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Abstract. Diagnosis of electrical direct current motors is essential for industrial plants. The emphasis is put on the development of diagnostic 
methods of solutions for capturing, processing and recognition of diagnostic signals. This paper presents a technique of early fault diagnosis 
of a DC motor. The proposed approach is based on acoustic signals. A real-world data of the DC motor were used in the analysis. The work 
provides an original feature extraction method called the shortened method of frequencies selection (SMoFS-15). The obtained results of the 
presented analysis show that the early fault diagnostic method can be used for monitoring electrical DC motors. The proposed method can also 
support other fault diagnosis methods based on thermal, current, and vibration signals.
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of thermal image analysis in Matlab were presented [14]. In-
frared thermography of electrical installations was described 
[15]. Many fault diagnostic techniques based on vibration sig-
nals were developed. Progress on diagnosis of hybrid failures in 
gear transmission systems was presented [16]. Bi-dimensional 
decomposition applied to vibration signals of rolling bearing 
was shown [17]. Bearing fault diagnosis for induction motors 
using vibration signals was described [18]. Fault diagnosis 
of rotating machinery was discussed [19]. Influence of disc 
processing technology on the vibration level of a chipper was 
presented [20]. Evaluation of the state of rolling bearings was 
analysed [21, 22]. Application of vibroacoustic fault diagnosis 
to evaluation of rail brake disc was presented [23]. Diagnosis 
of IC engine valve clearance was discussed [24]. Vibroacoustic 
measurements applied to gear pumps were described [25]. De-
tection of gear cracks in a gearbox was shown [26].

Techniques based on acoustic signals of machines were 
presented recently. Influence of parameters and power signals 
on sound quality was presented [27]. Condition monitoring 
based on acoustic emission was described [28]. A system for 
identifying technical condition of combustion engine was dis-
cussed [29, 30]. Measurements of noise in CNC machines were 
described [31]. Monitoring of noise sources of CNC machine 
tools through acoustic holography methods was presented [32]. 
Descriptors of acoustic emission signals generated by partial 
discharges were discussed [33]. Automatic gear and bearing 
fault localization using vibration and acoustic signals was de-
veloped [34]. Bearing fault diagnosis using acoustic emission 
sensors was presented [35]. Recognition of acoustic signals 
of synchronous motors was described [36]. Methodology for 
fault detection in induction motors was presented [37]. Diag-
nostics of a DC machine using symlet wavelet transform were 
discussed [38]. Fault diagnostics of a loaded synchronous motor 
and three-phase induction motors were developed [39, 40]. Di-
agnostic features for condition monitoring of hypoid gear was 
shown [41]. Roller bearing acoustic signature extraction using 
wavelet transform was presented [42]. A signal processing 

1.	 Introduction

An early diagnosis of abnormal states of electrical motors allows 
industrial plants to avoid heavy economic losses involved with 
halted production and replacement of damaged machines. A DC 
motor is cheap and easy to control, which is why it was chosen 
for analysis. To keep an electrical motor in the best condition, 
the methods of fault diagnosis are developed. The objective of 
fault diagnosis methods is to make a decision whether a fault has 
occurred or not. Some actions such as repair, maintenance, and 
other operations should be done if a fault has occurred [1, 2]. 
Proper testing of electric motors is a difficult task. The problems 
related to diagnostic of electrical motors and electric equipments 
are widely discussed in the literature. The different types of 
motor faults, such as rotor electrical faults, stator faults, and 
rotor mechanical faults are described in the literature [2].

A lot of diagnostic techniques use current signals. Diag-
nostics of a separately-excited DC motor were presented [3]. 
The method of current measurement in the rotor cage bars 
of a prototype induction motor was also developed [4]. Cur-
rent-based bearing diagnostic feature for induction motors was 
discussed in the literature [5]. A diagnostic model for longwall 
conveyor engines was described [6]. A simulation language of 
discrete-continuous electrical systems was discussed [7]. Fault 
diagnosis of motors based on thermal images was developed. 
The concept of a thermal model of the electromagnetic circuit 
of rotating electrical machines was presented [8]. Induction 
motor inter-turn fault detection using thermal imaging was 
shown [9]. Diagnostics of electric equipments by means of 
thermovision were developed in the literature [10]. Diagnostics 
of single-phase induction motor using thermal imaging were 
discussed [11]. Segmented infrared image analysis for rotating 
machinery was proposed [12]. Early detection of spontaneous 
combustion disasters was also described [13]. Selected methods 
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approach for bearing fault diagnosis using AE sensors was 
described [43]. Multi-scale morphology analysis of acoustic 
emission signal for bearing fault was discussed [44].

The advantage of techniques based on acoustic signals is the 
low price of microphones. However, for these techniques there 
is problem with noise produced by environment, for example 
the noise of other motors.

This paper deals with a technique of fault diagnosis of a DC 
motor, based on acoustic signals. The proposed technique uses 
the shortened method of frequencies selection (SMoFS-15), 
linear discriminant analysis (LDA), and the nearest neighbour 
(NN) and nearest mean (NM) algorithms. The paper is sub-
divided into sections: section 1 contains an introduction and 
the literature survey, section 2 presents the proposed technique 
of fault diagnosis based on acoustic signals of the DC motor, 
section 3 puts forth the results of the analysis of the proposed 
technique, and section 4 concludes the findings.

2.	 Proposed technique of fault diagnosis based 
on acoustic signal of the DC motor

In the considered technique, healthy and faulty states of the 
motor were used to extract diagnostic information. The pro-
posed technique of fault diagnosis contained two processes: 
a pattern creation process and an identification process (Fig. 1). 
The first of them used training samples and the second one used 
test samples of acoustic signals. Samples were recorded with 
the use of a sound card and a microphone (Fig. 2). The fault 
detection methods based on comparison of amplitude-frequency 

spectra of “healthy” and “faulty” mechanical or electrical sys-
tems depend on the measurement accuracy. The measurement 
accuracy depended on the sound card, the microphone, the 
set-up of the microphone, and the laboratory conditions. Most 
computers made today are equipped with good sound cards. 
The best microphone for this application was a condenser mi-
crophone, as its frequency response was 20 Hz–20 kHz. It was 
essential to obtain a high quality fault diagnosis. The micro-
phone was installed in front of the machine (Fig. 2).

In the laboratory, one motor was operating. Therefore, the 
problem of recognition of multiple acoustic signals was omitted. 
The authors used Olympus TP-7 and Zalman ZM-MIC1 con-
denser microphones, because of their low cost. The format of 
the obtained audio track was characterized as follows: 16-bit 
depth, number of channels – mono, sampling rate – 44100 Hz, 
WAVE PCM format. The recorded signal was processed into 
a soundtrack and next, into smaller audio files with a duration 
of 5 seconds. The audio signal was normalized (in the range 
of [-1,1]) and then, the frequency spectrum was calculated 
(Hamming window – 32768) [45]. The obtained spectrum was 
processed by the shortened method of frequencies selection 
(SMoFS-15). The SMoFS-15 was described in the further part 
of the paper (section 2.1). The results of the SMoFS-15 method 
were selected amplitudes of acoustic pressure. These features 
(amplitudes of acoustic pressure) were classified by the LDA, 
NN, and NM. The patterns were based on training samples. In 
the proposed approach, LDA used the patterns of various classes 
separated by the hyperplanes. The NN and NM used feature 
vectors. The final results of the identification process were the 
results of recognized classes. The results of recognized classes 
were based on test samples.

2.1. Shortened method of frequencies selection (SMoFS-15). 
The obtained FFT spectrum was processed by the shortened 
method of frequencies selection (SMoFS-15). A block diagram 
of the proposed feature extraction method was shown in Fig. 3. 
The parameter t depended on the number of analysed states of 
the DC motor and the number of frequency components – the 

Fig. 1. Recognition of acoustic signal of the DC motor using  
SMoFS-15, LDA, NN, and NM

Fig. 2. Computer, microphone, and the analyzed DC motor
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NoF (number of frequency components) parameter. Too small 
of a number of frequency components could cause errors. The 
differences between the selected frequency components could 
have different values (e.g. the difference between state X and 
state Y had maximum amplitudes for frequency components 
120, 240, 360, 480, 600 Hz; the difference between state X and 
state Z had maximum amplitudes for frequency components 
150, 300, 450, 600, 750 Hz; the difference between state Y and 
state Z had maximum amplitudes for frequency components 
200, 400, 600, 800, 1000 Hz, therefore states X, Y, and Z had 
one common frequency of 600 Hz). However, there was a pos-
sibility that there were no common frequency components. To 
solve this problem, the parameter t was calculated according 
to formulas (1) and (2). When NoF is greater than 15, the will 
perform loop calculations (2). If NoF is smaller or equal to 15, 
SMoFS-15 finishes its calculations. The NoF threshold has been 
selected as 15. Of course, the authors could have selected an-
other NoF threshold, for example 16, but in that case, finally the 
feature vector would have had 1–16 features. So, this parameter 
should be selected experimentally. In the authors’ opinion, NoF 
threshold equal to 15 is good, because operating on too many 
features is not optimal for the next step, which is classification.
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where t – threshold of selection amplitudes of acoustic 
pressure (it depended on NoF and the analysed acoustic 
signal), NoF – number of frequency components (initially 
NoF =16384), 16384 was the number of frequency 
components obtained using the FFT.  

Fig. 4. The difference between spectrum of acoustic signal of the healthy 
DC motor and spectrum of acoustic signal of the DC motor with 6 
shorted rotor coils (rotor speed=400 rpm, t=0.0072, NoF=8, SMoFS-15 
finished calculations) 

Amplitudes of acoustic pressure of acoustic signals of the 
DC motor calculated by the SMoFS-15 were used to form 
feature vectors. Finally obtained feature vector had 1-15 
features. The difference between spectrum of acoustic 
signal of the healthy DC motor and spectrum of acoustic 
signal of the DC motor with 6 shorted rotor coils was 
presented in the figure 4 (the SMoFS-15 finished 
calculations, because NoF<15). The SMoFS-15 performed 
1 iteration more when t=0.0051 and NoF=30, because 
NoF>15. It was showed in the Fig 5. The SMoFS-15 
selected frequency components for differences between 
spectra of acoustic signals of healthy and faulty DC motor 
(Fig. 6-8). One frequency - 300 Hz was common for 
analysed states of the DC motor (Fig. 9). The feature 
vector consisted of selected amplitude of acoustic pressure 
(frequency 300 Hz). This vector was used in the 
classification step (Fig. 9). 
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where: t – threshold of selection amplitudes of acoustic pres-
sure (depending on NoF and the analysed acoustic signal), NoF 
– number of frequency components (initially NoF = 16384), 
as 16384 was the number of frequency components obtained 
using the FFT.

Amplitudes of acoustic pressure of the DC motor’s acoustic 
signal, calculated by the SMoFS-15, were used to form fea-
ture vectors. Finally, the obtained feature vector had 1–15 fea-
tures. The difference between the spectrum of acoustic signal 
of a healthy DC motor and the spectrum of acoustic signal of 
a DC motor with 6 shorted rotor coils was presented in Fig. 4. 
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NoF = 30, because NoF > 15 (Fig. 5). SMoFS-15 selected 
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Fig. 5. The difference between the spectrum of acoustic signal of 
the healthy DC motor and the spectrum of acoustic signal of the DC 
motor with 6 shorted rotor coils (rotor speed = 400 rpm, t = 0.0051, 

NoF = 30, SMoFS-15 does 1 iteration more, because NoF > 15)
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the frequency components for differences between spectra of 
acoustic signals of healthy and faulty DC motors (Figs. 6–8). 
One frequency (300 Hz) was common for the analysed states of 
the DC motor (Fig. 9). The feature vector consisted of a selected 
amplitude of acoustic pressure (300 Hz frequency). This vector 
was used in the classification step (Fig. 9).

2.2. Analysed classifiers. The methods responsible for making 
decisions were used in the classification step. The classifica-
tion of feature vectors was described in the literature [46–63]. 
In the presented approach, single-element feature vectors were 

obtained. For this reason, the step of classification could be 
selected in various ways. Most of the obtained feature vectors 
were separable linearly, therefore many classification methods 
could be used to solve problems such as: fuzzy logic [46], clus-
tering method [47], nearest mean, k-nearest neighbour classifier 
[36, 48, 49], neural network [50–55], naive Bayes classifier 
[56], classifier based on word coding [36], linear discriminant 
analysis (LDA) [57, 58], support vector machine [59, 60], rules 
based on the theory of rough sets [61], Gaussian mixture models 
(GMM) [62, 63]. The authors decided to analyse LDA, nearest 
neighbour (NN) classifier, and the nearest mean (NM) classi-

Fig. 6. Selected frequency components for difference between the 
spectrum of acoustic signal of the healthy DC motor and the spectrum 
of acoustic signal of the DC motor with 6 shorted rotor coils using 

SMoFS-15 (rotor speed = 400 rpm)

Fig. 7. Selected frequency components for difference between the 
spectrum of acoustic signal of the healthy DC motor and the spectrum 
of acoustic signal of the DC motor with broken coil and 6 shorted rotor 

coils using SMoFS-15 (rotor speed = 400 rpm)

Fig. 9. Common frequency for the analysed states of the DC motor 
(300 Hz) using SMoFS-15
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fier, because they had small computational complexity. LDA 
calculated the ratio of between-class variance to the within-class 
variance (DetjBj/DetjW j). The Between-class scatter matrix was 
expressed by the following formula:

	 B = 
c

k=1
∑(μk ¡ μ)(μk ¡ μ)T,� (3)

where μ denotes the mean of all training sets, x, μ – vectors of 
dimensions equal to the selected number of common frequency 
components.

The within-class scatter matrix was defined as follows:

	 W = 
c

k=1
∑ 

Nk

i=1
∑(μi

k ¡ μk)(μi
k ¡ μk)

T,� (4)

where μk denotes the mean of class k, xi
k is the sample with the 

index i of class k, c denotes the number of classes of training 
sets, and Nk is the number of samples of class k.

The separability of the classes was dependent on the calcu-
lated ratio (DetjBj/DetjW j). LDA is discussed in greater detail 
in the literature [57, 58].

The Nearest Neighbour classifier measured the least dis-
tances between all training samples. The classifier selected the 
most similar class to test samples. The Nearest Mean classifier 
used arithmetic mean instead of training sample. The remaining 
steps were the same as in the case of using the NN. The authors 
used Manhattan distance for these two classifiers (NN, NM). 
More about the nearest neighbour classifier is available in the 
literature [36, 48].

3.	 Analysis of acoustic signals of the DC motor

In the conducted analysis, acoustic signals from the DC motor 
were employed to identify states of the motor. States of the 
DC motor were as follows: healthy DC motor, DC motor with 
6 shorted rotor coils, and DC motor with broken coil and 6 
shorted rotor coils. The DC motor had a rotor speed of 400 rpm 
and a motor power P = 13000 W.
Parameters of the DC motor were as follows:

–	 healthy DC motor (Fig. 10): Uav = 35 V, Iac = 46.5 A, 
Uev = 159.6 V, Iec = 2.5 A,

–	 DC motor with 6 shorted rotor coils (Fig. 11): Uav = 34 V, 
Iac = 45.75 A, Uev = 162.8 V, Iec = 2.5 A, Icsc = 83 A,

Fig. 10. Scheme of rotor windings of the healthy DC motor

Fig. 11. Scheme of rotor windings of the DC motor with 6 shorted coils
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Fig. 12. Scheme of rotor windings of the DC motor with broken coil 
and 6 shorted coils
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–	 DC motor with broken coil and 6 shorted rotor coils 
(Fig. 12): Uav = 34 V, Iac = 46.25 A, Uev = 165.3 V, 
Icsc = 2.5 A, Isc = 81 A,

where: Uav – armature voltage of the DC motor, Iac – armature 
current of the DC motor, Uev – excitation voltage of the DC 
motor, Iec – excitation current of the DC motor, Icsc – current 
of the short-circuit.

Six loops of rotor coils were shorted using resistance 
Rsc = 0.085 mΩ. This resistance was connected to the rotor 
coils of the motor.

Twelve training samples and 75 test samples were used in 
the analysis. Samples had a duration of 5 seconds each. The 
mentioned samples were used to evaluate efficiency of recog-
nition of the acoustic signal. This efficiency was expressed by:
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Iac = 45.75 A, Uev = 162.8 V, Iec  = 2.5 A, Icsc = 83 A,  
-DC motor with broken coil and 6 shorted rotor coils (Fig. 
12): Uav =34 V, Iac = 46.25 A, Uev = 165.3 V, Icsc  = 2.5
A, Isc = 81 A,  
where Uav - armature voltage of the DC motor, Iac - 
armature current of the DC motor, Uev - excitation voltage 
of the DC motor, Iec  - excitation current of the DC motor, 
Icsc - current of the short-circuit. 

Six loops of rotor coils were shorted using resistance Rsc = 
0.085 mΩ. This resistance was connected with rotor coils 
of the motor. 

Fig. 10. Scheme of rotor windings of the healthy DC motor 

Fig. 11. Scheme of rotor windings of the DC motor with 6 shorted coils 

Fig. 12. Scheme of rotor windings of the DC motor with broken coil and 
6 shorted coils 

12 training samples and 75 test samples were used in the 
analysis. Samples had duration of 5 seconds. Mentioned 
samples were used to evaluate efficiency of recognition of 
acoustic signal. This efficiency was expressed by (5): 

 100%  
NATS

NPRTSE = , (5) 

where: NPRTS – number of properly recognized test 
samples, NATS – number of all samples used for 
identification, E – efficiency of recognition of acoustic 
signal. 

The total efficiency of recognition of acoustic signal was 
defined as (6): 
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where: NPRTS – number of properly recognized test samples, 
NATS – number of all samples used for identification, E – effi-
ciency of recognition of acoustic signal.
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The total efficiency of recognition of acoustic signal was 
defined as:
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where μk denoted the mean of class k, k
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with the index i of class k, c denoted the number of classes 
of training sets, and Nk was the number of samples of 
class k. 

The separability of the classes was dependent on the 
calculated ratio (Det|B|/Det|W|). The LDA is discussed in 
more detail in the literature [57, 58].  

The Nearest Neighbour classifier measured the least 
distances between all training samples. The classifier 
selected the most similar class to test samples. The 
Nearest Mean classifier used arithmetic mean instead of 
training sample. The remaining steps were the same as in 
the case of using the NN. The authors used Manhattan 
distance for these two classifiers (NN, NM). More about 
the Nearest Neighbour classifier is available in the 
literature [36, 48]. 

3. Analysis of acoustic signals of the DC 
motor 

In the conducted analysis, acoustic signals from DC 
motor were employed to identify states of the motor. 
States of the DC motor were following: the healthy DC 
motor, the DC motor with 6 shorted rotor coils, the DC 
motor with broken coil and 6 shorted rotor coils. The DC 
motor had a rotor speed of 400 rpm and the motor power 
P=13000 W. Parameters of the DC motor were following: 
-healthy DC motor (Fig. 10): Uav =35 V, Iac = 46.5 A, Uev
= 159.6 V, Iec  = 2.5 A,  
-DC motor with 6 shorted rotor coils (Fig. 11): Uav =34 V, 
Iac = 45.75 A, Uev = 162.8 V, Iec  = 2.5 A, Icsc = 83 A,  
-DC motor with broken coil and 6 shorted rotor coils (Fig. 
12): Uav =34 V, Iac = 46.25 A, Uev = 165.3 V, Icsc  = 2.5
A, Isc = 81 A,  
where Uav - armature voltage of the DC motor, Iac - 
armature current of the DC motor, Uev - excitation voltage 
of the DC motor, Iec  - excitation current of the DC motor, 
Icsc - current of the short-circuit. 

Six loops of rotor coils were shorted using resistance Rsc = 
0.085 mΩ. This resistance was connected with rotor coils 
of the motor. 

Fig. 10. Scheme of rotor windings of the healthy DC motor 

Fig. 11. Scheme of rotor windings of the DC motor with 6 shorted coils 

Fig. 12. Scheme of rotor windings of the DC motor with broken coil and 
6 shorted coils 

12 training samples and 75 test samples were used in the 
analysis. Samples had duration of 5 seconds. Mentioned 
samples were used to evaluate efficiency of recognition of 
acoustic signal. This efficiency was expressed by (5): 

 100%  
NATS

NPRTSE = , (5) 

where: NPRTS – number of properly recognized test 
samples, NATS – number of all samples used for 
identification, E – efficiency of recognition of acoustic 
signal. 

The total efficiency of recognition of acoustic signal was 
defined as (6): 
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where: TERAS – Total efficiency of recognition of acoustic 
signal, Eh – efficiency of recognition of acoustic signal of the 
healthy DC motor, Es – efficiency of recognition of acoustic 
signal of the DC motor with 6 shorted rotor coils, Esb – effi-
ciency of recognition of acoustic signal of the DC motor with 
broken coil and 6 shorted rotor coils.

The results of recognition of acoustic signal of the DC motor 
with the use of SMoFS-15 and LDA were presented in Table 1. 
The value of E was in the range of 76–100% and the value of 
TERAS was 84%.

Table 1 
Results of recognition of acoustic signal of the DC motor with the 

use of SMoFS-15 and linear discriminant analysis (LDA)

State of the DC motor E [%]

Healthy DC motor 76

Motor with 6 shorted rotor coils 76

Motor with broken coil and 6 shorted rotor coils 100

TERAS [%]

3 analysed states of motor 84

The results of recognition of acoustic signal of the DC motor 
with the use of SMoFS-15 and NN were presented in Table 2. 
The value of E was in the range of 56–96% and the value of 
TERAS was 70.66%.

Table 2 
Results of recognition of acoustic signal of the DC motor with the 

use of SMoFS-15, nearest neighbour (NN)

State of the DC motor E [%]

Healthy DC motor 60

Motor with 6 shorted rotor coils 56

Motor with broken coil and 6 shorted rotor coils 96

TERAS [%]

3 analysed states of motor 70.66

The results of recognition of acoustic signal of the DC motor 
with the use of SMoFS-15 and NM were presented in Table 3. 
The Value of E was in the range of 36–100% and the value of 
TERAS was 70.66%.

Table 3 
Results of recognition of acoustic signal of the DC motor with the 

use of SMoFS-15, Nearest Mean (NM)

State of the DC motor E [%]

Healthy DC motor 76

Motor with 6 shorted rotor coils 36

Motor with broken coil and 6 shorted rotor coils 100

TERAS [%]

3 analysed states of motor 70.66

4.	 Conclusions

In this approach, the authors used real-world data. Measure-
ments were carried out with the use of capacitor microphone 
for a healthy DC motor and for a DC motor with faults. The 
paper presented the technique of fault diagnosis of a DC motor. 
The technique was based on the recognition of acoustic signals. 
The work provided an original feature extraction method called 
SMoFS-15. It was shown that by using the proposed method 
(SMoFS-15) good results of recognition can be obtained. The 
total efficiency of recognition of acoustic signal of the DC 
motor was equal to 84% for the linear discriminant analysis. It 
was surprising that the nearest neighbour and the nearest mean 
classifiers had lower efficiency of recognition than LDA. The 
presented technique finds an application in early fault diagnosis 
of DC motors of the same type and size. If the patterns are 
properly prepared, other electric machines can be diagnosed 
using the proposed technique. The presented technique of fault 
diagnosis is not expensive, as the computers together with 
a microphone cost around $300. The proposed technique can 
also support other fault diagnosis techniques based on thermal, 
current, and vibration signals. Future diagnostic systems will 
use the mentioned signals to make decisions about the state of 
a machine. In this way, more reliable diagnostic systems for 
rotating electrical machines will be used in the industry.
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