,
then there exists a constant p > 0 such that

V̇3 ≤−
2

∑
i=1

piciz2
i − pc3P3 (δ ) |z3|+σ . (10)

The results of the above three cases conclude the proof of
LEMMA 4 and THEOREM 1. ��

Step 5: Note that, for given parameters λ , pi, ci, ε j,
i = 1,2,3, j = 1,2, how to estimate the region of attraction
C(z̄3,λ ) is the key point. However, our goal in this paper is
not to focus on this estimation, but instead to redesign the ex-
citation control law (5-6) to stabilize the nonlinear system with
input saturation. Then the proposed SAEC control strategy is
presented as follows

L =

{
sign(P(z̄3)−χ), z̄3 ∈C1(z̄3,λ ),
−1, otherwise,

s =

{
1, ‖z̄3‖ ≤ τ or L =−1,
2, otherwise,

ρχ̇ =

{
P(z̄3)−χ + l∆, L �=−1,
0, otherwise,

E f d2 = α3(z̄3,χ) = α3(z̄3)|p3=χ ,

E f d = E f ds,

(11)

where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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Case 3. Saturation occurs, i.e. UB < jα3(z–3)j ∙ UB + λ, and also 
the inequality sign(z3α3(z–3)) = –1 holds, i.e. z–3 2 C1(z–3, λ). In 
this case, one can get the following inequality

Robust control for power systems with input saturation

Step 3: Consider Lyapunov function V3 = V2 +(c3/2)z2
3 +

(1/2)
2
∑
j=1

d̃2
j . Differentiating V3, one gets

V̇3 =−
3

∑
i=1

piciz2
i + c3P3 (δ )z3z4

+ c2z2d1(t)− c2z2d∗
1 tanh(z2/ε1)

+ c3z3d2(t)− c3z3d∗
2 tanh(z3/ε2)

− (c3H/ω0) f3(z2,z3, d̂1)d1(t)

− (c3H/ω0) f3(z2,z3, d̂1)d∗
1 tanh( f3(z2,z3, d̂1)/ε1),

(4)

the expecting action of sat(E f d) is chosen as

˙̂d1 = c2z2 tanh(z2/ε1)

+ c3(H/ω0) f3(z2,z3, d̂1) tanh( f3(z2,z3, d̂1)/ε1),

˙̂d2 = c3z3 tanh(z3/ε2),

α3(z̄3) = {−P1 (δ ,ω)Pe −P2 (δ )− k3z1

+[k4 + c2ω0/(c3H)]z2 − (k2 + p3)z3

− d̂2 tanh(z3/ε2)− (H/ω0)[k2d̂1 tanh(z2/ε1)

− tanh(z2/ε1)
˙̂d1 − f1(z2, d̂1) f2(z̄3)]

− (H/ω0)[k2 + f1(z2, d̂1)]∗
∗ d̂1(t) tanh( f3(z2,z3, d̂1)/ε1)}/P3 (δ ) ,

(5)

where c3, p3 and ε2 are positive constants, z4 =
sat(E f d) − α3(z̄3), k3 = (H/ω0)(k1 p1 + k2c1/c2),
k4 = (H/ω0)(k1 − k2 p2), f1(z2, d̂1) = (d̂1/ε1)sech2(z2/ε1),
f2(z̄3) = −(c1/c2)z1 − p2z2 − (ω0/H)z3 − d̂1 tanh(z2/ε1),
f3(z2,z3, d̂1) = [k2 + f1(z2, d̂1)]z3.

Step 4: The real excitation controller is designed as

E f d = E f d1 = α3(z̄3). (6)

LEMMA 4. Consider two sets: C1(z̄3,λ ) = {z̄3 |
UB < |α3(z̄3)| ≤UB +λ , sign(z3α3(z̄3)) = −1} and C2(z̄3) =
{z̄3 | P(z̄3)< p3}, in which λ named “saturation coefficien-
t” is a given positive constant, P(z̄3) = P3 (δ )(|α3(z̄3)| −
UB)/|z3|. The set C(z̄3,λ ) = {z̄3 | |α3(z̄3)| ≤UB +λ} is a re-
gion of attraction if C1(z̄3,λ )⊆C2(z̄3).

THEOREM 1. For SMIB power system which is ex-
pressed by the nonlinear dynamic equation (1-2) containing
the influences of input saturation and time-varying uncertain-
ties indicating the model errors, the excitation controller (5-6)
ensures convergence of z̄3 to the origin under “λ level satura-
tion” if z̄3(0) ∈C(z̄3,λ ).

Proof: Based on the designed controller (5-6), the following
three cases are given to prove LEMMA 4 and THEOREM 1.

Case 1: There is no saturation happened, i.e. |α3(z̄3)| ≤UB.
Invoking LEMMA 3 directly for the equation (4), the following
results can be obtained

V̇3 ≤−
3

∑
i=1

piciz2
i +σ , (7)

where σ = 0.2785ε1d∗
1(c2 + c3H/ω0)+0.2785ε2c3d∗

2 .

Case 2: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB +λ , and in the meanwhile sign(z3α3(z̄3))≥ 0. Thus,

V̇3 ≤−
3

∑
i=1

piciz2
i

+ c3P3 (δ ) |z3|sign(z3α3(z̄3))(UB −|α3(z̄3)|)+σ

≤−
3

∑
i=1

piciz2
i +σ .

(8)

Case 3: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB + λ , and also the inequality sign(z3α3(z̄3)) = −1 holds,
i.e. z̄3 ∈ C1(z̄3,λ ). In this case, one can get the following
inequality

V̇3 ≤−
2

∑
i=1

piciz2
i

− c3P3 (δ ) |z3|(p3|z3|/P3 (δ )+UB −|α3(z̄3)|)+σ ,

(9)

and furthermore, if the condition C1(z̄3,λ ) ⊆ C2(z̄3) holds,
then there exists a constant p > 0 such that

V̇3 ≤−
2

∑
i=1

piciz2
i − pc3P3 (δ ) |z3|+σ . (10)

The results of the above three cases conclude the proof of
LEMMA 4 and THEOREM 1. ��

Step 5: Note that, for given parameters λ , pi, ci, ε j,
i = 1,2,3, j = 1,2, how to estimate the region of attraction
C(z̄3,λ ) is the key point. However, our goal in this paper is
not to focus on this estimation, but instead to redesign the ex-
citation control law (5-6) to stabilize the nonlinear system with
input saturation. Then the proposed SAEC control strategy is
presented as follows

L =

{
sign(P(z̄3)−χ), z̄3 ∈C1(z̄3,λ ),
−1, otherwise,

s =

{
1, ‖z̄3‖ ≤ τ or L =−1,
2, otherwise,

ρχ̇ =

{
P(z̄3)−χ + l∆, L �=−1,
0, otherwise,

E f d2 = α3(z̄3,χ) = α3(z̄3)|p3=χ ,

E f d = E f ds,

(11)

where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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and furthermore, if the condition C1(z–3, λ) µ C2(z–3) holds, then 
there exists a constant p > 0 such that

	

Robust control for power systems with input saturation

Step 3: Consider Lyapunov function V3 = V2 +(c3/2)z2
3 +

(1/2)
2
∑
j=1

d̃2
j . Differentiating V3, one gets

V̇3 =−
3

∑
i=1

piciz2
i + c3P3 (δ )z3z4

+ c2z2d1(t)− c2z2d∗
1 tanh(z2/ε1)

+ c3z3d2(t)− c3z3d∗
2 tanh(z3/ε2)

− (c3H/ω0) f3(z2,z3, d̂1)d1(t)

− (c3H/ω0) f3(z2,z3, d̂1)d∗
1 tanh( f3(z2,z3, d̂1)/ε1),

(4)

the expecting action of sat(E f d) is chosen as

˙̂d1 = c2z2 tanh(z2/ε1)

+ c3(H/ω0) f3(z2,z3, d̂1) tanh( f3(z2,z3, d̂1)/ε1),

˙̂d2 = c3z3 tanh(z3/ε2),

α3(z̄3) = {−P1 (δ ,ω)Pe −P2 (δ )− k3z1

+[k4 + c2ω0/(c3H)]z2 − (k2 + p3)z3

− d̂2 tanh(z3/ε2)− (H/ω0)[k2d̂1 tanh(z2/ε1)

− tanh(z2/ε1)
˙̂d1 − f1(z2, d̂1) f2(z̄3)]

− (H/ω0)[k2 + f1(z2, d̂1)]∗
∗ d̂1(t) tanh( f3(z2,z3, d̂1)/ε1)}/P3 (δ ) ,

(5)

where c3, p3 and ε2 are positive constants, z4 =
sat(E f d) − α3(z̄3), k3 = (H/ω0)(k1 p1 + k2c1/c2),
k4 = (H/ω0)(k1 − k2 p2), f1(z2, d̂1) = (d̂1/ε1)sech2(z2/ε1),
f2(z̄3) = −(c1/c2)z1 − p2z2 − (ω0/H)z3 − d̂1 tanh(z2/ε1),
f3(z2,z3, d̂1) = [k2 + f1(z2, d̂1)]z3.

Step 4: The real excitation controller is designed as

E f d = E f d1 = α3(z̄3). (6)

LEMMA 4. Consider two sets: C1(z̄3,λ ) = {z̄3 |
UB < |α3(z̄3)| ≤UB +λ , sign(z3α3(z̄3)) = −1} and C2(z̄3) =
{z̄3 | P(z̄3)< p3}, in which λ named “saturation coefficien-
t” is a given positive constant, P(z̄3) = P3 (δ )(|α3(z̄3)| −
UB)/|z3|. The set C(z̄3,λ ) = {z̄3 | |α3(z̄3)| ≤UB +λ} is a re-
gion of attraction if C1(z̄3,λ )⊆C2(z̄3).

THEOREM 1. For SMIB power system which is ex-
pressed by the nonlinear dynamic equation (1-2) containing
the influences of input saturation and time-varying uncertain-
ties indicating the model errors, the excitation controller (5-6)
ensures convergence of z̄3 to the origin under “λ level satura-
tion” if z̄3(0) ∈C(z̄3,λ ).

Proof: Based on the designed controller (5-6), the following
three cases are given to prove LEMMA 4 and THEOREM 1.

Case 1: There is no saturation happened, i.e. |α3(z̄3)| ≤UB.
Invoking LEMMA 3 directly for the equation (4), the following
results can be obtained

V̇3 ≤−
3

∑
i=1

piciz2
i +σ , (7)

where σ = 0.2785ε1d∗
1(c2 + c3H/ω0)+0.2785ε2c3d∗

2 .

Case 2: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB +λ , and in the meanwhile sign(z3α3(z̄3))≥ 0. Thus,

V̇3 ≤−
3

∑
i=1

piciz2
i

+ c3P3 (δ ) |z3|sign(z3α3(z̄3))(UB −|α3(z̄3)|)+σ

≤−
3

∑
i=1

piciz2
i +σ .

(8)

Case 3: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB + λ , and also the inequality sign(z3α3(z̄3)) = −1 holds,
i.e. z̄3 ∈ C1(z̄3,λ ). In this case, one can get the following
inequality

V̇3 ≤−
2

∑
i=1

piciz2
i

− c3P3 (δ ) |z3|(p3|z3|/P3 (δ )+UB −|α3(z̄3)|)+σ ,

(9)

and furthermore, if the condition C1(z̄3,λ ) ⊆ C2(z̄3) holds,
then there exists a constant p > 0 such that

V̇3 ≤−
2

∑
i=1

piciz2
i − pc3P3 (δ ) |z3|+σ . (10)

The results of the above three cases conclude the proof of
LEMMA 4 and THEOREM 1. ��

Step 5: Note that, for given parameters λ , pi, ci, ε j,
i = 1,2,3, j = 1,2, how to estimate the region of attraction
C(z̄3,λ ) is the key point. However, our goal in this paper is
not to focus on this estimation, but instead to redesign the ex-
citation control law (5-6) to stabilize the nonlinear system with
input saturation. Then the proposed SAEC control strategy is
presented as follows

L =

{
sign(P(z̄3)−χ), z̄3 ∈C1(z̄3,λ ),
−1, otherwise,

s =

{
1, ‖z̄3‖ ≤ τ or L =−1,
2, otherwise,

ρχ̇ =

{
P(z̄3)−χ + l∆, L �=−1,
0, otherwise,

E f d2 = α3(z̄3,χ) = α3(z̄3)|p3=χ ,

E f d = E f ds,

(11)

where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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The results of the above three cases conclude the proof of 
Lemma 4 and Theorem 1. □□

Step 5. Note that, for given parameters λ, pi, ci, εj, i = 1, 2, 3, 
j = 1, 2, how to estimate the region of attraction C(z–3, λ) is the 
key point. However, our goal in this paper is not to focus on 
this estimation, but instead to redesign the excitation control 
law (5–6) to stabilize the nonlinear system with input satura-
tion. Then the proposed SAEC control strategy is presented as 
follows

	

Robust control for power systems with input saturation

Step 3: Consider Lyapunov function V3 = V2 +(c3/2)z2
3 +

(1/2)
2
∑
j=1

d̃2
j . Differentiating V3, one gets

V̇3 =−
3

∑
i=1

piciz2
i + c3P3 (δ )z3z4

+ c2z2d1(t)− c2z2d∗
1 tanh(z2/ε1)

+ c3z3d2(t)− c3z3d∗
2 tanh(z3/ε2)

− (c3H/ω0) f3(z2,z3, d̂1)d1(t)

− (c3H/ω0) f3(z2,z3, d̂1)d∗
1 tanh( f3(z2,z3, d̂1)/ε1),

(4)

the expecting action of sat(E f d) is chosen as

˙̂d1 = c2z2 tanh(z2/ε1)

+ c3(H/ω0) f3(z2,z3, d̂1) tanh( f3(z2,z3, d̂1)/ε1),

˙̂d2 = c3z3 tanh(z3/ε2),

α3(z̄3) = {−P1 (δ ,ω)Pe −P2 (δ )− k3z1

+[k4 + c2ω0/(c3H)]z2 − (k2 + p3)z3

− d̂2 tanh(z3/ε2)− (H/ω0)[k2d̂1 tanh(z2/ε1)

− tanh(z2/ε1)
˙̂d1 − f1(z2, d̂1) f2(z̄3)]

− (H/ω0)[k2 + f1(z2, d̂1)]∗
∗ d̂1(t) tanh( f3(z2,z3, d̂1)/ε1)}/P3 (δ ) ,

(5)

where c3, p3 and ε2 are positive constants, z4 =
sat(E f d) − α3(z̄3), k3 = (H/ω0)(k1 p1 + k2c1/c2),
k4 = (H/ω0)(k1 − k2 p2), f1(z2, d̂1) = (d̂1/ε1)sech2(z2/ε1),
f2(z̄3) = −(c1/c2)z1 − p2z2 − (ω0/H)z3 − d̂1 tanh(z2/ε1),
f3(z2,z3, d̂1) = [k2 + f1(z2, d̂1)]z3.

Step 4: The real excitation controller is designed as

E f d = E f d1 = α3(z̄3). (6)

LEMMA 4. Consider two sets: C1(z̄3,λ ) = {z̄3 |
UB < |α3(z̄3)| ≤UB +λ , sign(z3α3(z̄3)) = −1} and C2(z̄3) =
{z̄3 | P(z̄3)< p3}, in which λ named “saturation coefficien-
t” is a given positive constant, P(z̄3) = P3 (δ )(|α3(z̄3)| −
UB)/|z3|. The set C(z̄3,λ ) = {z̄3 | |α3(z̄3)| ≤UB +λ} is a re-
gion of attraction if C1(z̄3,λ )⊆C2(z̄3).

THEOREM 1. For SMIB power system which is ex-
pressed by the nonlinear dynamic equation (1-2) containing
the influences of input saturation and time-varying uncertain-
ties indicating the model errors, the excitation controller (5-6)
ensures convergence of z̄3 to the origin under “λ level satura-
tion” if z̄3(0) ∈C(z̄3,λ ).

Proof: Based on the designed controller (5-6), the following
three cases are given to prove LEMMA 4 and THEOREM 1.

Case 1: There is no saturation happened, i.e. |α3(z̄3)| ≤UB.
Invoking LEMMA 3 directly for the equation (4), the following
results can be obtained

V̇3 ≤−
3

∑
i=1

piciz2
i +σ , (7)

where σ = 0.2785ε1d∗
1(c2 + c3H/ω0)+0.2785ε2c3d∗

2 .

Case 2: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB +λ , and in the meanwhile sign(z3α3(z̄3))≥ 0. Thus,

V̇3 ≤−
3

∑
i=1

piciz2
i

+ c3P3 (δ ) |z3|sign(z3α3(z̄3))(UB −|α3(z̄3)|)+σ

≤−
3

∑
i=1

piciz2
i +σ .

(8)

Case 3: There is saturation happened, i.e. UB < |α3(z̄3)| ≤
UB + λ , and also the inequality sign(z3α3(z̄3)) = −1 holds,
i.e. z̄3 ∈ C1(z̄3,λ ). In this case, one can get the following
inequality

V̇3 ≤−
2

∑
i=1

piciz2
i

− c3P3 (δ ) |z3|(p3|z3|/P3 (δ )+UB −|α3(z̄3)|)+σ ,

(9)

and furthermore, if the condition C1(z̄3,λ ) ⊆ C2(z̄3) holds,
then there exists a constant p > 0 such that

V̇3 ≤−
2

∑
i=1

piciz2
i − pc3P3 (δ ) |z3|+σ . (10)

The results of the above three cases conclude the proof of
LEMMA 4 and THEOREM 1. ��

Step 5: Note that, for given parameters λ , pi, ci, ε j,
i = 1,2,3, j = 1,2, how to estimate the region of attraction
C(z̄3,λ ) is the key point. However, our goal in this paper is
not to focus on this estimation, but instead to redesign the ex-
citation control law (5-6) to stabilize the nonlinear system with
input saturation. Then the proposed SAEC control strategy is
presented as follows

L =

{
sign(P(z̄3)−χ), z̄3 ∈C1(z̄3,λ ),
−1, otherwise,

s =

{
1, ‖z̄3‖ ≤ τ or L =−1,
2, otherwise,

ρχ̇ =

{
P(z̄3)−χ + l∆, L �=−1,
0, otherwise,

E f d2 = α3(z̄3,χ) = α3(z̄3)|p3=χ ,

E f d = E f ds,

(11)

where the positive constants ρ , τ and l∆ are parameters to be
tuned appropriately by the engineer, χ(0) = p3.

THEOREM 2. There exist small positive parameters ρ ,
τ and l∆ such that, in the presence of input saturation and time-
varying uncertainties, the controller (5), (11) achieves global
stability of SMIB power systems (1-2) and the transient perfor-
mances are improved by using the switching control strategy.

Proof: In general, with appropriate choice of τ , the inequal-
ities |E f d1| ≤UB and ‖z̄3‖ ≤ τ are equivalent.

In Case 1 and Case 2: one can get E f d = E f d1.
In Case 3, if z̄3 ∈ C1(z̄3,λ ) and z̄3 /∈ C2(z̄3)|p3=χ i.e.

P(z̄3) ≥ χ: the logic judgment of the auxiliary system in (11)
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where the positive constants ρ, τ and l∆ are parameters to be 
tuned appropriately by the engineer, χ(0) = p3.

Theorem 2. There exist small positive parameters ρ, τ and l∆ 
such that, in the presence of input saturation and time-varying 
uncertainties, the controller (5), (11) achieves global stability 
of SMIB power systems (1–2) and the transient performances 
are improved by using the switching control strategy.

Proof. In general, with appropriate choice of τ, the inequalities 
jEfd1j ∙ UB and kz–3k ∙ τ are equivalent.

In Case 1 and Case 2: one can get Efd = Efd1.
In Case 3, if z–3 2 C1(z–3, λ) and z–3 2/ C2(z–3)jp3=χ i.e. 

P(z–3) ¸ χ: the logic judgment of the auxiliary system in (11) 
can activate the dynamic system ρχ ̇  = P(z–3) ¡ χ + l∆. As such, 
since ρ is small, the variable χ can reach a small neighborhood 
of the manifold χ = P(z–3) + l∆, then P(z–3) < χ and the condi-
tion z–3 2 C2(z–3)jp3=χ holds.

Consequently, on the basis of Theorem 1 and Lemma 4, the 
convergence of z–3 to the origin can be ensured.

Therefore, the main advantages of sub-controllers Efd1 and 
Efd2 are realized in Cases 1, 2 and Case 3 respectively. Thus, the 
switching strategy is proposed to make logical choice between 
them based on the power systems operating conditions. As such, 
the transient performances are improved. □□

3.3. Discussion. In the above subsection, the SAEC control 
scheme is proposed to ensure stability of power systems even 
if there is control input saturation and time-varying uncertain-
ties. But since the auxiliary dynamic system and switching 
strategy are needed in SAEC, the cost of control system is 
often more than that of general linear control system. Thus, 
an alternative control scheme is shown in this subsection to 
facilitate engineers to trade off between cost and performance: 
a sufficient condition for allowing γ-saturation of a kind of 
linear excitation control input is presented, and a method for 
the estimation of the region of attraction is given.

Next, the system (1–2) is equivalently transformed into an 
error system. Let ei be the state variables of this error system 
and e–i = [e1, …, ei]

T, i = 1»3.

Step I. Define e1 = δ ¡ δ¤. The time derivative of e1 along 
system trajectories is e ̇ 1 = –q1e1 + e2, in which q1 is pos-
itive constant, β1(e1) = –q1e1 is the virtual control of ω and 
e2 = ω ¡ β1(e1).

Step II. Then e ̇ 2 = –(q2 + r2)e2 ¡ (ω0/H)e3 + d1(t), the virtual 
control of Pe is chosen as β2(e–2) = Pm + (H/ω0)(r1e1 + q2e2), 
where q2 is positive constant, r1  = q1D/H –q2

1, r2 = D/H – q1, 
e3 = Pe ¡ β2(e–2).

Step III. Differentiating e3, one gets e ̇ 3 = –(q3 + 1/T
0
d0 ¡ q2)

e3 + u ¡ re–3 + dz2, where q3 is positive constant, r3 = r1H(q1 – 
–1/T

0
d0)/ω0, r4=(H/ω0)(r1¡q2

2¡q2r2+q2/T
0
d0), r =[–r3 r4 –q3], 

dz1 = d1(t), dz2 = P2(δ) ¡ P2(δ¤) + ωPecotδ + d2(t) ¡ (q2 
H/ω0)d1(t), u = P3(δ)sat(Efd) ¡ P3(δ¤)E¤fd represents the control 
variable of error system to be designed later.

Step IV. The saturation on Efd can be equivalently transformed 
into the constant constraint uc on u, namely, juj ∙ uc ∙ 
∙ UBP3(δm) ¡ P3(δ¤)E¤fd. Generally speaking, for γ 2 (0, 1], if 
γ-saturation happens to Efd, there must exist a constant ς 2 (0, 1] 
such that juj ∙ uc/ς ∙ UBP3(δm)/γ ¡ P3(δ¤)E¤fd, correspond-
ingly, ς-saturation happens to u. Based on the above analysis, 
let u be specified as u = re–3, and the real excitation control 
input is designed as Efd = [re–3 + P3(δ¤)E¤fd]/P3(δ), then, one can 
obtain the following error system:

can activate the dynamic system ρχ̇ =P(z̄3)−χ+ l∆. As such,
since ρ is small, the variable χ can reach a small neighborhood
of the manifold χ = P(z̄3)+ l∆, then P(z̄3)< χ and the condi-
tion z̄3 ∈ C2(z̄3)|p3=χ holds.

Consequently, on the basis of THEOREM 1 and LEMMA 4,
the convergence of z̄3 to the origin can be ensured.

Therefore, the main advantages of sub-controllers E f d1 and
E f d2 are realized in Cases 1,2 and Case 3 respectively. Thus,
the switching strategy is proposed to make logical choice be-
tween them based on the power systems operating conditions.
As such, the transient performances are improved. ��

3.3. Some Discussions In the above subsection, the SAEC
control scheme is proposed to ensure stability of power sys-
tems even if there exist control input saturation and time-
varying uncertainties. But due to the auxiliary dynamic sys-
tem and switching strategy are needed in SAEC, the cost of
control system is often more than that of general linear control
system. Thus, an alternative control scheme is shown in this
subsection to facilitate engineers to trade off between cost and
performance: a sufficient condition for allowing γ-saturation
of a kind of linear excitation control input is presented, and a
method for the estimation of the region of attraction is given.

Next, the system (1-2) is equivalently transformed into an
error system. Let ei be the state variables of this error system
and ēi = [e1, . . . ,ei]

T, i=1∼3.
Step I: Define e1 = δ −δ ∗. The time derivative of e1 along

system trajectories is ė1 = −q1e1 + e2, in which q1 is positive
constant, β1(e1) = −q1e1 is the virtual control of ω and e2 =
ω −β1(e1).

Step II: Then ė2 = −(q2 + r2)e2 − (ω0/H)e3 + d1(t), the
virtual control of Pe is chosen as β2(ē2) = Pm+(H/ω0)(r1e1+
q2e2), where q2 is positive constant, r1 = q1D/H − q2

1, r2 =
D/H −q1, e3 = Pe −β2(ē2).

Step III: Differentiating e3, one gets ė3 = −(q3 +

1/T
′

d0 − q2)e3 + u − rē3 + dz2, where q3 is positive constan-
t, r3 = r1H(q1 − 1/T

′
d0)/ω0, r4 = (H/ω0)(r1 − q2

2 − q2r2 +

q2/T
′

d0), r = [−r3 r4 −q3 ], dz1 = d1(t), dz2 = P2 (δ )−P2 (δ ∗)+
ωPe cotδ + d2(t) − (q2H/ω0)d1(t), u = P3 (δ )sat(E f d) −
P3 (δ ∗)E∗

f d represents the control variable of error system to
be designed later.

Step IV: The saturation on E f d can be equivalently trans-
formed into the constant constraint uc on u, namely, |u| ≤ uc ≤
UBP3 (δm)−P3 (δ ∗)E∗

f d . Generally speaking, for γ ∈ (0,1], if
γ-saturation happens to E f d , there must exist a constant ς ∈
(0,1] such that |u| ≤ uc/ς ≤ UBP3 (δm)/γ −P3 (δ ∗)E∗

f d , cor-
respondingly, ς -saturation happens to u. Based on the above
analysis, let u be specified as u = rē3, and the real excitation
control input is designed as E f d = [rē3 +P3 (δ ∗)E∗

f d ]/P3 (δ ),
then, one can obtain the following error system:

no-saturation: ˙̄e3 = Aē3 +Ddz, (12)

ς -saturation: ˙̄e3 = Aē3 +(ς −1)brē3 +Ddz, (13)

where A =

[
−q1 1 0

0 −(q2+r2) −ω0/H

0 0 −(q3+1/T
′
d0−q2)

]
, b = [ 0 0 1 ]T, D =

[
0 1 0
0 0 1

]T, dz = [ dz1 dz2 ]
T.

Step V: Choose Lyapunov function as Ve = (1/2)ēT
3 Qē3,

where 0 < Q = QT ∈ R3×3 are to be chosen later. Thus the
time derivative of Ve along the system trajectories is

V̇e =ēT
3 Ak

TQē3 + ēT
3 QDdz

=ēT
3 [Ak

TQ+(1/(2ε2))QDDTQ]ē3

− (1/2)‖εdz − (1/ε)DTQē3‖2 +(1/2)ε2‖dz‖2,

(14)

where Ak = A when there is no saturation, and Ak = Akς =
A+(ς − 1)br when there is ς -saturation, ε is disturbance at-
tenuation constant.

THEOREM 3. For the error dynamic system (12-13) and
given ς ∈ (0,1], ρ > 0, 0 < ε < 1, the control input u = rē3 en-
sures convergence of ē3 to a ball of radius ε under ς -saturation
if there exist Q satisfying

ATQ+(1/(2ε2))QDDTQ < 0,

Akς
TQ+(1/(2ε2))QDDTQ < 0,[

Q ςrT

ςr (u2
c/ρ)

]
≥ 0,

(15)

and then the region of attraction can be estimated by using the
following inequality

[
ρ ē3(0)T

ē3(0) Q−1

]
≥ 0. (16)

Proof: The objective of control design is to guarantee the
decay of Lyapunov function Ve whether ς -saturation happens
or not. Thus, from the equation (14) and LEMMA 2, one can
conclude this proof. ��

Remark 1: The main differences between SAEC and the
linear excitation control in this subsection are: (i) the former
is of initiative control action from the perspective of “anti-
saturation”, but the latter is of passive system analysis from
the viewpoint of “estimation of region of attraction” allowing
ς -saturation. (ii) Lyapunov function V3 is obtained by em-
ploying constructive design, and the control gain p1, p2, p3 of
SAEC can be specified according to practical operating condi-
tion. However, only the structure of the Lyapunov function Ve
is known, the matrix Q can be got by solving the LMI (15).
Also, in order to decrease control gain, the inherent damp-
ing coefficients of power systems are reserved such as −D/H,
−1/T

′
d0. (iii) For the time-varying uncertainties, adaptive laws

are proposed in SAEC, and a disturbance attenuation condition
is give in the latter scheme.

From the above discussions, the advantages of the SAEC
are: (i) global convergence can be ensured when there are con-
trol input saturation and time-varying uncertainties. (ii) there
are better performances than that of linear controller since it
has adaptive mechanism and auxiliary decision system. The
main characteristics of the linear controller are: (i) it has low-
er costs than that of SAEC, only off-line analysis is needed
to obtain the region of attraction considering ς -saturation and
time-varying uncertainties. (ii) it is suitable for power systems
under small signal disturbances.
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can activate the dynamic system ρχ̇ =P(z̄3)−χ+ l∆. As such,
since ρ is small, the variable χ can reach a small neighborhood
of the manifold χ = P(z̄3)+ l∆, then P(z̄3)< χ and the condi-
tion z̄3 ∈ C2(z̄3)|p3=χ holds.

Consequently, on the basis of THEOREM 1 and LEMMA 4,
the convergence of z̄3 to the origin can be ensured.

Therefore, the main advantages of sub-controllers E f d1 and
E f d2 are realized in Cases 1,2 and Case 3 respectively. Thus,
the switching strategy is proposed to make logical choice be-
tween them based on the power systems operating conditions.
As such, the transient performances are improved. ��

3.3. Some Discussions In the above subsection, the SAEC
control scheme is proposed to ensure stability of power sys-
tems even if there exist control input saturation and time-
varying uncertainties. But due to the auxiliary dynamic sys-
tem and switching strategy are needed in SAEC, the cost of
control system is often more than that of general linear control
system. Thus, an alternative control scheme is shown in this
subsection to facilitate engineers to trade off between cost and
performance: a sufficient condition for allowing γ-saturation
of a kind of linear excitation control input is presented, and a
method for the estimation of the region of attraction is given.

Next, the system (1-2) is equivalently transformed into an
error system. Let ei be the state variables of this error system
and ēi = [e1, . . . ,ei]

T, i=1∼3.
Step I: Define e1 = δ −δ ∗. The time derivative of e1 along

system trajectories is ė1 = −q1e1 + e2, in which q1 is positive
constant, β1(e1) = −q1e1 is the virtual control of ω and e2 =
ω −β1(e1).

Step II: Then ė2 = −(q2 + r2)e2 − (ω0/H)e3 + d1(t), the
virtual control of Pe is chosen as β2(ē2) = Pm+(H/ω0)(r1e1+
q2e2), where q2 is positive constant, r1 = q1D/H − q2

1, r2 =
D/H −q1, e3 = Pe −β2(ē2).

Step III: Differentiating e3, one gets ė3 = −(q3 +

1/T
′

d0 − q2)e3 + u − rē3 + dz2, where q3 is positive constan-
t, r3 = r1H(q1 − 1/T

′
d0)/ω0, r4 = (H/ω0)(r1 − q2

2 − q2r2 +

q2/T
′

d0), r = [−r3 r4 −q3 ], dz1 = d1(t), dz2 = P2 (δ )−P2 (δ ∗)+
ωPe cotδ + d2(t) − (q2H/ω0)d1(t), u = P3 (δ )sat(E f d) −
P3 (δ ∗)E∗

f d represents the control variable of error system to
be designed later.

Step IV: The saturation on E f d can be equivalently trans-
formed into the constant constraint uc on u, namely, |u| ≤ uc ≤
UBP3 (δm)−P3 (δ ∗)E∗

f d . Generally speaking, for γ ∈ (0,1], if
γ-saturation happens to E f d , there must exist a constant ς ∈
(0,1] such that |u| ≤ uc/ς ≤ UBP3 (δm)/γ −P3 (δ ∗)E∗

f d , cor-
respondingly, ς -saturation happens to u. Based on the above
analysis, let u be specified as u = rē3, and the real excitation
control input is designed as E f d = [rē3 +P3 (δ ∗)E∗

f d ]/P3 (δ ),
then, one can obtain the following error system:

no-saturation: ˙̄e3 = Aē3 +Ddz, (12)

ς -saturation: ˙̄e3 = Aē3 +(ς −1)brē3 +Ddz, (13)

where A =

[
−q1 1 0

0 −(q2+r2) −ω0/H

0 0 −(q3+1/T
′
d0−q2)

]
, b = [ 0 0 1 ]T, D =

[
0 1 0
0 0 1

]T, dz = [ dz1 dz2 ]
T.

Step V: Choose Lyapunov function as Ve = (1/2)ēT
3 Qē3,

where 0 < Q = QT ∈ R3×3 are to be chosen later. Thus the
time derivative of Ve along the system trajectories is

V̇e =ēT
3 Ak

TQē3 + ēT
3 QDdz

=ēT
3 [Ak

TQ+(1/(2ε2))QDDTQ]ē3

− (1/2)‖εdz − (1/ε)DTQē3‖2 +(1/2)ε2‖dz‖2,

(14)

where Ak = A when there is no saturation, and Ak = Akς =
A+(ς − 1)br when there is ς -saturation, ε is disturbance at-
tenuation constant.

THEOREM 3. For the error dynamic system (12-13) and
given ς ∈ (0,1], ρ > 0, 0 < ε < 1, the control input u = rē3 en-
sures convergence of ē3 to a ball of radius ε under ς -saturation
if there exist Q satisfying

ATQ+(1/(2ε2))QDDTQ < 0,

Akς
TQ+(1/(2ε2))QDDTQ < 0,[

Q ςrT

ςr (u2
c/ρ)

]
≥ 0,

(15)

and then the region of attraction can be estimated by using the
following inequality

[
ρ ē3(0)T

ē3(0) Q−1

]
≥ 0. (16)

Proof: The objective of control design is to guarantee the
decay of Lyapunov function Ve whether ς -saturation happens
or not. Thus, from the equation (14) and LEMMA 2, one can
conclude this proof. ��

Remark 1: The main differences between SAEC and the
linear excitation control in this subsection are: (i) the former
is of initiative control action from the perspective of “anti-
saturation”, but the latter is of passive system analysis from
the viewpoint of “estimation of region of attraction” allowing
ς -saturation. (ii) Lyapunov function V3 is obtained by em-
ploying constructive design, and the control gain p1, p2, p3 of
SAEC can be specified according to practical operating condi-
tion. However, only the structure of the Lyapunov function Ve
is known, the matrix Q can be got by solving the LMI (15).
Also, in order to decrease control gain, the inherent damp-
ing coefficients of power systems are reserved such as −D/H,
−1/T

′
d0. (iii) For the time-varying uncertainties, adaptive laws

are proposed in SAEC, and a disturbance attenuation condition
is give in the latter scheme.

From the above discussions, the advantages of the SAEC
are: (i) global convergence can be ensured when there are con-
trol input saturation and time-varying uncertainties. (ii) there
are better performances than that of linear controller since it
has adaptive mechanism and auxiliary decision system. The
main characteristics of the linear controller are: (i) it has low-
er costs than that of SAEC, only off-line analysis is needed
to obtain the region of attraction considering ς -saturation and
time-varying uncertainties. (ii) it is suitable for power systems
under small signal disturbances.
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can activate the dynamic system ρχ̇ =P(z̄3)−χ+ l∆. As such,
since ρ is small, the variable χ can reach a small neighborhood
of the manifold χ = P(z̄3)+ l∆, then P(z̄3)< χ and the condi-
tion z̄3 ∈ C2(z̄3)|p3=χ holds.

Consequently, on the basis of THEOREM 1 and LEMMA 4,
the convergence of z̄3 to the origin can be ensured.

Therefore, the main advantages of sub-controllers E f d1 and
E f d2 are realized in Cases 1,2 and Case 3 respectively. Thus,
the switching strategy is proposed to make logical choice be-
tween them based on the power systems operating conditions.
As such, the transient performances are improved. ��

3.3. Some Discussions In the above subsection, the SAEC
control scheme is proposed to ensure stability of power sys-
tems even if there exist control input saturation and time-
varying uncertainties. But due to the auxiliary dynamic sys-
tem and switching strategy are needed in SAEC, the cost of
control system is often more than that of general linear control
system. Thus, an alternative control scheme is shown in this
subsection to facilitate engineers to trade off between cost and
performance: a sufficient condition for allowing γ-saturation
of a kind of linear excitation control input is presented, and a
method for the estimation of the region of attraction is given.

Next, the system (1-2) is equivalently transformed into an
error system. Let ei be the state variables of this error system
and ēi = [e1, . . . ,ei]

T, i=1∼3.
Step I: Define e1 = δ −δ ∗. The time derivative of e1 along

system trajectories is ė1 = −q1e1 + e2, in which q1 is positive
constant, β1(e1) = −q1e1 is the virtual control of ω and e2 =
ω −β1(e1).

Step II: Then ė2 = −(q2 + r2)e2 − (ω0/H)e3 + d1(t), the
virtual control of Pe is chosen as β2(ē2) = Pm+(H/ω0)(r1e1+
q2e2), where q2 is positive constant, r1 = q1D/H − q2

1, r2 =
D/H −q1, e3 = Pe −β2(ē2).

Step III: Differentiating e3, one gets ė3 = −(q3 +

1/T
′

d0 − q2)e3 + u − rē3 + dz2, where q3 is positive constan-
t, r3 = r1H(q1 − 1/T

′
d0)/ω0, r4 = (H/ω0)(r1 − q2

2 − q2r2 +

q2/T
′

d0), r = [−r3 r4 −q3 ], dz1 = d1(t), dz2 = P2 (δ )−P2 (δ ∗)+
ωPe cotδ + d2(t) − (q2H/ω0)d1(t), u = P3 (δ )sat(E f d) −
P3 (δ ∗)E∗

f d represents the control variable of error system to
be designed later.

Step IV: The saturation on E f d can be equivalently trans-
formed into the constant constraint uc on u, namely, |u| ≤ uc ≤
UBP3 (δm)−P3 (δ ∗)E∗

f d . Generally speaking, for γ ∈ (0,1], if
γ-saturation happens to E f d , there must exist a constant ς ∈
(0,1] such that |u| ≤ uc/ς ≤ UBP3 (δm)/γ −P3 (δ ∗)E∗

f d , cor-
respondingly, ς -saturation happens to u. Based on the above
analysis, let u be specified as u = rē3, and the real excitation
control input is designed as E f d = [rē3 +P3 (δ ∗)E∗

f d ]/P3 (δ ),
then, one can obtain the following error system:

no-saturation: ˙̄e3 = Aē3 +Ddz, (12)

ς -saturation: ˙̄e3 = Aē3 +(ς −1)brē3 +Ddz, (13)

where A =

[
−q1 1 0

0 −(q2+r2) −ω0/H

0 0 −(q3+1/T
′
d0−q2)

]
, b = [ 0 0 1 ]T, D =

[
0 1 0
0 0 1

]T, dz = [ dz1 dz2 ]
T.

Step V: Choose Lyapunov function as Ve = (1/2)ēT
3 Qē3,

where 0 < Q = QT ∈ R3×3 are to be chosen later. Thus the
time derivative of Ve along the system trajectories is

V̇e =ēT
3 Ak

TQē3 + ēT
3 QDdz

=ēT
3 [Ak

TQ+(1/(2ε2))QDDTQ]ē3

− (1/2)‖εdz − (1/ε)DTQē3‖2 +(1/2)ε2‖dz‖2,

(14)

where Ak = A when there is no saturation, and Ak = Akς =
A+(ς − 1)br when there is ς -saturation, ε is disturbance at-
tenuation constant.

THEOREM 3. For the error dynamic system (12-13) and
given ς ∈ (0,1], ρ > 0, 0 < ε < 1, the control input u = rē3 en-
sures convergence of ē3 to a ball of radius ε under ς -saturation
if there exist Q satisfying

ATQ+(1/(2ε2))QDDTQ < 0,

Akς
TQ+(1/(2ε2))QDDTQ < 0,[

Q ςrT

ςr (u2
c/ρ)

]
≥ 0,

(15)

and then the region of attraction can be estimated by using the
following inequality

[
ρ ē3(0)T

ē3(0) Q−1

]
≥ 0. (16)

Proof: The objective of control design is to guarantee the
decay of Lyapunov function Ve whether ς -saturation happens
or not. Thus, from the equation (14) and LEMMA 2, one can
conclude this proof. ��

Remark 1: The main differences between SAEC and the
linear excitation control in this subsection are: (i) the former
is of initiative control action from the perspective of “anti-
saturation”, but the latter is of passive system analysis from
the viewpoint of “estimation of region of attraction” allowing
ς -saturation. (ii) Lyapunov function V3 is obtained by em-
ploying constructive design, and the control gain p1, p2, p3 of
SAEC can be specified according to practical operating condi-
tion. However, only the structure of the Lyapunov function Ve
is known, the matrix Q can be got by solving the LMI (15).
Also, in order to decrease control gain, the inherent damp-
ing coefficients of power systems are reserved such as −D/H,
−1/T

′
d0. (iii) For the time-varying uncertainties, adaptive laws

are proposed in SAEC, and a disturbance attenuation condition
is give in the latter scheme.

From the above discussions, the advantages of the SAEC
are: (i) global convergence can be ensured when there are con-
trol input saturation and time-varying uncertainties. (ii) there
are better performances than that of linear controller since it
has adaptive mechanism and auxiliary decision system. The
main characteristics of the linear controller are: (i) it has low-
er costs than that of SAEC, only off-line analysis is needed
to obtain the region of attraction considering ς -saturation and
time-varying uncertainties. (ii) it is suitable for power systems
under small signal disturbances.
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can activate the dynamic system ρχ̇ =P(z̄3)−χ+ l∆. As such,
since ρ is small, the variable χ can reach a small neighborhood
of the manifold χ = P(z̄3)+ l∆, then P(z̄3)< χ and the condi-
tion z̄3 ∈ C2(z̄3)|p3=χ holds.

Consequently, on the basis of THEOREM 1 and LEMMA 4,
the convergence of z̄3 to the origin can be ensured.

Therefore, the main advantages of sub-controllers E f d1 and
E f d2 are realized in Cases 1,2 and Case 3 respectively. Thus,
the switching strategy is proposed to make logical choice be-
tween them based on the power systems operating conditions.
As such, the transient performances are improved. ��

3.3. Some Discussions In the above subsection, the SAEC
control scheme is proposed to ensure stability of power sys-
tems even if there exist control input saturation and time-
varying uncertainties. But due to the auxiliary dynamic sys-
tem and switching strategy are needed in SAEC, the cost of
control system is often more than that of general linear control
system. Thus, an alternative control scheme is shown in this
subsection to facilitate engineers to trade off between cost and
performance: a sufficient condition for allowing γ-saturation
of a kind of linear excitation control input is presented, and a
method for the estimation of the region of attraction is given.

Next, the system (1-2) is equivalently transformed into an
error system. Let ei be the state variables of this error system
and ēi = [e1, . . . ,ei]

T, i=1∼3.
Step I: Define e1 = δ −δ ∗. The time derivative of e1 along
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′
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f d represents the control variable of error system to
be designed later.

Step IV: The saturation on E f d can be equivalently trans-
formed into the constant constraint uc on u, namely, |u| ≤ uc ≤
UBP3 (δm)−P3 (δ ∗)E∗

f d . Generally speaking, for γ ∈ (0,1], if
γ-saturation happens to E f d , there must exist a constant ς ∈
(0,1] such that |u| ≤ uc/ς ≤ UBP3 (δm)/γ −P3 (δ ∗)E∗

f d , cor-
respondingly, ς -saturation happens to u. Based on the above
analysis, let u be specified as u = rē3, and the real excitation
control input is designed as E f d = [rē3 +P3 (δ ∗)E∗

f d ]/P3 (δ ),
then, one can obtain the following error system:

no-saturation: ˙̄e3 = Aē3 +Ddz, (12)

ς -saturation: ˙̄e3 = Aē3 +(ς −1)brē3 +Ddz, (13)

where A =

[
−q1 1 0

0 −(q2+r2) −ω0/H

0 0 −(q3+1/T
′
d0−q2)

]
, b = [ 0 0 1 ]T, D =

[
0 1 0
0 0 1

]T, dz = [ dz1 dz2 ]
T.

Step V: Choose Lyapunov function as Ve = (1/2)ēT
3 Qē3,

where 0 < Q = QT ∈ R3×3 are to be chosen later. Thus the
time derivative of Ve along the system trajectories is

V̇e =ēT
3 Ak

TQē3 + ēT
3 QDdz

=ēT
3 [Ak

TQ+(1/(2ε2))QDDTQ]ē3

− (1/2)‖εdz − (1/ε)DTQē3‖2 +(1/2)ε2‖dz‖2,

(14)

where Ak = A when there is no saturation, and Ak = Akς =
A+(ς − 1)br when there is ς -saturation, ε is disturbance at-
tenuation constant.

THEOREM 3. For the error dynamic system (12-13) and
given ς ∈ (0,1], ρ > 0, 0 < ε < 1, the control input u = rē3 en-
sures convergence of ē3 to a ball of radius ε under ς -saturation
if there exist Q satisfying

ATQ+(1/(2ε2))QDDTQ < 0,

Akς
TQ+(1/(2ε2))QDDTQ < 0,[

Q ςrT

ςr (u2
c/ρ)

]
≥ 0,

(15)

and then the region of attraction can be estimated by using the
following inequality

[
ρ ē3(0)T

ē3(0) Q−1

]
≥ 0. (16)

Proof: The objective of control design is to guarantee the
decay of Lyapunov function Ve whether ς -saturation happens
or not. Thus, from the equation (14) and LEMMA 2, one can
conclude this proof. ��

Remark 1: The main differences between SAEC and the
linear excitation control in this subsection are: (i) the former
is of initiative control action from the perspective of “anti-
saturation”, but the latter is of passive system analysis from
the viewpoint of “estimation of region of attraction” allowing
ς -saturation. (ii) Lyapunov function V3 is obtained by em-
ploying constructive design, and the control gain p1, p2, p3 of
SAEC can be specified according to practical operating condi-
tion. However, only the structure of the Lyapunov function Ve
is known, the matrix Q can be got by solving the LMI (15).
Also, in order to decrease control gain, the inherent damp-
ing coefficients of power systems are reserved such as −D/H,
−1/T

′
d0. (iii) For the time-varying uncertainties, adaptive laws

are proposed in SAEC, and a disturbance attenuation condition
is give in the latter scheme.

From the above discussions, the advantages of the SAEC
are: (i) global convergence can be ensured when there are con-
trol input saturation and time-varying uncertainties. (ii) there
are better performances than that of linear controller since it
has adaptive mechanism and auxiliary decision system. The
main characteristics of the linear controller are: (i) it has low-
er costs than that of SAEC, only off-line analysis is needed
to obtain the region of attraction considering ς -saturation and
time-varying uncertainties. (ii) it is suitable for power systems
under small signal disturbances.
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can activate the dynamic system ρχ̇ =P(z̄3)−χ+ l∆. As such,
since ρ is small, the variable χ can reach a small neighborhood
of the manifold χ = P(z̄3)+ l∆, then P(z̄3)< χ and the condi-
tion z̄3 ∈ C2(z̄3)|p3=χ holds.

Consequently, on the basis of THEOREM 1 and LEMMA 4,
the convergence of z̄3 to the origin can be ensured.

Therefore, the main advantages of sub-controllers E f d1 and
E f d2 are realized in Cases 1,2 and Case 3 respectively. Thus,
the switching strategy is proposed to make logical choice be-
tween them based on the power systems operating conditions.
As such, the transient performances are improved. ��

3.3. Some Discussions In the above subsection, the SAEC
control scheme is proposed to ensure stability of power sys-
tems even if there exist control input saturation and time-
varying uncertainties. But due to the auxiliary dynamic sys-
tem and switching strategy are needed in SAEC, the cost of
control system is often more than that of general linear control
system. Thus, an alternative control scheme is shown in this
subsection to facilitate engineers to trade off between cost and
performance: a sufficient condition for allowing γ-saturation
of a kind of linear excitation control input is presented, and a
method for the estimation of the region of attraction is given.

Next, the system (1-2) is equivalently transformed into an
error system. Let ei be the state variables of this error system
and ēi = [e1, . . . ,ei]

T, i=1∼3.
Step I: Define e1 = δ −δ ∗. The time derivative of e1 along

system trajectories is ė1 = −q1e1 + e2, in which q1 is positive
constant, β1(e1) = −q1e1 is the virtual control of ω and e2 =
ω −β1(e1).

Step II: Then ė2 = −(q2 + r2)e2 − (ω0/H)e3 + d1(t), the
virtual control of Pe is chosen as β2(ē2) = Pm+(H/ω0)(r1e1+
q2e2), where q2 is positive constant, r1 = q1D/H − q2

1, r2 =
D/H −q1, e3 = Pe −β2(ē2).

Step III: Differentiating e3, one gets ė3 = −(q3 +

1/T
′

d0 − q2)e3 + u − rē3 + dz2, where q3 is positive constan-
t, r3 = r1H(q1 − 1/T

′
d0)/ω0, r4 = (H/ω0)(r1 − q2

2 − q2r2 +

q2/T
′

d0), r = [−r3 r4 −q3 ], dz1 = d1(t), dz2 = P2 (δ )−P2 (δ ∗)+
ωPe cotδ + d2(t) − (q2H/ω0)d1(t), u = P3 (δ )sat(E f d) −
P3 (δ ∗)E∗

f d represents the control variable of error system to
be designed later.

Step IV: The saturation on E f d can be equivalently trans-
formed into the constant constraint uc on u, namely, |u| ≤ uc ≤
UBP3 (δm)−P3 (δ ∗)E∗

f d . Generally speaking, for γ ∈ (0,1], if
γ-saturation happens to E f d , there must exist a constant ς ∈
(0,1] such that |u| ≤ uc/ς ≤ UBP3 (δm)/γ −P3 (δ ∗)E∗

f d , cor-
respondingly, ς -saturation happens to u. Based on the above
analysis, let u be specified as u = rē3, and the real excitation
control input is designed as E f d = [rē3 +P3 (δ ∗)E∗

f d ]/P3 (δ ),
then, one can obtain the following error system:

no-saturation: ˙̄e3 = Aē3 +Ddz, (12)

ς -saturation: ˙̄e3 = Aē3 +(ς −1)brē3 +Ddz, (13)

where A =

[
−q1 1 0

0 −(q2+r2) −ω0/H

0 0 −(q3+1/T
′
d0−q2)

]
, b = [ 0 0 1 ]T, D =

[
0 1 0
0 0 1

]T, dz = [ dz1 dz2 ]
T.

Step V: Choose Lyapunov function as Ve = (1/2)ēT
3 Qē3,

where 0 < Q = QT ∈ R3×3 are to be chosen later. Thus the
time derivative of Ve along the system trajectories is

V̇e =ēT
3 Ak

TQē3 + ēT
3 QDdz

=ēT
3 [Ak

TQ+(1/(2ε2))QDDTQ]ē3

− (1/2)‖εdz − (1/ε)DTQē3‖2 +(1/2)ε2‖dz‖2,

(14)

where Ak = A when there is no saturation, and Ak = Akς =
A+(ς − 1)br when there is ς -saturation, ε is disturbance at-
tenuation constant.

THEOREM 3. For the error dynamic system (12-13) and
given ς ∈ (0,1], ρ > 0, 0 < ε < 1, the control input u = rē3 en-
sures convergence of ē3 to a ball of radius ε under ς -saturation
if there exist Q satisfying

ATQ+(1/(2ε2))QDDTQ < 0,

Akς
TQ+(1/(2ε2))QDDTQ < 0,[

Q ςrT

ςr (u2
c/ρ)

]
≥ 0,

(15)

and then the region of attraction can be estimated by using the
following inequality

[
ρ ē3(0)T

ē3(0) Q−1

]
≥ 0. (16)

Proof: The objective of control design is to guarantee the
decay of Lyapunov function Ve whether ς -saturation happens
or not. Thus, from the equation (14) and LEMMA 2, one can
conclude this proof. ��

Remark 1: The main differences between SAEC and the
linear excitation control in this subsection are: (i) the former
is of initiative control action from the perspective of “anti-
saturation”, but the latter is of passive system analysis from
the viewpoint of “estimation of region of attraction” allowing
ς -saturation. (ii) Lyapunov function V3 is obtained by em-
ploying constructive design, and the control gain p1, p2, p3 of
SAEC can be specified according to practical operating condi-
tion. However, only the structure of the Lyapunov function Ve
is known, the matrix Q can be got by solving the LMI (15).
Also, in order to decrease control gain, the inherent damp-
ing coefficients of power systems are reserved such as −D/H,
−1/T

′
d0. (iii) For the time-varying uncertainties, adaptive laws

are proposed in SAEC, and a disturbance attenuation condition
is give in the latter scheme.

From the above discussions, the advantages of the SAEC
are: (i) global convergence can be ensured when there are con-
trol input saturation and time-varying uncertainties. (ii) there
are better performances than that of linear controller since it
has adaptive mechanism and auxiliary decision system. The
main characteristics of the linear controller are: (i) it has low-
er costs than that of SAEC, only off-line analysis is needed
to obtain the region of attraction considering ς -saturation and
time-varying uncertainties. (ii) it is suitable for power systems
under small signal disturbances.
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Step V. Choose Lyapunov function as Ve = (1/2)e–T
3Qe–3, where 

0 < Q = QT 2 ℝ3×3 are to be chosen later. Thus the time deriv-
ative of Ve along the system trajectories is
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can activate the dynamic system ρχ̇ =P(z̄3)−χ+ l∆. As such,
since ρ is small, the variable χ can reach a small neighborhood
of the manifold χ = P(z̄3)+ l∆, then P(z̄3)< χ and the condi-
tion z̄3 ∈ C2(z̄3)|p3=χ holds.

Consequently, on the basis of THEOREM 1 and LEMMA 4,
the convergence of z̄3 to the origin can be ensured.

Therefore, the main advantages of sub-controllers E f d1 and
E f d2 are realized in Cases 1,2 and Case 3 respectively. Thus,
the switching strategy is proposed to make logical choice be-
tween them based on the power systems operating conditions.
As such, the transient performances are improved. ��

3.3. Some Discussions In the above subsection, the SAEC
control scheme is proposed to ensure stability of power sys-
tems even if there exist control input saturation and time-
varying uncertainties. But due to the auxiliary dynamic sys-
tem and switching strategy are needed in SAEC, the cost of
control system is often more than that of general linear control
system. Thus, an alternative control scheme is shown in this
subsection to facilitate engineers to trade off between cost and
performance: a sufficient condition for allowing γ-saturation
of a kind of linear excitation control input is presented, and a
method for the estimation of the region of attraction is given.

Next, the system (1-2) is equivalently transformed into an
error system. Let ei be the state variables of this error system
and ēi = [e1, . . . ,ei]

T, i=1∼3.
Step I: Define e1 = δ −δ ∗. The time derivative of e1 along

system trajectories is ė1 = −q1e1 + e2, in which q1 is positive
constant, β1(e1) = −q1e1 is the virtual control of ω and e2 =
ω −β1(e1).

Step II: Then ė2 = −(q2 + r2)e2 − (ω0/H)e3 + d1(t), the
virtual control of Pe is chosen as β2(ē2) = Pm+(H/ω0)(r1e1+
q2e2), where q2 is positive constant, r1 = q1D/H − q2

1, r2 =
D/H −q1, e3 = Pe −β2(ē2).

Step III: Differentiating e3, one gets ė3 = −(q3 +

1/T
′

d0 − q2)e3 + u − rē3 + dz2, where q3 is positive constan-
t, r3 = r1H(q1 − 1/T

′
d0)/ω0, r4 = (H/ω0)(r1 − q2

2 − q2r2 +

q2/T
′

d0), r = [−r3 r4 −q3 ], dz1 = d1(t), dz2 = P2 (δ )−P2 (δ ∗)+
ωPe cotδ + d2(t) − (q2H/ω0)d1(t), u = P3 (δ )sat(E f d) −
P3 (δ ∗)E∗

f d represents the control variable of error system to
be designed later.

Step IV: The saturation on E f d can be equivalently trans-
formed into the constant constraint uc on u, namely, |u| ≤ uc ≤
UBP3 (δm)−P3 (δ ∗)E∗

f d . Generally speaking, for γ ∈ (0,1], if
γ-saturation happens to E f d , there must exist a constant ς ∈
(0,1] such that |u| ≤ uc/ς ≤ UBP3 (δm)/γ −P3 (δ ∗)E∗

f d , cor-
respondingly, ς -saturation happens to u. Based on the above
analysis, let u be specified as u = rē3, and the real excitation
control input is designed as E f d = [rē3 +P3 (δ ∗)E∗

f d ]/P3 (δ ),
then, one can obtain the following error system:

no-saturation: ˙̄e3 = Aē3 +Ddz, (12)

ς -saturation: ˙̄e3 = Aē3 +(ς −1)brē3 +Ddz, (13)

where A =

[
−q1 1 0

0 −(q2+r2) −ω0/H

0 0 −(q3+1/T
′
d0−q2)

]
, b = [ 0 0 1 ]T, D =

[
0 1 0
0 0 1

]T, dz = [ dz1 dz2 ]
T.

Step V: Choose Lyapunov function as Ve = (1/2)ēT
3 Qē3,

where 0 < Q = QT ∈ R3×3 are to be chosen later. Thus the
time derivative of Ve along the system trajectories is

V̇e =ēT
3 Ak

TQē3 + ēT
3 QDdz

=ēT
3 [Ak

TQ+(1/(2ε2))QDDTQ]ē3

− (1/2)‖εdz − (1/ε)DTQē3‖2 +(1/2)ε2‖dz‖2,

(14)

where Ak = A when there is no saturation, and Ak = Akς =
A+(ς − 1)br when there is ς -saturation, ε is disturbance at-
tenuation constant.

THEOREM 3. For the error dynamic system (12-13) and
given ς ∈ (0,1], ρ > 0, 0 < ε < 1, the control input u = rē3 en-
sures convergence of ē3 to a ball of radius ε under ς -saturation
if there exist Q satisfying

ATQ+(1/(2ε2))QDDTQ < 0,

Akς
TQ+(1/(2ε2))QDDTQ < 0,[

Q ςrT

ςr (u2
c/ρ)

]
≥ 0,

(15)

and then the region of attraction can be estimated by using the
following inequality

[
ρ ē3(0)T

ē3(0) Q−1

]
≥ 0. (16)

Proof: The objective of control design is to guarantee the
decay of Lyapunov function Ve whether ς -saturation happens
or not. Thus, from the equation (14) and LEMMA 2, one can
conclude this proof. ��

Remark 1: The main differences between SAEC and the
linear excitation control in this subsection are: (i) the former
is of initiative control action from the perspective of “anti-
saturation”, but the latter is of passive system analysis from
the viewpoint of “estimation of region of attraction” allowing
ς -saturation. (ii) Lyapunov function V3 is obtained by em-
ploying constructive design, and the control gain p1, p2, p3 of
SAEC can be specified according to practical operating condi-
tion. However, only the structure of the Lyapunov function Ve
is known, the matrix Q can be got by solving the LMI (15).
Also, in order to decrease control gain, the inherent damp-
ing coefficients of power systems are reserved such as −D/H,
−1/T

′
d0. (iii) For the time-varying uncertainties, adaptive laws

are proposed in SAEC, and a disturbance attenuation condition
is give in the latter scheme.

From the above discussions, the advantages of the SAEC
are: (i) global convergence can be ensured when there are con-
trol input saturation and time-varying uncertainties. (ii) there
are better performances than that of linear controller since it
has adaptive mechanism and auxiliary decision system. The
main characteristics of the linear controller are: (i) it has low-
er costs than that of SAEC, only off-line analysis is needed
to obtain the region of attraction considering ς -saturation and
time-varying uncertainties. (ii) it is suitable for power systems
under small signal disturbances.
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�(14)

where Ak = A when there is no saturation, and Ak = Akς = A + 
+ (ς ¡ 1)br when there is ς-saturation, ε is disturbance atten-
uation constant.

Theorem 3. For the error dynamic system (12–13) and given 
ς 2 (0, 1], ρ > 0, 0 < ε < 1, the control input u = re–3 ensures 
convergence of e–3 to a ball of radius ε under ς-saturation if 
there exist Q satisfying

	

can activate the dynamic system ρχ̇ =P(z̄3)−χ+ l∆. As such,
since ρ is small, the variable χ can reach a small neighborhood
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E f d2 are realized in Cases 1,2 and Case 3 respectively. Thus,
the switching strategy is proposed to make logical choice be-
tween them based on the power systems operating conditions.
As such, the transient performances are improved. ��

3.3. Some Discussions In the above subsection, the SAEC
control scheme is proposed to ensure stability of power sys-
tems even if there exist control input saturation and time-
varying uncertainties. But due to the auxiliary dynamic sys-
tem and switching strategy are needed in SAEC, the cost of
control system is often more than that of general linear control
system. Thus, an alternative control scheme is shown in this
subsection to facilitate engineers to trade off between cost and
performance: a sufficient condition for allowing γ-saturation
of a kind of linear excitation control input is presented, and a
method for the estimation of the region of attraction is given.

Next, the system (1-2) is equivalently transformed into an
error system. Let ei be the state variables of this error system
and ēi = [e1, . . . ,ei]

T, i=1∼3.
Step I: Define e1 = δ −δ ∗. The time derivative of e1 along

system trajectories is ė1 = −q1e1 + e2, in which q1 is positive
constant, β1(e1) = −q1e1 is the virtual control of ω and e2 =
ω −β1(e1).

Step II: Then ė2 = −(q2 + r2)e2 − (ω0/H)e3 + d1(t), the
virtual control of Pe is chosen as β2(ē2) = Pm+(H/ω0)(r1e1+
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Step III: Differentiating e3, one gets ė3 = −(q3 +

1/T
′

d0 − q2)e3 + u − rē3 + dz2, where q3 is positive constan-
t, r3 = r1H(q1 − 1/T

′
d0)/ω0, r4 = (H/ω0)(r1 − q2

2 − q2r2 +

q2/T
′

d0), r = [−r3 r4 −q3 ], dz1 = d1(t), dz2 = P2 (δ )−P2 (δ ∗)+
ωPe cotδ + d2(t) − (q2H/ω0)d1(t), u = P3 (δ )sat(E f d) −
P3 (δ ∗)E∗

f d represents the control variable of error system to
be designed later.

Step IV: The saturation on E f d can be equivalently trans-
formed into the constant constraint uc on u, namely, |u| ≤ uc ≤
UBP3 (δm)−P3 (δ ∗)E∗

f d . Generally speaking, for γ ∈ (0,1], if
γ-saturation happens to E f d , there must exist a constant ς ∈
(0,1] such that |u| ≤ uc/ς ≤ UBP3 (δm)/γ −P3 (δ ∗)E∗

f d , cor-
respondingly, ς -saturation happens to u. Based on the above
analysis, let u be specified as u = rē3, and the real excitation
control input is designed as E f d = [rē3 +P3 (δ ∗)E∗

f d ]/P3 (δ ),
then, one can obtain the following error system:

no-saturation: ˙̄e3 = Aē3 +Ddz, (12)

ς -saturation: ˙̄e3 = Aē3 +(ς −1)brē3 +Ddz, (13)

where A =

[
−q1 1 0

0 −(q2+r2) −ω0/H

0 0 −(q3+1/T
′
d0−q2)

]
, b = [ 0 0 1 ]T, D =

[
0 1 0
0 0 1

]T, dz = [ dz1 dz2 ]
T.

Step V: Choose Lyapunov function as Ve = (1/2)ēT
3 Qē3,

where 0 < Q = QT ∈ R3×3 are to be chosen later. Thus the
time derivative of Ve along the system trajectories is

V̇e =ēT
3 Ak

TQē3 + ēT
3 QDdz

=ēT
3 [Ak

TQ+(1/(2ε2))QDDTQ]ē3

− (1/2)‖εdz − (1/ε)DTQē3‖2 +(1/2)ε2‖dz‖2,

(14)

where Ak = A when there is no saturation, and Ak = Akς =
A+(ς − 1)br when there is ς -saturation, ε is disturbance at-
tenuation constant.

THEOREM 3. For the error dynamic system (12-13) and
given ς ∈ (0,1], ρ > 0, 0 < ε < 1, the control input u = rē3 en-
sures convergence of ē3 to a ball of radius ε under ς -saturation
if there exist Q satisfying

ATQ+(1/(2ε2))QDDTQ < 0,

Akς
TQ+(1/(2ε2))QDDTQ < 0,[

Q ςrT

ςr (u2
c/ρ)

]
≥ 0,

(15)

and then the region of attraction can be estimated by using the
following inequality

[
ρ ē3(0)T

ē3(0) Q−1

]
≥ 0. (16)

Proof: The objective of control design is to guarantee the
decay of Lyapunov function Ve whether ς -saturation happens
or not. Thus, from the equation (14) and LEMMA 2, one can
conclude this proof. ��

Remark 1: The main differences between SAEC and the
linear excitation control in this subsection are: (i) the former
is of initiative control action from the perspective of “anti-
saturation”, but the latter is of passive system analysis from
the viewpoint of “estimation of region of attraction” allowing
ς -saturation. (ii) Lyapunov function V3 is obtained by em-
ploying constructive design, and the control gain p1, p2, p3 of
SAEC can be specified according to practical operating condi-
tion. However, only the structure of the Lyapunov function Ve
is known, the matrix Q can be got by solving the LMI (15).
Also, in order to decrease control gain, the inherent damp-
ing coefficients of power systems are reserved such as −D/H,
−1/T

′
d0. (iii) For the time-varying uncertainties, adaptive laws

are proposed in SAEC, and a disturbance attenuation condition
is give in the latter scheme.

From the above discussions, the advantages of the SAEC
are: (i) global convergence can be ensured when there are con-
trol input saturation and time-varying uncertainties. (ii) there
are better performances than that of linear controller since it
has adaptive mechanism and auxiliary decision system. The
main characteristics of the linear controller are: (i) it has low-
er costs than that of SAEC, only off-line analysis is needed
to obtain the region of attraction considering ς -saturation and
time-varying uncertainties. (ii) it is suitable for power systems
under small signal disturbances.
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Step II: Then ė2 = −(q2 + r2)e2 − (ω0/H)e3 + d1(t), the
virtual control of Pe is chosen as β2(ē2) = Pm+(H/ω0)(r1e1+
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Step III: Differentiating e3, one gets ė3 = −(q3 +
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Proof. The objective of control design is to guarantee the decay 
of Lyapunov function Ve whether ς-saturation happens or not. 
Thus, from equation (14) and Lemma 2, one can conclude this 
proof. □□

Remark 1. The main differences between SAEC and the linear 
excitation control in this subsection are: (i) the former is of ini-
tiative control action from the perspective of “anti-saturation’’, 
but the latter is of passive system analysis from the viewpoint 
of “estimation of region of attraction’’ allowing ς-saturation. (ii) 

Lyapunov function V3 is obtained by employing constructive 
design, and the control gain p1, p2, p3 of SAEC can be specified 
according to practical operating condition. However, only the 
structure of the Lyapunov function Ve is known, the matrix Q 
can be got by solving the LMI (15). Also, in order to decrease 
control gain, the inherent damping coefficients of power sys-
tems are reserved such as ¡D/H, ¡1/T

0
d0. (iii) For the time-

varying uncertainties, adaptive laws are proposed in SAEC, and 
a disturbance attenuation condition is give in the latter scheme.

From the above discussion, the advantages of the SAEC are: 
(i) global convergence can be ensured when there are control 
input saturation and time-varying uncertainties. (ii) better per-
formance is obtained than that of linear controller since it has 
adaptive mechanism and auxiliary decision system. The main 
characteristics of the linear controller are: (i) lower costs than 
that of SAEC, only off-line analysis is needed to obtain the 
region of attraction considering ς-saturation and time-varying 
uncertainties. (ii) it is suitable for power systems under small 
signal disturbances.

4.	 Simulation results

In this section, the developed control strategy for a SMIB 
power system is shown to be effective by a comparative simu-
lation study of the SAEC and the excitation controller which is 
designed by using the approach proposed in [17]. The transient 
responses of power angle, relative speed, active power and con-
trol input are shown in Figs 2–5 with the same initial condition 
δ(0) = 1.309 (75°), ω(0) = 5, Pe(0) = 0.7 and also with the same 
limit on the control input Efd. The values of the parameters and 
operating point used in the simulation are respectively listed as 
follows: 1) Values of system parameters: ω0 = 314.159, D = 5, 
H = 7.1, Vs = 1, xd = 1.79, x0d = 0.17, xT = 0.02, xL = 0.8, 
x0ds = x0d + xT + xL = 0.99, T

0
d0 = 7.65, Td0  = 5, UB  = 6;  

2) Operating point: (δ, ω, Pe) = (0.3475, 0, 0.81); 3) Values 
of designed parameters: c1 = c2 = c3 = 1, p1 = p2 = p3 = 0.5, 

Fig. 2. Transient response curves of the power angle
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Fig. 3. Transient response curves of the relative speed

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

t(s)

δ
(r
a
d
)

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

t(s)

ω
(r
a
d
/
s)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

t(s)

P
e
(p
.u
.)

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

t(s)

E
f
d
(p
.u
.)

Fig. 4. Transient response curves of the active power
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Fig. 2. Transient response curves of the power angle
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ε1 = ε2 = 0.05, ρ = 0.5, τ = 2, l∆ = 0.1; 4) Time-varying uncer-
tainties: d1(t) = 2sin(ωt), d2(t) = 0.03sin(0.01ωt).

In Figs 2–5, the solid lines and the dash lines represent 
the results with the proposed SAEC and the controller in [17] 
respectively. From these figures, the SAEC globally stabilizes 
the system (1–2) and provides better performance than the 
controller given in [17], which does not consider the influ-
ence of input saturation. The simulation results verify the pro-
posed theoretical results i.e. Theorem 1 and Theorem 2, and 
the superiority of the proposed control method over existing 
methodologies that ignore input saturation within the design 
is demonstrated.

5.	 Conclusions

A new control synthesis framework was developed to design 
a kind of nonlinear robust generator excitation controller 
for power systems. Compared with the conventional control 
schemes, by employing adaptive auxiliary decision mechanism, 
global convergence and better transient performances have been 
achieved theoretically and simulatively even with control input 
saturation and time-varying uncertainties.

The practicability of the proposed control law is discussed 
as follows: firstly, as a model-based approach, it is important to 
verify the accuracy of the model used in this paper. Fortunately, 
as stated in Introduction, the SMIB model has been validated to 
be well-suited for power system analysis and control. Moreover, 
time-varying uncertainties have been considered, which has in-
creased the exactness of the classical SMIB model. Secondly, 
only local measurable information is needed for the designed 
control law in which the parameters can be tuned flexibly in 
terms of practical operating conditions and engineering require-
ments.
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