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Abstract. In the present article, magneto-micropolar nanofluid flow with suction or injection in a porous medium over a stretching sheet for 
the heat and mass transfer is analyzed numerically. Both Hall and ion-slip effects are considered along with variable thermal diffusivity. The 
governing partial differential equations are transformed to ordinary differential equations using usual similarity transformations. These coupled 
non-linear differential equations are solved using the shooting method. Effects of prominent parameter on velocities, temperature and con-
centration are discussed graphically. Numerical values of skin-friction coefficient, local Nusselt number and local Sherwood number are also 
tabulated and discussed.
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1.	 Introduction

The idea of a nanofluid was first introduced by Choi [1] in 
1995. While using the nanofluids, the maximum possible 
thermal properties are targeted to be achieved with the min-
imum possible concentration by uniform dispersion and stable 
suspension of nanoparticles in the host fluids [2, 3]. These 
fluids are capable of increasing the thermophysical properties, 
such as thermal diffusivity, thermal conductivity, viscosity, 
and convective heat transfer coefficient, as compared to those 

Nomenclature

b	 constants of dimension (time)–1

B	 magnetic induction vector
B0	 magnetic field
C	 concentration of fluid
Cfx	 skin friction along x-axis
Cfz	 skin friction along z-axis
Cw	 concentration at wall
C1	 ambient concentration
cp	 specific heat
DB	 Brownian diffusion coefficient
DT	 thermophoretic diffusion coeff.
E	 electric field intensity
e	 charge of an electron
Ec	 Eckert number
f, g	 dimensionless stream functions
fw	 mass transfer coefficient
G	 microrotation parameter
G1	 spin gradient viscosity

h	 microrotation function
J	 electric current vector
K	 vortex velocity
κp	 permeability parameter
k¤	 permeability of porous medium
Le	 Lewis number
M	 magnetic parameter
N	 microrotation component
Nb	 Brownian motion parameter
Nt	 thermophoresis parameter
N1	 coupling constant parameter
ne	 density number of electrons
Pr	 Prandtl number
Re	 Reynolds number
Shx	 Sherwood number
T	 temperature of fluid
Tw	 temperature at wall
T1	 ambient temperature
Us	 surface velocity
V	 velocity vector

Vw	 suction injection velocity
(u, v, w)	 velocity components
(x, y)	 coordinate axises
α	 thermal diffusivity
α0	 �thermal diffusivity at wall temperature
β2	 fluid nature dependent parameter
βe	 Hall current parameter
βi	 ion-slip parameter
v	 kinematic viscosity
ve	 electron atom collision frequency
θ	 dimensionless temperature
ϕ	 dimensionless concentration
σ	 electric conductivity
ω	 collision frequency
ρ	 density of fluid
τw	 wall shear stress
τz	 shear stress
η	 dimensionless variable
μ	 dynamic viscosity

of base fluids like water, ethylene, or triethylene glucose and 
other coolants, biofluids, and polymer solutions, as elaborated 
by Choi [4] and Wong [5]. These fluids possess the unique 
physical and chemical properties and can easily pass through 
the microchannels and capillaries and don՚t block the flow. 
Because of these properties, nanofluids are now extensively 
used in different industries, engineering and biomedical sectors. 
These can be used in automotives, nuclear reactors, transpor-
tation, power generation, thermal therapy for cancer treatment, 
micromanufacturing, metallurgical, and chemical sectors [5]. 
Buongiorno [6] considered Brownian diffusion and thermo-
phoresis slip mechanism for the relative velocity of base fluid 
and nanoparticles. A subbranch of nanofluids termed magnetic 
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nanofluids has also shown significant contribution to numerous 
engineering fields [7]. These fluids respond to the applied mag-
netic fields and allow for further manipulation of heat transfer 
and hydrodynamic characteristics. Magnetite and aluminum 
oxide nanoparticles are often employed in the architecture of 
such fluids. Shehzad et al. [8] worked on mixed convection flow 
of a Maxwell nanofluid with the doubly-stratified heat genera-
tion/absorption. Magnetohydrodynamics stagnation point flow 
of a nanofluid over an exponentially stretching sheet with an 
effect of chemical reaction, heat source, and suction/injunction 
was discussed by Reddy et al. [9]. Mansur et al. [10] studied 
the magnetohydrodynamic stagnation point flow of a nanofluid 
over a stretching/shrinking sheet with suction. Biomedical uses 
for magnetic nanofluids have been confirmed by Patel [11]. 
Yadav et al. [12] worked on magneto nanolfuid flow with the 
Hall current effect. For recent research related to nanofluids, 
[13–17] can be consulted.

A lot of research work related to MHD Micropolar fluid over 
a stretching sheet has been explained under different physical ef-
fects. Most often, Hall current and ion-slip effects are neglected 
because of their ignorable contribution while applying Ohm՚s 
law for small magnetohydrodynamics [18]. However, these have 
a strong effect when the magnetic field is high [19], due to the 
strong electromagnetic force. Hall effect plays an important role 
when the Hall parameter is high. Hall parameter is the ratio 
of electron cyclotron frequency to atom-electron collision fre-
quency. The Hall current effect is high when the electron-atom 
collision frequency is low [18]. It is also known that the mass of 
ions is much greater than the mass of electrons, and ultimately 
their motion will be different from each other. As a result of dif-
ferent velocities of electrons and ions, their diffusion velocities 
will also be different. As the current density mainly depends 
upon the diffusion velocity, the current density of electrons is 
much higher than that of ions. However, if the magnetic field is 
high, then the diffusion velocity of ions is not negligible. The 
combined effect of diffusion velocities of ions and electrons is 
called the ion-slip effect. Hall and ion-slip effects are involved 
in many engineering technologies, such as Hall sensors, Hall 
accelerators, construction of centrifugal pumps and turbines, 
etc. Attia et al. [20] discussed the heat transfer of Couette flow 
of a dusty fluid with ion-slip effect and uniform suction and 
injection. MHD mass transfer problem by free convection flow 
of an ionized incompressible viscous micropolar fluid across 
an infinite vertical plate under the action of Hall current and 
ion-slip parameter has been discussed by Anika et al. [21]. Ziya 
Uddin et al. [22] considered the Hall and ion-slip effect on MHD 
boundary layer flow of a micropolar fluid past a wedge. Motsa et 
al. [23] studied Hall and ion-slip effect for the micropolar fluid 
flow with chemical reaction and thermal diffusivity.

Eringen [24, 25] put forth a theory of micropolar fluids 
based on the characteristics of inertial properties of structure 
particles which undergo rotation. The microscopic effects and 
micro motion of structure fluid elements describe the microp-
olar fluids. In mathematical modeling, the interaction of micro-
rotation field and macro velocity field can be portrayed by new 
material constant in classical Newtonian fluids. Eringen՚s fluid 
model, based on classical Navier-Stokes equations, is a special 

case for incompressible and viscous fluids. These models are 
also suitable for the study of colloidal fluids flow, polymers, 
lubricants, cerebro fluids, liquid crystals, animal blood, real 
fluids with suspensions, ferro fluids, etc., for which the clas-
sical Navier-Stokes theory is inadequate. In the micropolar fluid 
equation, the gyration parameter and microrotation vectors ap-
pear along with classical Navier-Stokes equations. Realising the 
significance and application of micropolar fluids, many other 
researchers have also worked in this area [26–31].

The aim of the present study is to examine the effect of 
nanofluid on heat and mass transfer with the impact of Hall 
current and ion-slip effects on an electrically conducting mag-
neto-micropolar fluid flowing on a linearly stretched sheet. Gen-
erally, there are two categories of simulation of nanofluid con-
vective heat transfer modeling: single phase and double phase 
modeling. In single phase modeling, the combination of base 
fluid and nanoparticles is considered a homogenous mixture 
and their properties are studied collectively, whereas in the two 
phase model, the behaviour and properties of nanoparticles are 
considered separately from the properties and behaviour of the 
base fluid. In the present study, a single phase model has been 
considered. A variable thermal diffusivity is considered in the 
formation of energy equation. The dynamics of the flow are 
described by the conservation laws of mass, momentum, en-
ergy, and concentration. The governing set of nonlinear PDEs 
are reduced into a system of ODEs, and then solved numerically 
through the shooting technique. The quantities such as velocity, 
concentration, temperature, Nusselt number, Sherwood number, 
and skin-friction for the variation of emerging parameters are 
computed and elaborated. To the best of our knowledge, the 
study of Hall current and ion-slip effect with variable thermal 
diffusivity and magneto-micropolar nanofluids has not been dis-
cussed in literature yet.

2.	 Mathematical formulation

A steady, viscous, and incompressible, electrically conducting 
magneto-micropolar nanofluid flow over a horizontal, po-
rous plate stretching linearly with velocity ux along the x-axis 

Fig. 1. Geometry of the problem
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through a porous medium has been considered. A strong con-
stant magnetic field of intensity B0 in the direction along y-axis 
is also assumed. Due to this strong magnetic field strength, the 
electrically conducting fluid has the Hall and ion-slip effects, 
which give rise to a force on the fluid in the z-direction, and 
hence the flow becomes three-dimensional.

Elgazery [32] generalized the Ohm՚s law for the Hall current 
in the form:
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are neglected because of their ignorable contribution while
applying Ohm’s law for small magnetohydrodynamics [18].
However, these have strong effect when the magnetic field
is high [19], due to the strong electromagnetic force. Hall
effect plays an important role when the Hall parameter is high.
Hall parameter is the ratio of electron cyclotron frequency to
atom-electron collision frequency. So the Hall current effect
is high when the electron-atom collision frequency is low
[18]. It is also known that the mass of ions is much greater
than mass of electrons, and ultimately their motion will be
different from each other. As a result of different velocities
of electrons and ions, their diffusion velocities will also be
different. As the current density mainly depends upon the
diffusion velocity, the current density of electrons is much
higher than that of ions. However if the magnetic field is
high, then the diffusion velocity of ions is not negligible. The
combined effect of diffusion velocities of ions and electrons
is called ion-slip effect. Hall and ion-slip effects are involved
in many engineering technologies such as Hall sensors, Hall
accelerators, construction of centrifugal and turbines, etc.
Attia et al. [20] discussed the heat transfer of Couette flow
of a dusty fluid with ion-slip effect and uniform suction and
injection. MHD mass transfer problem by free convection flow
of an ionized incompressible viscous micropolar fluid across
the infinite vertical plate under the action of Hall current and
ion-slip parameter has been discussed by Anika et al. [21].
Ziya Uddin et al. [22] considered the Hall and ion-slip effect
on MHD boundary layer flow of a micropolar fluid past a
wedge. Motsa et al. [23] studied Hall and ion-slip effect for
the micropolar fluid flow with chemical reaction and thermal
diffusivity.

Eringen [24, 25] forthput a theory of micropolar fluids based
on the characteristic of inertial properties of structure particles
which undergo rotation. The microscopic effects and micro
motion of structure fluid elements describe the micropolar
fluids. In mathematical modeling, the interaction of microro-
tation field and macro velocity field can be portrayed by new
material constant in classical Newtonian fluids. Eringen’s fluid
model based on classical Navier-Stokes equations is a special
case for incompressible and viscous fluids. These models are
also suitable for the study of colloidal fluids flow, polymers,
lubricants, cerebro fluids, liquid crystals, animal blood, real
fluids with suspensions and ferro fluids etc., for which the
classical Navier-Stokes theory is inadequate. In the micropolar
fluid equation, a gyration parameter and microrotation vectors
appear along with classical Navier-Stokes equations. Realiz-
ing the significance and application of micropolar fluids, many
other researchers have also worked in this area [26, 27, 28, 29,
30, 31].

The aim of the present study is to examine the effect of
nanofluid on heat and mass transfer with the impact of Hall
current and ion-slip effects on an electrically conducting
magneto-micropolar fluid flowing on a linearly stretched
sheet. Generally, there are two categories for the simulation
of nanofluid convective heat transfer modeling; the single

Fig. 1. Geometry of the Problem.

phase and the double phase modeling. In the single phase
modeling, the combination of base fluid and nanoparticles
is considered as homogenous mixture and their properties
are studied collectively whereas in the two phase model,
the behaviour and properties of nanoparticles are considered
separately from the properties and behaviour of the base
fluid. In the present study, a single phase model has been
considered. A variable thermal diffusivity is considered in
the formation of energy equation. The dynamics of the flow
is described by the conservation laws of mass, momentum,
energy and concentration. The governing set of nonlinear
PDEs are reduced into system of ODEs and then solved
numerically through shooting technique. The quantities such
as velocity, concentration, temperature, Nusselt number, Sher-
wood number and skin-friction for the variation of emerging
parameters are computed and elaborated. To the best of our
knowledge, the study of Hall current and ion-slip effect with
thermal diffusivity and magneto-micropolar nanofluids is not
discussed in literature yet.

2. Mathematical formulation
A steady, viscous and incompressible, electrically conducting
magneto-micropolar nanofluid flow over a horizontal porous
plate stretching linearly with velocity ux along the x−axis
through a porous medium has been considered. A strong
constant magnetic field of intensity B0 in the direction along
y−axis is also assumed. Due to this strong magnetic field
strength, the electrically conducting fluid has the Hall and
ion-slip effects which gives rise a force on the fluid in the z-
direction and hence the flow becomes three dimensional.

Elgazery [32], generalized the Ohm’s law for the Hall current
in the form

J =
σ

1+(ω/νe)
2

(
E+(V×B)− 1

ene
(J×B)

)
, (1)

where ω the electron cyclotron and νe is the electron-atom
collision frequency. When the ratio ω/νe is very large then the
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where ω is the electron cyclotron and ve is the electron-atom 
collision frequency. When the ratio ω/ve is very large, the 
phenomenon is called “ion-slip”. By considering all the fluid 
property constants, except for thermal diffusivity, and applying 
Boussinesq approximations, the governing equations for the 
considered problem become:
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 +

K
ρ

∂N
∂y

− µ
ρk∗

u,

−
σB2

0
ρ (α2

e +β 2
e )

(αeu+βew) (3)

u
∂w
∂x

+ v
∂w
∂y

= ν
∂ 2w
∂y2 +

σB2
0

ρ (α2
e +β 2

e )
(βeu−αew)− µ

ρk∗
w,

(4)

G1

K
∂ 2N
∂y2 −2N − ∂u

∂y
= 0. (5)

u
∂T
∂x

+ v
∂T
∂y

=
∂
∂y

(
α

∂T
∂y

)
+

µ
ρcp

[(
∂u
∂y

)2

+

(
∂w
∂y

)2
]

+
1

ρcp

σB2
0

(α2
e +β 2

e )

(
u2 +w2)+ τ

[
DB

(
∂T
∂y

∂C
∂y

)
+

DT

T∞

(
∂T
∂y

)2
]
,

(6)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂ 2C
∂y2 +

DT

T∞

∂ 2T
∂y2 . (7)

where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]

η =

√
b
ν

y, u = bx f ′ (η) , v =−
√

bν f (η) , w =
√

bνg(η) ,

N =

√
b3

ν
xh(η) , θ (η) =

T −T∞

Tw −T∞
, φ (η) =

C−C∞

Cw −C∞
.

(10)

Eq. (2) is satisfied identically while the resulting ordinary dif-
ferential equations are:

f ′′′+ f f ′′ −
(

f ′
)2

+N1h′ − 1
kp

f ′

− M
(α2

e +β 2
e )

(
αe f ′+

βe√
Re

g
)
= 0, (11)

g′′+ f g′+
M

(α2
e +β 2

e )

(
βe
√

Re f ′ −αeg
)
− 1

kp
g = 0, (12)

Gh′′ −2h− f ′′ = 0, (13)

θ ′′+
β2

1+β2θ
θ ′2 +

Pr
1+β2θ

f θ ′+
PrNb

1+β2θ

(
θ ′φ ′+

Nt
Nb

θ ′2
)
+

PrEc
1+β2θ

[
f ′′2 +

g′2

Re
+

M
(α2

e +β 2
e )

(
f ′2 +

g2

Re

)]
= 0, (14)

φ ′′+
Nt
Nb

θ ′′+LePr f φ ′ = 0. (15)

The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
(11)-(16) are defined as

N1 =
K

ρν
, M =

σB2
0

ρb
,G =

G1b
Kν

, Pr =
ν
α
, fw =

Vw√
bν

Ec =
(bx)2

cp (Tw −T∞)
,kp =

k∗bρ
µ

,Re =
bx2

ν
,γ =

kν
(bx)2 ,

Nb =
τDB

ν
(Cw −C∞), Nt =

DT

T∞

τ
ν
(Tw −T∞), Le =

α
DB

.

(17)

The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as

C fx =
τw

ρbx
√

bν
, C fz =

τz

ρbx
√

bν
,

Nux =
−
(

∂T
∂y

)
y=0

(Tw −T∞)
√

b
ν

, Shx =
−
(

∂C
∂y

)
y=0

(Cw −C∞)
√

b
ν

. (18)

Here, the local wall shear stresses are defined as

τw =

[
(µ +K)

(
∂u
∂y

)
+KN

]

y=0
,τz =

[
(µ +K)

(
∂w
∂y

)]

y=0
. (19)

The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The important quantities of interest such as the coefficient of
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Here, the local wall shear stresses are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Magneto-micropolar nanofluids flow with Hall and ion-slip effects

phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 +

K
ρ

∂N
∂y

− µ
ρk∗

u,

−
σB2

0
ρ (α2

e +β 2
e )

(αeu+βew) (3)

u
∂w
∂x

+ v
∂w
∂y

= ν
∂ 2w
∂y2 +

σB2
0

ρ (α2
e +β 2

e )
(βeu−αew)− µ

ρk∗
w,

(4)

G1

K
∂ 2N
∂y2 −2N − ∂u

∂y
= 0. (5)

u
∂T
∂x

+ v
∂T
∂y

=
∂
∂y

(
α

∂T
∂y

)
+

µ
ρcp

[(
∂u
∂y

)2

+

(
∂w
∂y

)2
]

+
1

ρcp

σB2
0

(α2
e +β 2

e )

(
u2 +w2)+ τ

[
DB

(
∂T
∂y

∂C
∂y

)
+

DT

T∞

(
∂T
∂y

)2
]
,

(6)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂ 2C
∂y2 +
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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Eq. (2) is satisfied identically while the resulting ordinary dif-
ferential equations are:
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The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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Here, the local wall shear stresses are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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Eq. (2) is satisfied identically while the resulting ordinary dif-
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The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
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(16)
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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ρbx
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Here, the local wall shear stresses are defined as
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]
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

,
� (4)

Magneto-micropolar nanofluids flow with Hall and ion-slip effects

phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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Here, the local wall shear stresses are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N
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The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
(11)-(16) are defined as

N1 =
K

ρν
, M =

σB2
0

ρb
,G =

G1b
Kν

, Pr =
ν
α
, fw =

Vw√
bν

Ec =
(bx)2

cp (Tw −T∞)
,kp =

k∗bρ
µ

,Re =
bx2

ν
,γ =

kν
(bx)2 ,

Nb =
τDB

ν
(Cw −C∞), Nt =

DT

T∞

τ
ν
(Tw −T∞), Le =

α
DB

.

(17)

The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
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As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.
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Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by
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tions are frequently used in many research articles [?, 44, 43]
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θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
(11)-(16) are defined as

N1 =
K

ρν
, M =

σB2
0

ρb
,G =

G1b
Kν

, Pr =
ν
α
, fw =

Vw√
bν

Ec =
(bx)2

cp (Tw −T∞)
,kp =

k∗bρ
µ

,Re =
bx2

ν
,γ =

kν
(bx)2 ,

Nb =
τDB

ν
(Cw −C∞), Nt =

DT

T∞

τ
ν
(Tw −T∞), Le =

α
DB

.

(17)

The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The dimensionless form of Skin friction, Local Nusselt number
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C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

.� (9)

The similarity transformations which are used to convert the 
partial differential equations into ordinary differential equations 
are frequently used in many research articles [43, 44]

	

Magneto-micropolar nanofluids flow with Hall and ion-slip effects

phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 +

K
ρ

∂N
∂y

− µ
ρk∗

u,

−
σB2

0
ρ (α2

e +β 2
e )

(αeu+βew) (3)

u
∂w
∂x

+ v
∂w
∂y

= ν
∂ 2w
∂y2 +

σB2
0

ρ (α2
e +β 2

e )
(βeu−αew)− µ

ρk∗
w,

(4)

G1

K
∂ 2N
∂y2 −2N − ∂u

∂y
= 0. (5)

u
∂T
∂x

+ v
∂T
∂y

=
∂
∂y

(
α

∂T
∂y

)
+

µ
ρcp

[(
∂u
∂y

)2

+

(
∂w
∂y

)2
]

+
1

ρcp

σB2
0

(α2
e +β 2

e )

(
u2 +w2)+ τ

[
DB

(
∂T
∂y

∂C
∂y

)
+

DT

T∞

(
∂T
∂y

)2
]
,

(6)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂ 2C
∂y2 +

DT

T∞

∂ 2T
∂y2 . (7)

where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.
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αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
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Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.
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Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by
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The similarity transformations which are used to convert the
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and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

� (10)

(2) is satisfied identically, while the resulting ordinary differ-
ential equations are:

	

Magneto-micropolar nanofluids flow with Hall and ion-slip effects

phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 +

K
ρ

∂N
∂y

− µ
ρk∗

u,

−
σB2

0
ρ (α2

e +β 2
e )

(αeu+βew) (3)

u
∂w
∂x

+ v
∂w
∂y

= ν
∂ 2w
∂y2 +

σB2
0

ρ (α2
e +β 2

e )
(βeu−αew)− µ

ρk∗
w,

(4)

G1

K
∂ 2N
∂y2 −2N − ∂u

∂y
= 0. (5)

u
∂T
∂x

+ v
∂T
∂y

=
∂
∂y

(
α

∂T
∂y

)
+

µ
ρcp

[(
∂u
∂y

)2

+

(
∂w
∂y

)2
]

+
1

ρcp

σB2
0

(α2
e +β 2

e )

(
u2 +w2)+ τ

[
DB

(
∂T
∂y

∂C
∂y

)
+

DT

T∞

(
∂T
∂y

)2
]
,

(6)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂ 2C
∂y2 +

DT

T∞

∂ 2T
∂y2 . (7)

where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
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tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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Here, the local wall shear stresses are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The important quantities of interest such as the coefficient of
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
(11)-(16) are defined as
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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ρbx
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Here, the local wall shear stresses are defined as
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y=0
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)
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partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]

η =

√
b
ν

y, u = bx f ′ (η) , v =−
√

bν f (η) , w =
√

bνg(η) ,

N =

√
b3

ν
xh(η) , θ (η) =

T −T∞

Tw −T∞
, φ (η) =

C−C∞

Cw −C∞
.

(10)

Eq. (2) is satisfied identically while the resulting ordinary dif-
ferential equations are:

f ′′′+ f f ′′ −
(

f ′
)2

+N1h′ − 1
kp

f ′

− M
(α2

e +β 2
e )

(
αe f ′+

βe√
Re

g
)
= 0, (11)

g′′+ f g′+
M

(α2
e +β 2

e )

(
βe
√

Re f ′ −αeg
)
− 1

kp
g = 0, (12)

Gh′′ −2h− f ′′ = 0, (13)

θ ′′+
β2

1+β2θ
θ ′2 +

Pr
1+β2θ

f θ ′+
PrNb

1+β2θ

(
θ ′φ ′+

Nt
Nb

θ ′2
)
+

PrEc
1+β2θ

[
f ′′2 +

g′2

Re
+

M
(α2

e +β 2
e )

(
f ′2 +

g2

Re

)]
= 0, (14)

φ ′′+
Nt
Nb

θ ′′+LePr f φ ′ = 0. (15)

The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.
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Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)
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tions are frequently used in many research articles [?, 44, 43]
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and Sherwood number, are defined as

C fx =
τw

ρbx
√

bν
, C fz =

τz

ρbx
√

bν
,

Nux =
−
(

∂T
∂y

)
y=0

(Tw −T∞)
√

b
ν

, Shx =
−
(

∂C
∂y

)
y=0

(Cw −C∞)
√

b
ν

. (18)

Here, the local wall shear stresses are defined as

τw =

[
(µ +K)

(
∂u
∂y

)
+KN

]

y=0
,τz =

[
(µ +K)

(
∂w
∂y

)]

y=0
. (19)

The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
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The important quantities of interest such as the coefficient of
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and Sherwood number, are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)
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partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:
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Nux =−θ ′ (0) , Shx =−φ ′ (0) .
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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Boussinesq approximations, the governing equations for the
considered problem become
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The transformed boundary conditions are:
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θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as

C fx =
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Here, the local wall shear stresses are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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3. Solution methodology
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3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

, ,

Magneto-micropolar nanofluids flow with Hall and ion-slip effects

phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 +

K
ρ

∂N
∂y

− µ
ρk∗

u,

−
σB2

0
ρ (α2

e +β 2
e )

(αeu+βew) (3)

u
∂w
∂x

+ v
∂w
∂y

= ν
∂ 2w
∂y2 +

σB2
0

ρ (α2
e +β 2

e )
(βeu−αew)− µ

ρk∗
w,

(4)

G1

K
∂ 2N
∂y2 −2N − ∂u

∂y
= 0. (5)

u
∂T
∂x

+ v
∂T
∂y

=
∂
∂y

(
α

∂T
∂y

)
+

µ
ρcp

[(
∂u
∂y

)2

+

(
∂w
∂y

)2
]

+
1

ρcp

σB2
0

(α2
e +β 2

e )

(
u2 +w2)+ τ

[
DB

(
∂T
∂y

∂C
∂y

)
+

DT

T∞

(
∂T
∂y

)2
]
,

(6)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂ 2C
∂y2 +

DT

T∞

∂ 2T
∂y2 . (7)

where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]

η =

√
b
ν

y, u = bx f ′ (η) , v =−
√

bν f (η) , w =
√

bνg(η) ,

N =

√
b3

ν
xh(η) , θ (η) =

T −T∞

Tw −T∞
, φ (η) =

C−C∞

Cw −C∞
.

(10)

Eq. (2) is satisfied identically while the resulting ordinary dif-
ferential equations are:

f ′′′+ f f ′′ −
(

f ′
)2

+N1h′ − 1
kp

f ′

− M
(α2

e +β 2
e )

(
αe f ′+

βe√
Re

g
)
= 0, (11)

g′′+ f g′+
M

(α2
e +β 2

e )

(
βe
√

Re f ′ −αeg
)
− 1

kp
g = 0, (12)

Gh′′ −2h− f ′′ = 0, (13)

θ ′′+
β2

1+β2θ
θ ′2 +

Pr
1+β2θ

f θ ′+
PrNb

1+β2θ

(
θ ′φ ′+

Nt
Nb

θ ′2
)
+

PrEc
1+β2θ

[
f ′′2 +

g′2

Re
+

M
(α2

e +β 2
e )

(
f ′2 +

g2

Re

)]
= 0, (14)

φ ′′+
Nt
Nb

θ ′′+LePr f φ ′ = 0. (15)

The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
(11)-(16) are defined as

N1 =
K

ρν
, M =

σB2
0

ρb
,G =

G1b
Kν

, Pr =
ν
α
, fw =

Vw√
bν

Ec =
(bx)2

cp (Tw −T∞)
,kp =

k∗bρ
µ

,Re =
bx2

ν
,γ =

kν
(bx)2 ,

Nb =
τDB

ν
(Cw −C∞), Nt =

DT

T∞

τ
ν
(Tw −T∞), Le =

α
DB

.

(17)

The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as

C fx =
τw

ρbx
√

bν
, C fz =

τz

ρbx
√

bν
,

Nux =
−
(

∂T
∂y

)
y=0

(Tw −T∞)
√

b
ν

, Shx =
−
(

∂C
∂y

)
y=0

(Cw −C∞)
√

b
ν

. (18)

Here, the local wall shear stresses are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]

η =

√
b
ν

y, u = bx f ′ (η) , v =−
√

bν f (η) , w =
√

bνg(η) ,

N =

√
b3

ν
xh(η) , θ (η) =

T −T∞

Tw −T∞
, φ (η) =

C−C∞

Cw −C∞
.

(10)

Eq. (2) is satisfied identically while the resulting ordinary dif-
ferential equations are:

f ′′′+ f f ′′ −
(

f ′
)2

+N1h′ − 1
kp

f ′

− M
(α2

e +β 2
e )

(
αe f ′+

βe√
Re

g
)
= 0, (11)

g′′+ f g′+
M

(α2
e +β 2

e )

(
βe
√

Re f ′ −αeg
)
− 1

kp
g = 0, (12)

Gh′′ −2h− f ′′ = 0, (13)

θ ′′+
β2

1+β2θ
θ ′2 +

Pr
1+β2θ

f θ ′+
PrNb

1+β2θ

(
θ ′φ ′+

Nt
Nb

θ ′2
)
+

PrEc
1+β2θ

[
f ′′2 +

g′2

Re
+

M
(α2

e +β 2
e )

(
f ′2 +

g2

Re

)]
= 0, (14)

φ ′′+
Nt
Nb

θ ′′+LePr f φ ′ = 0. (15)

The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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Here, the local wall shear stresses are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
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αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
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The important quantities of interest such as the coefficient of
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.
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αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
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Here, the local wall shear stresses are defined as
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N
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θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
(11)-(16) are defined as

N1 =
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(17)

The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as

C fx =
τw

ρbx
√

bν
, C fz =

τz

ρbx
√
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,
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−
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Here, the local wall shear stresses are defined as

τw =

[
(µ +K)

(
∂u
∂y

)
+KN

]

y=0
,τz =

[
(µ +K)

(
∂w
∂y

)]

y=0
. (19)

The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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phenomena is called “ion-slip”. By considering all the fluid
properties constant except thermal diffusivity and applying
Boussinesq approximations, the governing equations for the
considered problem become
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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√
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Eq. (2) is satisfied identically while the resulting ordinary dif-
ferential equations are:
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The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.

(16)

Different dimensionless parameters appearing in equations
(11)-(16) are defined as
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as

C fx =
τw

ρbx
√
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, C fz =
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ρbx
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,

Nux =
−
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Here, the local wall shear stresses are defined as

τw =

[
(µ +K)

(
∂u
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)
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]

y=0
,τz =
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(µ +K)

(
∂w
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y=0
. (19)

The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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The dimensionless form of skin friction, local Nusselt number, 
and Sherwood number is:
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where the last terms of Eq. (3) and (4) appears due to the
porosity of the medium, DB and DT are thermodiffusion and
thermophoresis terms respectively, ∂N

∂y in Eq. (3) represents the
micropolar effects of particles. The corresponding boundary
conditions for the governing PDEs are as follows.

At y = 0 : u = ux = bx, v =−Vw, N = 0, w = 0,
T = Tw, C =Cw,

As y → ∞ : u → 0, w → 0, N → 0, T → T∞, C →C∞.

(8)

Here, Vw is the velocity of suction (> 0) or injection (< 0),
αe = 1+ βiβe, where βi and βe are ion-slip and Hall current
parameters respectively, b is a dimensional constant with unit
(time)−1.
The dependence of thermal diffusivity on temperature is given
by

α = α0 (1+β2θ) . (9)

The similarity transformations which are used to convert the
partial differential equations into ordinary differential equa-
tions are frequently used in many research articles [?, 44, 43]
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The transformed boundary conditions are:

f (0) = fw, f ′ (0) = 1, g(0) = 0, h(0) = 0,
θ (0) = 1, φ (0) = 1, f ′ (∞) = 0, g(∞) = 0
h(∞) = 0, θ (∞) = 0, φ (∞) = 0.
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(11)-(16) are defined as
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The important quantities of interest such as the coefficient of
skin-friction in x− and z− directions, local Nusselt number
and Sherwood number, are defined as
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Here, the local wall shear stresses are defined as
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y=0
,τz =
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The dimensionless form of Skin friction, Local Nusselt number
and Sherwood number are:

C fx = (1+N1) f ′′ (0) , C fz = (1+N1)g′ (0) ,
Nux =−θ ′ (0) , Shx =−φ ′ (0) .

(20)

3. Solution methodology
The resulting system of nonlinear ODEs (11)− (15) subject
to the conditions (16) has been explored numerically through
shooting method [33], which is used frequently by many re-
searchers to obtain the solution of such type of problems [34,
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3.	 Solution methodology

The resulting system of nonlinear ODEs (11–15) subject to 
the conditions (16) has been explored numerically through the 
shooting method [33], which is used frequently by many re-
searchers to obtain solutions for such types of problems [34–38] 
for various values of different parameters. To apply the shooting 
method, the system of nonlinear ODEs (11–15) is converted to 
the following system of first-order ODEs:

Here, f is denoted by y1, g by y4, h by y6, θ by y8, and ϕ by y10. 
After choosing the five missing conditions, the above system 
of first-order ODEs is solved by using the Runge-Kutta method 
of order four. To refine the missing initial conditions p, q, r, s, 
and t, the Newton՚s iterative scheme is used, requiring another 
system of 55 first-order ODEs along with the initial conditions. 
This new system is then solved using the RK-4 method. The 
solution of this IVP is then used to construct the Jacobian ma-
trix involved in the Newton՚s iterative method. On the basis 
of a number of computational experiments, we are considering 
[0, 8] as the domain of the problem, instead of [0, 1]. The 
stopping criteria for the iterative process is set as:
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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y′7 =
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G
(2y6 + y3) , y7 (0) = r
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βy9 +PrEc
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1
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e +β 2
e
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1

Re y2
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)
+Pry1y9

]
y9 (0) = s

+
PrNb

1+β2y8

(
y8y11 +

Nt
Nb

y2
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)
,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw

y′2 = y3, y2 (0) = 1

y′3 = y2
2 − y1y3 −N1y7 +

1
kp

y2

+
M

α2
e +β 2

e

(
αey2 +

βe√
Re

y4

)
y3 (0) = p

y′4 = y5, y4 (0) = 0

y′5 = y1y5 −
M

α2
e +β 2

e

(
βe
√

Rey2 −αey4

)
+

1
kp

y4, y5 (0) = q

y′6 = y7, y6 (0) = 0

y′7 =
1
G
(2y6 + y3) , y7 (0) = r

y′8 = y9, y8 (0) = 1

y′9 =
−1

βy8 +1

[
βy9 +PrEc

(
y2

3 +
1

Re y2
5
)
+

PrEcM
α2

e +β 2
e

(
y2

2 +
1

Re y2
4
)
+Pry1y9

]
y9 (0) = s

+
PrNb

1+β2y8

(
y8y11 +

Nt
Nb

y2
9

)
,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw

y′2 = y3, y2 (0) = 1

y′3 = y2
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)
,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
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y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw

y′2 = y3, y2 (0) = 1
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y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw

y′2 = y3, y2 (0) = 1

y′3 = y2
2 − y1y3 −N1y7 +

1
kp

y2

+
M

α2
e +β 2

e

(
αey2 +

βe√
Re

y4

)
y3 (0) = p

y′4 = y5, y4 (0) = 0

y′5 = y1y5 −
M

α2
e +β 2

e

(
βe
√

Rey2 −αey4

)
+

1
kp

y4, y5 (0) = q

y′6 = y7, y6 (0) = 0

y′7 =
1
G
(2y6 + y3) , y7 (0) = r

y′8 = y9, y8 (0) = 1

y′9 =
−1

βy8 +1

[
βy9 +PrEc

(
y2

3 +
1

Re y2
5
)
+

PrEcM
α2

e +β 2
e

(
y2

2 +
1

Re y2
4
)
+Pry1y9

]
y9 (0) = s

+
PrNb

1+β2y8

(
y8y11 +

Nt
Nb

y2
9

)
,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw

y′2 = y3, y2 (0) = 1

y′3 = y2
2 − y1y3 −N1y7 +

1
kp

y2

+
M

α2
e +β 2

e

(
αey2 +

βe√
Re

y4

)
y3 (0) = p

y′4 = y5, y4 (0) = 0

y′5 = y1y5 −
M

α2
e +β 2

e

(
βe
√

Rey2 −αey4

)
+

1
kp

y4, y5 (0) = q

y′6 = y7, y6 (0) = 0

y′7 =
1
G
(2y6 + y3) , y7 (0) = r

y′8 = y9, y8 (0) = 1

y′9 =
−1

βy8 +1

[
βy9 +PrEc

(
y2

3 +
1

Re y2
5
)
+

PrEcM
α2

e +β 2
e

(
y2

2 +
1

Re y2
4
)
+Pry1y9

]
y9 (0) = s

+
PrNb

1+β2y8

(
y8y11 +

Nt
Nb

y2
9

)
,
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw

y′2 = y3, y2 (0) = 1
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2 − y1y3 −N1y7 +

1
kp

y2

+
M

α2
e +β 2

e

(
αey2 +

βe√
Re

y4

)
y3 (0) = p

y′4 = y5, y4 (0) = 0

y′5 = y1y5 −
M

α2
e +β 2

e

(
βe
√

Rey2 −αey4

)
+

1
kp

y4, y5 (0) = q

y′6 = y7, y6 (0) = 0

y′7 =
1
G
(2y6 + y3) , y7 (0) = r

y′8 = y9, y8 (0) = 1

y′9 =
−1

βy8 +1

[
βy9 +PrEc

(
y2

3 +
1

Re y2
5
)
+

PrEcM
α2

e +β 2
e

(
y2

2 +
1

Re y2
4
)
+Pry1y9

]
y9 (0) = s

+
PrNb

1+β2y8

(
y8y11 +

Nt
Nb

y2
9

)
,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw
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,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw
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y′3 = y2
2 − y1y3 −N1y7 +

1
kp

y2

+
M

α2
e +β 2

e

(
αey2 +

βe√
Re

y4

)
y3 (0) = p

y′4 = y5, y4 (0) = 0

y′5 = y1y5 −
M

α2
e +β 2

e

(
βe
√

Rey2 −αey4

)
+

1
kp

y4, y5 (0) = q

y′6 = y7, y6 (0) = 0

y′7 =
1
G
(2y6 + y3) , y7 (0) = r

y′8 = y9, y8 (0) = 1

y′9 =
−1

βy8 +1

[
βy9 +PrEc

(
y2

3 +
1

Re y2
5
)
+

PrEcM
α2

e +β 2
e

(
y2

2 +
1

Re y2
4
)
+Pry1y9

]
y9 (0) = s

+
PrNb

1+β2y8

(
y8y11 +

Nt
Nb

y2
9

)
,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
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y′9. y11 (0) = t
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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y′11 =−LePry1y11 −
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw
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2 − y1y3 −N1y7 +

1
kp

y2

+
M

α2
e +β 2

e

(
αey2 +

βe√
Re

y4

)
y3 (0) = p

y′4 = y5, y4 (0) = 0

y′5 = y1y5 −
M

α2
e +β 2

e

(
βe
√

Rey2 −αey4

)
+

1
kp

y4, y5 (0) = q

y′6 = y7, y6 (0) = 0

y′7 =
1
G
(2y6 + y3) , y7 (0) = r

y′8 = y9, y8 (0) = 1

y′9 =
−1

βy8 +1

[
βy9 +PrEc

(
y2

3 +
1

Re y2
5
)
+

PrEcM
α2

e +β 2
e

(
y2

2 +
1

Re y2
4
)
+Pry1y9

]
y9 (0) = s

+
PrNb

1+β2y8

(
y8y11 +

Nt
Nb

y2
9

)
,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw

y′2 = y3, y2 (0) = 1
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,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw
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y′10 = y11, y10 (0) = 1
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:
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Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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35, 36, 37, 38] for various values of different parameters. To
apply the shooting method, the system of nonlinear ODEs
(11)-(15) is converted to the following system of first order
ODEs:

y′1 = y2, y1 (0) = fw

y′2 = y3, y2 (0) = 1

y′3 = y2
2 − y1y3 −N1y7 +

1
kp

y2

+
M

α2
e +β 2

e

(
αey2 +

βe√
Re

y4

)
y3 (0) = p

y′4 = y5, y4 (0) = 0

y′5 = y1y5 −
M

α2
e +β 2

e

(
βe
√

Rey2 −αey4

)
+

1
kp

y4, y5 (0) = q

y′6 = y7, y6 (0) = 0

y′7 =
1
G
(2y6 + y3) , y7 (0) = r

y′8 = y9, y8 (0) = 1

y′9 =
−1

βy8 +1

[
βy9 +PrEc

(
y2

3 +
1

Re y2
5
)
+

PrEcM
α2

e +β 2
e

(
y2

2 +
1

Re y2
4
)
+Pry1y9

]
y9 (0) = s

+
PrNb

1+β2y8

(
y8y11 +

Nt
Nb

y2
9

)
,

y′10 = y11, y10 (0) = 1

y′11 =−LePry1y11 −
Nt
Nb

y′9. y11 (0) = t
(21)

Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10.
After choosing the five missing conditions, the above system
of first order ODEs, is solved by using the Runge Kutta method
of order four. To refine the missing initial conditions p, q, r,
s and t, the Newton’s iterative scheme is used which requires
another system of 55 first order ODEs along with the initial
conditions. This new system is then solved by using the RK-
4 method. The solution of this IVP is then used to construct
the Jacobian matrix involved in the Newton’s iterative method.
On the basis of a number of computational experiments, we
are considering [0, 8] as the domain of the problem instead of
[0, ∞). The stopping criteria for the iterative process is set as

max{|y2 (8)−1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|}< ε.
(22)

All the computations are made with the tolerance of ε = 10−8,
using a verified Matlab code. To strengthen the results ob-
tained by shooting method, we have also solved this sys-
tem of ODEs with MATLAB built-in function bvp4c. It is
a finite difference code that implements the three-stage Lo-
batto IIIa formula. This is a collocation formula and the col-
location polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [a,b]. Mesh selection
and error control are based on the residual of the contin-
uous solution. It has the following Matlab syntax: sol =
bvp4c(@ode f un,@bc f un,solinit,options). Further details
can be found in the following Ref. [39]. Many researchers

used this package to solve their BVPs, see for example, the
following Ref. [40, 41, 42].

4. Results and Discussions
This section is devoted to the detailed discussions of the
numerical solutions of our problem. In Table 1, a comparison
between the present results obtained by shooting method and
bvp4c in the absence of nanofluid, with those given by Motsa
et al. in [23] has been presented. An excellent agreement
is observed between these results, which strengthens our
methodology. To see the effect of physical parameter on
skin-friction coefficient, local Nusselt and Sherwood number,
numerical results are obtained and are tabulated.

From Table 2, it is noticed that the skin friction coefficient C fx
in x- direction increases with the increasing value of magnetic
parameter M, coupling parameter N1 and mass transfer pa-
rameter fw, whereas it is a decreasing function for increasing
values of βe, βi and kp. Table 2 also shows the variation of
parameters for skin-friction coefficient in z-direction. It is
observed that C fz increases with the increment of magnetic
parameter M, material parameter N1, Hall current parameter
βe and permeability parameter kp. However by increasing fw
and βi, the skin friction decreases. In Table 3, the effect of
magnetic parameter M, mass transfer parameter fw, Eckert
number Ec, Lewis number Le, Brownian motion parameter
Nb, thermophoresis parameter Nt, Hall current parameter βe,
ion-slip parameter βi, variable thermal diffusivity parameter
β2 and Prandtl number Pr on local Nusselt number and
Sherwood number are shown. From the table it is analyzed
that M,Ec,Le,Nb,Nt and β2 have decreasing effect on Nusselt
number, whereas it increases for the increasing values of
fw,Pr,βe and βi. Furthermore, the magnitude local Sherwood
number −φ ′(0) increases when M, fw,Ec,Le,Pr,Nb and β2
are increased while it decreases by increasing βi,βe and Nt.

To visualize the effect of different physical parameters on
tangential velocity f ′(η), lateral velocity g(η), angular ve-
locity h(η), temperature θ(η) and nanoparticle concentration
profiles φ(η), Figs. 2-9 are plotted. Fig. 2 depict the effect
of Hall parameter βe on velocity components along x− and
z− directions respectively. The inclusion of Hall parameter
decreases the resistive force imposed by the magnetic field
due to its effect in reducing the effective conductivity. Hence
the velocity component increases as the Hall parameter
increases but this increase in velocity is very small. Similarly
the transverse velocity also increases with the increasing
value of βe. The temperature distribution θ(η) increases by
increasing the variable thermal diffusivity parameter β2 and
this fact is shown in Fig. 3. In the second figure, the effect of
permeability parameter kp on velocity f ′(η) profile is shown.
From the figure it is clear that stream velocity f ′(η) is an
increasing function of permeability parameter. This is because
of the fact that permeability parameter increases the thickness
of boundary layer of temperature and concentration. It is also
expected that flow rate increases with increase in permeability
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4.	 Results and discussion

This section is devoted to the detailed discussion of the nu-
merical solutions of our problem. In Table 1, a comparison be-
tween the present results, obtained using the shooting method 
and bvp4c in the absence of a nanofluid, and those given by 
Motsa et al. [23], has been presented. An excellent agreement 
is observed between these results, which strengthens our meth-
odology. To see the effect of physical parameter on skin-friction 
coefficient, local Nusselt and Sherwood number, numerical re-
sults are obtained and tabulated.

From Table 2, it is noticed that the skin friction coefficient 
Cfx in the x direction increases with the increasing value of mag-
netic parameter M, coupling parameter N1, and mass transfer 
parameter fw, whereas it is a decreasing function for increasing 
values of βe, βi, and kp. Table 2 also shows the variation of 
parameters for skin friction coefficient in the z direction. It 
is observed that Cfz increases with the increase of magnetic 
parameter M, material parameter N1, Hall current parameter βe, 
and permeability parameter kp. However, by increasing fw and 
βi, the skin friction decreases. In Table 3, the effect of magnetic 
parameter M, mass transfer parameter fw, Eckert number Ec, 
Lewis number Le, Brownian motion parameter Nb, thermopho-
resis parameter Nt, Hall current parameter βe, ion-slip param-
eter βi, variable thermal diffusivity parameter β2, and Prandtl 
number Pr on local Nusselt number and Sherwood number are 
shown. From the table, it is deducted that M, Ec, Le, Nb, Nt, 
and β2 have a reductive effect on the Nusselt number, which 
in turn increases for the increasing values of fw, Pr, βe, and βi. 
Furthermore, the magnitude of local Sherwood number ¡ϕꞋ(0) 
increases when M, fw, Ec, Le, Pr, Nb, and β2 are increased, while 
it decreases with an increase of βi, βe, and Nt.

To visualize the effect of different physical parameters on 
tangential velocity f Ꞌ(η), lateral velocity g(η), angular velocity 
h(η), temperature θ(η), and nanoparticle concentration profiles 

Table 1 
Comparison of the present results with those of Motsa for Re = 1.0, 
G = 2.0, kp = 2.0, fw = 0.1, Pr = 0.72, Ec = 0.02, Le = 0.014 and 

β2 = 0.5Magneto-micropolar nanofluids flow with Hall and ion-slip effects

parameter, since the holes of the porous medium becomes
large and the resistance in fluid flow may be reduced.

Fig. 4 shows the effect of ion-slip parameter βi on horizontal
and lateral velocity respectively. In the presence of Hall and
ion-slip parameters, the velocity of the flow increases and
consequently the boundary layer thickness increases. Hence
the horizontal velocity f ′(η) increases with the increment in
βi. An opposite behavior is observed for the velocity across the
plate as it decreases by the enhancement of ion-slip parameter.
Fig. 5 shows the variation of mass transfer parameter fw on
velocity with suction if fw > 0 and injection if fw < 0. It
is noticed that the boundary layer thickness decreases with
increase in fw. The second figure shows the reverse relation
between the nanoparticle concentration profile φ(η) and
Lewis number Le, as concentration decreases with the increase
in Lewis number.

Fig. 6 depicts the typical profiles of tangential and lateral ve-
locities for magnetic parameter M. By increasing the mag-
netic parameter M, a drag force known as Lorentz force
also increases which resultantly reduces the velocity of fluid.
As we are considering an electrically conducting micropolar
nanofluid with the strong magnetic field in the direction nor-
mal to the flow, so an increase in magnetic field is increasing
a force in the z−direction, which resultantly increases the lat-
eral velocity g(η). To see the variation in temperature against
increasing value of Prandtl number Pr, Fig. 7 is plotted. It is
observed that for increasing value of Prandtl number, there is
a thinner temperature boundary layer thickness. Fluids having
larger Prandtl number have lower thermal diffusivity and hence
temperature decreases. The coupling parameter or material pa-
rameter N1 has decreasing effects on velocity component as the
induced velocity g(η) decreases with the increasing value of
N1 as shown in Fig. 7. Influence of Brownian motion param-
eter Nb on the temperature and concentration profile is stud-
ied in Fig. 8. From these figures, we notice that an enhance-
ment in the values of Nb gives rise to the temperature, while
it decreases the nanoparticle concentration profile. Brownian
motion is the random motion of nanoparticles suspended in a
fluid, caused by the collision of particles with the fluid parti-
cles. Due to the increment in Brownian motion effect the ki-
netic energy of the molecules increases and hence the temper-
ature increases. Fig. 9 illustrate the effect of thermophoresis
parameter Nt on temperature and nanoparticles concentration
profiles. One can observe that temperature and concentration
fields increase with the enhancement of Nt. Thermophoresis
parameter plays an important role in temperature flow. Ther-
mophoresis force enhances when Nt is increased which tends
to move the nanoparticles from hot region to cold region and
as a result the temperature and boundary layer thickness in-
creases.

−(1+N1) f ′′(0) (1+N1)g′(0)

Motsa Present Motsa Present

M βe βi N1 shooting bvp4c shooting bvp4c
1 5 0.4 0.2 1.563229 1.563229 1.563228 0.085991 0.085989 0.085991
2 1.610774 1.610774 1.610774 0.164225 0.164221 0.164226
3 1.659723 1.659724 1.659723 0.235543 0.235536 0.235543
4 1.709225 1.709227 1.709225 0.300892 0.300882 0.300892
5 1.758728 1.758731 1.758728 0.361156 0.361142 0.361156
0.3 0 1.658124 1.658124 1.658124 0 0 0

2 1.555081 1.555081 1.555080 0.048859 0.048859 0.048860
4 1.535302 1.535302 1.535301 0.031718 0.031718 0.031719
6 1.528942 1.528941 1.528941 0.022919 0.022919 0.022920
5 0 1.524377 1.524377 1.524376 0.035104 0.035104 0.035105

0.5 1.532225 1.532225 1.532224 0.024303 0.024302 0.024303
1 1.532737 1.532737 1.532736 0.014833 0.014832 0.014833
1.5 1.531103 1.531103 1.531102 0.009319 0.009319 0.009319
0.4 0 1.287381 1.286722 1.286722 0.020385 0.022352 0.022352

0.2 1.532225 1.531435 1.531435 0.024303 0.026647 0.026648
0.5 1.891325 1.890341 1.890339 0.030062 0.032963 0.032963
1.0 2.467535 2.466230 2.466226 0.039313 0.043105 0.043106

Table 1. Comparison of the present results with those of Motsa for
Re=1.0, G=2.0, kp = 2.0, fw = 0.1, Pr = 0.72, Ec = 0.02, Le = 0.014
and β2 = 0.5.

Shooting bvp4c
M fw N1 βe βi kp (1+N1) f ′′(0) (1+N1)g′(0) (1+N1) f ′′(0) (1+N1)g′(0)
0.3 0.1 1.0 0.1 0.1 0.2 4.914013 0.008673 4.914014 0.008675
0.5 4.980245 0.014255 4.980249 0.014256
0.7 5.045650 0.019686 5.045653 0.019687
1.0 5.142261 0.027565 5.142264 0.027570

0.2 5.017363 0.008657 5.017367 0.008660
0.3 5.122830 0.008638 5.122833 0.008640
0.4 5.230402 0.008613 5.230405 0.008617

0.5 3.756071 0.006500 3.756072 0.006504
0.8 4.456686 0.007801 4.456690 0.007806
1.0 4.914012 0.008672 4.914014 0.008675

0.2 4.912004 0.017002 4.912008 0.017006
0.3 4.908831 0.024690 4.908836 0.024692
0.4 4.904715 0.031510 4.904722 0.031511

3 4.906403 0.007410 4.906409 0.007412
4 4.899860 0.006403 4.899865 0.006405
5 4.894167 0.005586 4.894174 0.005590

0.1 6.636182 0.006348 6.636183 0.006349
0.2 4.914012 0.008673 4.914014 0.008675
0.3 4.191970 0.010273 4.191973 0.010276

Table 2. Numerical values of C f x, C f z, when Re = 1.0,G = 0.8,Le =
2.0,Ec = 0.02,Pr = 0.72,Nb = 0.3,Nt = 0.7,β2 = 0.8.
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Fig. 2. Influence of βe on f ′ and g
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Table 2 
Numerical values of Cfx, Cfz, when Re = 1.0, G = 0.8, Le = 2.0, 

Ec = 0.02, Pr = 0.72, Nb = 0.3, Nt = 0.7, β2 = 0.8
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parameter, since the holes of the porous medium becomes
large and the resistance in fluid flow may be reduced.

Fig. 4 shows the effect of ion-slip parameter βi on horizontal
and lateral velocity respectively. In the presence of Hall and
ion-slip parameters, the velocity of the flow increases and
consequently the boundary layer thickness increases. Hence
the horizontal velocity f ′(η) increases with the increment in
βi. An opposite behavior is observed for the velocity across the
plate as it decreases by the enhancement of ion-slip parameter.
Fig. 5 shows the variation of mass transfer parameter fw on
velocity with suction if fw > 0 and injection if fw < 0. It
is noticed that the boundary layer thickness decreases with
increase in fw. The second figure shows the reverse relation
between the nanoparticle concentration profile φ(η) and
Lewis number Le, as concentration decreases with the increase
in Lewis number.

Fig. 6 depicts the typical profiles of tangential and lateral ve-
locities for magnetic parameter M. By increasing the mag-
netic parameter M, a drag force known as Lorentz force
also increases which resultantly reduces the velocity of fluid.
As we are considering an electrically conducting micropolar
nanofluid with the strong magnetic field in the direction nor-
mal to the flow, so an increase in magnetic field is increasing
a force in the z−direction, which resultantly increases the lat-
eral velocity g(η). To see the variation in temperature against
increasing value of Prandtl number Pr, Fig. 7 is plotted. It is
observed that for increasing value of Prandtl number, there is
a thinner temperature boundary layer thickness. Fluids having
larger Prandtl number have lower thermal diffusivity and hence
temperature decreases. The coupling parameter or material pa-
rameter N1 has decreasing effects on velocity component as the
induced velocity g(η) decreases with the increasing value of
N1 as shown in Fig. 7. Influence of Brownian motion param-
eter Nb on the temperature and concentration profile is stud-
ied in Fig. 8. From these figures, we notice that an enhance-
ment in the values of Nb gives rise to the temperature, while
it decreases the nanoparticle concentration profile. Brownian
motion is the random motion of nanoparticles suspended in a
fluid, caused by the collision of particles with the fluid parti-
cles. Due to the increment in Brownian motion effect the ki-
netic energy of the molecules increases and hence the temper-
ature increases. Fig. 9 illustrate the effect of thermophoresis
parameter Nt on temperature and nanoparticles concentration
profiles. One can observe that temperature and concentration
fields increase with the enhancement of Nt. Thermophoresis
parameter plays an important role in temperature flow. Ther-
mophoresis force enhances when Nt is increased which tends
to move the nanoparticles from hot region to cold region and
as a result the temperature and boundary layer thickness in-
creases.

−(1+N1) f ′′(0) (1+N1)g′(0)

Motsa Present Motsa Present

M βe βi N1 shooting bvp4c shooting bvp4c
1 5 0.4 0.2 1.563229 1.563229 1.563228 0.085991 0.085989 0.085991
2 1.610774 1.610774 1.610774 0.164225 0.164221 0.164226
3 1.659723 1.659724 1.659723 0.235543 0.235536 0.235543
4 1.709225 1.709227 1.709225 0.300892 0.300882 0.300892
5 1.758728 1.758731 1.758728 0.361156 0.361142 0.361156
0.3 0 1.658124 1.658124 1.658124 0 0 0

2 1.555081 1.555081 1.555080 0.048859 0.048859 0.048860
4 1.535302 1.535302 1.535301 0.031718 0.031718 0.031719
6 1.528942 1.528941 1.528941 0.022919 0.022919 0.022920
5 0 1.524377 1.524377 1.524376 0.035104 0.035104 0.035105

0.5 1.532225 1.532225 1.532224 0.024303 0.024302 0.024303
1 1.532737 1.532737 1.532736 0.014833 0.014832 0.014833
1.5 1.531103 1.531103 1.531102 0.009319 0.009319 0.009319
0.4 0 1.287381 1.286722 1.286722 0.020385 0.022352 0.022352

0.2 1.532225 1.531435 1.531435 0.024303 0.026647 0.026648
0.5 1.891325 1.890341 1.890339 0.030062 0.032963 0.032963
1.0 2.467535 2.466230 2.466226 0.039313 0.043105 0.043106

Table 1. Comparison of the present results with those of Motsa for
Re=1.0, G=2.0, kp = 2.0, fw = 0.1, Pr = 0.72, Ec = 0.02, Le = 0.014
and β2 = 0.5.

Shooting bvp4c
M fw N1 βe βi kp (1+N1) f ′′(0) (1+N1)g′(0) (1+N1) f ′′(0) (1+N1)g′(0)
0.3 0.1 1.0 0.1 0.1 0.2 4.914013 0.008673 4.914014 0.008675
0.5 4.980245 0.014255 4.980249 0.014256
0.7 5.045650 0.019686 5.045653 0.019687
1.0 5.142261 0.027565 5.142264 0.027570

0.2 5.017363 0.008657 5.017367 0.008660
0.3 5.122830 0.008638 5.122833 0.008640
0.4 5.230402 0.008613 5.230405 0.008617

0.5 3.756071 0.006500 3.756072 0.006504
0.8 4.456686 0.007801 4.456690 0.007806
1.0 4.914012 0.008672 4.914014 0.008675

0.2 4.912004 0.017002 4.912008 0.017006
0.3 4.908831 0.024690 4.908836 0.024692
0.4 4.904715 0.031510 4.904722 0.031511

3 4.906403 0.007410 4.906409 0.007412
4 4.899860 0.006403 4.899865 0.006405
5 4.894167 0.005586 4.894174 0.005590

0.1 6.636182 0.006348 6.636183 0.006349
0.2 4.914012 0.008673 4.914014 0.008675
0.3 4.191970 0.010273 4.191973 0.010276

Table 2. Numerical values of C f x, C f z, when Re = 1.0,G = 0.8,Le =
2.0,Ec = 0.02,Pr = 0.72,Nb = 0.3,Nt = 0.7,β2 = 0.8.
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Fig. 2. Influence of βe on f ′ and g
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Table 3 
Numerical values of Nux and Shx for various values of Pr, fw, kp, Re, 

G, Ec, M, βe, βi, N1 M. Bilal, S. Hussain, and M. Sagheer

Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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Fig. 4. Influence of βi on f ′ and g

5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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Fig. 5. Influence of fw on f ′ and Le on φ
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Fig. 8. Influence of Nb on θ and φ

graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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ϕ(η), Figs. 2‒9 are plotted. Fig. 2 depicts the effect of Hall 
parameter βe on velocity components along x and z directions 
respectively. The inclusion of Hall parameter decreases the re-
sistive force imposed by the magnetic field due to its effect of 
reducing the effective conductivity. Hence, the velocity compo-
nent increases as the Hall parameter increases, but this increase 
in velocity is very small. Similarly, the transverse velocity also 
increases with the increasing value of βe. The temperature dis-
tribution θ(η) increases by increasing the variable thermal dif-
fusivity parameter β2, and this fact is shown in Fig. 3. In Fig. 3, 
the effect of permeability parameter kp on velocity f Ꞌ(η) profile 
is shown. From the figure, it is clear that stream velocity f Ꞌ(η) 

of Hall and ion-slip parameters, the velocity of the flow in-
creases, and consequently, the boundary layer thickness in-
creases. Hence, the horizontal velocity f Ꞌ(η) increases with 
the increment of βi. An opposite behavior is observed for the 
velocity across the plate, as it decreases with the enhance-
ment of the ion-slip parameter. Fig. 5 shows the variation of 
mass transfer parameter fw on velocity with suction (if fw > 0) 
and injection (if fw < 0). It is noticed that the boundary layer 
thickness decreases with the increase in fw. The second figure 
shows the reverse relation between the nanoparticle concen-
tration profile ϕ(η) and Lewis number Le, as the concentration 
decreases with an increase in Lewis number.

Fig. 6 depicts the typical profiles of tangential and lateral 
velocities for magnetic parameter M. By increasing the mag-
netic parameter M, a drag force, known as Lorentz force, also 
increases, which consequently reduces the velocity of the fluid. 
Since we are considering an electrically conducting micropolar 
nanofluid with the strong magnetic field in the direction normal 
to the flow, an increase in magnetic field is increasing the force 
in the z direction, which resultantly increases the lateral velocity 
g(η). To see the variation in temperature against  an increasing 
value of Prandtl number Pr, Fig. 7 is plotted. It is observed that 

Fig. 2. Influence of βe on f Ꞌ and g

Magneto-micropolar nanofluids flow with Hall and ion-slip effects

parameter, since the holes of the porous medium becomes
large and the resistance in fluid flow may be reduced.

Fig. 4 shows the effect of ion-slip parameter βi on horizontal
and lateral velocity respectively. In the presence of Hall and
ion-slip parameters, the velocity of the flow increases and
consequently the boundary layer thickness increases. Hence
the horizontal velocity f ′(η) increases with the increment in
βi. An opposite behavior is observed for the velocity across the
plate as it decreases by the enhancement of ion-slip parameter.
Fig. 5 shows the variation of mass transfer parameter fw on
velocity with suction if fw > 0 and injection if fw < 0. It
is noticed that the boundary layer thickness decreases with
increase in fw. The second figure shows the reverse relation
between the nanoparticle concentration profile φ(η) and
Lewis number Le, as concentration decreases with the increase
in Lewis number.

Fig. 6 depicts the typical profiles of tangential and lateral ve-
locities for magnetic parameter M. By increasing the mag-
netic parameter M, a drag force known as Lorentz force
also increases which resultantly reduces the velocity of fluid.
As we are considering an electrically conducting micropolar
nanofluid with the strong magnetic field in the direction nor-
mal to the flow, so an increase in magnetic field is increasing
a force in the z−direction, which resultantly increases the lat-
eral velocity g(η). To see the variation in temperature against
increasing value of Prandtl number Pr, Fig. 7 is plotted. It is
observed that for increasing value of Prandtl number, there is
a thinner temperature boundary layer thickness. Fluids having
larger Prandtl number have lower thermal diffusivity and hence
temperature decreases. The coupling parameter or material pa-
rameter N1 has decreasing effects on velocity component as the
induced velocity g(η) decreases with the increasing value of
N1 as shown in Fig. 7. Influence of Brownian motion param-
eter Nb on the temperature and concentration profile is stud-
ied in Fig. 8. From these figures, we notice that an enhance-
ment in the values of Nb gives rise to the temperature, while
it decreases the nanoparticle concentration profile. Brownian
motion is the random motion of nanoparticles suspended in a
fluid, caused by the collision of particles with the fluid parti-
cles. Due to the increment in Brownian motion effect the ki-
netic energy of the molecules increases and hence the temper-
ature increases. Fig. 9 illustrate the effect of thermophoresis
parameter Nt on temperature and nanoparticles concentration
profiles. One can observe that temperature and concentration
fields increase with the enhancement of Nt. Thermophoresis
parameter plays an important role in temperature flow. Ther-
mophoresis force enhances when Nt is increased which tends
to move the nanoparticles from hot region to cold region and
as a result the temperature and boundary layer thickness in-
creases.

−(1+N1) f ′′(0) (1+N1)g′(0)

Motsa Present Motsa Present

M βe βi N1 shooting bvp4c shooting bvp4c
1 5 0.4 0.2 1.563229 1.563229 1.563228 0.085991 0.085989 0.085991
2 1.610774 1.610774 1.610774 0.164225 0.164221 0.164226
3 1.659723 1.659724 1.659723 0.235543 0.235536 0.235543
4 1.709225 1.709227 1.709225 0.300892 0.300882 0.300892
5 1.758728 1.758731 1.758728 0.361156 0.361142 0.361156
0.3 0 1.658124 1.658124 1.658124 0 0 0

2 1.555081 1.555081 1.555080 0.048859 0.048859 0.048860
4 1.535302 1.535302 1.535301 0.031718 0.031718 0.031719
6 1.528942 1.528941 1.528941 0.022919 0.022919 0.022920
5 0 1.524377 1.524377 1.524376 0.035104 0.035104 0.035105

0.5 1.532225 1.532225 1.532224 0.024303 0.024302 0.024303
1 1.532737 1.532737 1.532736 0.014833 0.014832 0.014833
1.5 1.531103 1.531103 1.531102 0.009319 0.009319 0.009319
0.4 0 1.287381 1.286722 1.286722 0.020385 0.022352 0.022352

0.2 1.532225 1.531435 1.531435 0.024303 0.026647 0.026648
0.5 1.891325 1.890341 1.890339 0.030062 0.032963 0.032963
1.0 2.467535 2.466230 2.466226 0.039313 0.043105 0.043106

Table 1. Comparison of the present results with those of Motsa for
Re=1.0, G=2.0, kp = 2.0, fw = 0.1, Pr = 0.72, Ec = 0.02, Le = 0.014
and β2 = 0.5.

Shooting bvp4c
M fw N1 βe βi kp (1+N1) f ′′(0) (1+N1)g′(0) (1+N1) f ′′(0) (1+N1)g′(0)
0.3 0.1 1.0 0.1 0.1 0.2 4.914013 0.008673 4.914014 0.008675
0.5 4.980245 0.014255 4.980249 0.014256
0.7 5.045650 0.019686 5.045653 0.019687
1.0 5.142261 0.027565 5.142264 0.027570

0.2 5.017363 0.008657 5.017367 0.008660
0.3 5.122830 0.008638 5.122833 0.008640
0.4 5.230402 0.008613 5.230405 0.008617

0.5 3.756071 0.006500 3.756072 0.006504
0.8 4.456686 0.007801 4.456690 0.007806
1.0 4.914012 0.008672 4.914014 0.008675

0.2 4.912004 0.017002 4.912008 0.017006
0.3 4.908831 0.024690 4.908836 0.024692
0.4 4.904715 0.031510 4.904722 0.031511

3 4.906403 0.007410 4.906409 0.007412
4 4.899860 0.006403 4.899865 0.006405
5 4.894167 0.005586 4.894174 0.005590

0.1 6.636182 0.006348 6.636183 0.006349
0.2 4.914012 0.008673 4.914014 0.008675
0.3 4.191970 0.010273 4.191973 0.010276

Table 2. Numerical values of C f x, C f z, when Re = 1.0,G = 0.8,Le =
2.0,Ec = 0.02,Pr = 0.72,Nb = 0.3,Nt = 0.7,β2 = 0.8.
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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parameter, since the holes of the porous medium becomes
large and the resistance in fluid flow may be reduced.

Fig. 4 shows the effect of ion-slip parameter βi on horizontal
and lateral velocity respectively. In the presence of Hall and
ion-slip parameters, the velocity of the flow increases and
consequently the boundary layer thickness increases. Hence
the horizontal velocity f ′(η) increases with the increment in
βi. An opposite behavior is observed for the velocity across the
plate as it decreases by the enhancement of ion-slip parameter.
Fig. 5 shows the variation of mass transfer parameter fw on
velocity with suction if fw > 0 and injection if fw < 0. It
is noticed that the boundary layer thickness decreases with
increase in fw. The second figure shows the reverse relation
between the nanoparticle concentration profile φ(η) and
Lewis number Le, as concentration decreases with the increase
in Lewis number.

Fig. 6 depicts the typical profiles of tangential and lateral ve-
locities for magnetic parameter M. By increasing the mag-
netic parameter M, a drag force known as Lorentz force
also increases which resultantly reduces the velocity of fluid.
As we are considering an electrically conducting micropolar
nanofluid with the strong magnetic field in the direction nor-
mal to the flow, so an increase in magnetic field is increasing
a force in the z−direction, which resultantly increases the lat-
eral velocity g(η). To see the variation in temperature against
increasing value of Prandtl number Pr, Fig. 7 is plotted. It is
observed that for increasing value of Prandtl number, there is
a thinner temperature boundary layer thickness. Fluids having
larger Prandtl number have lower thermal diffusivity and hence
temperature decreases. The coupling parameter or material pa-
rameter N1 has decreasing effects on velocity component as the
induced velocity g(η) decreases with the increasing value of
N1 as shown in Fig. 7. Influence of Brownian motion param-
eter Nb on the temperature and concentration profile is stud-
ied in Fig. 8. From these figures, we notice that an enhance-
ment in the values of Nb gives rise to the temperature, while
it decreases the nanoparticle concentration profile. Brownian
motion is the random motion of nanoparticles suspended in a
fluid, caused by the collision of particles with the fluid parti-
cles. Due to the increment in Brownian motion effect the ki-
netic energy of the molecules increases and hence the temper-
ature increases. Fig. 9 illustrate the effect of thermophoresis
parameter Nt on temperature and nanoparticles concentration
profiles. One can observe that temperature and concentration
fields increase with the enhancement of Nt. Thermophoresis
parameter plays an important role in temperature flow. Ther-
mophoresis force enhances when Nt is increased which tends
to move the nanoparticles from hot region to cold region and
as a result the temperature and boundary layer thickness in-
creases.

−(1+N1) f ′′(0) (1+N1)g′(0)

Motsa Present Motsa Present

M βe βi N1 shooting bvp4c shooting bvp4c
1 5 0.4 0.2 1.563229 1.563229 1.563228 0.085991 0.085989 0.085991
2 1.610774 1.610774 1.610774 0.164225 0.164221 0.164226
3 1.659723 1.659724 1.659723 0.235543 0.235536 0.235543
4 1.709225 1.709227 1.709225 0.300892 0.300882 0.300892
5 1.758728 1.758731 1.758728 0.361156 0.361142 0.361156
0.3 0 1.658124 1.658124 1.658124 0 0 0

2 1.555081 1.555081 1.555080 0.048859 0.048859 0.048860
4 1.535302 1.535302 1.535301 0.031718 0.031718 0.031719
6 1.528942 1.528941 1.528941 0.022919 0.022919 0.022920
5 0 1.524377 1.524377 1.524376 0.035104 0.035104 0.035105

0.5 1.532225 1.532225 1.532224 0.024303 0.024302 0.024303
1 1.532737 1.532737 1.532736 0.014833 0.014832 0.014833
1.5 1.531103 1.531103 1.531102 0.009319 0.009319 0.009319
0.4 0 1.287381 1.286722 1.286722 0.020385 0.022352 0.022352

0.2 1.532225 1.531435 1.531435 0.024303 0.026647 0.026648
0.5 1.891325 1.890341 1.890339 0.030062 0.032963 0.032963
1.0 2.467535 2.466230 2.466226 0.039313 0.043105 0.043106

Table 1. Comparison of the present results with those of Motsa for
Re=1.0, G=2.0, kp = 2.0, fw = 0.1, Pr = 0.72, Ec = 0.02, Le = 0.014
and β2 = 0.5.

Shooting bvp4c
M fw N1 βe βi kp (1+N1) f ′′(0) (1+N1)g′(0) (1+N1) f ′′(0) (1+N1)g′(0)
0.3 0.1 1.0 0.1 0.1 0.2 4.914013 0.008673 4.914014 0.008675
0.5 4.980245 0.014255 4.980249 0.014256
0.7 5.045650 0.019686 5.045653 0.019687
1.0 5.142261 0.027565 5.142264 0.027570

0.2 5.017363 0.008657 5.017367 0.008660
0.3 5.122830 0.008638 5.122833 0.008640
0.4 5.230402 0.008613 5.230405 0.008617

0.5 3.756071 0.006500 3.756072 0.006504
0.8 4.456686 0.007801 4.456690 0.007806
1.0 4.914012 0.008672 4.914014 0.008675

0.2 4.912004 0.017002 4.912008 0.017006
0.3 4.908831 0.024690 4.908836 0.024692
0.4 4.904715 0.031510 4.904722 0.031511

3 4.906403 0.007410 4.906409 0.007412
4 4.899860 0.006403 4.899865 0.006405
5 4.894167 0.005586 4.894174 0.005590

0.1 6.636182 0.006348 6.636183 0.006349
0.2 4.914012 0.008673 4.914014 0.008675
0.3 4.191970 0.010273 4.191973 0.010276

Table 2. Numerical values of C f x, C f z, when Re = 1.0,G = 0.8,Le =
2.0,Ec = 0.02,Pr = 0.72,Nb = 0.3,Nt = 0.7,β2 = 0.8.
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Fig. 2. Influence of βe on f ′ and g
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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Fig. 3. Influence of β2 on θ and kp on f ′
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Fig. 4. Influence of βi on f ′ and g

5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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Fig. 5. Influence of fw on f ′ and Le on φ
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Fig. 8. Influence of Nb on θ and φ

graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f′
(η

)

η

fw = 0.1
fw = 0.5
fw = 0.9
fw = 1.3

M = 0.3, G = 0.8, Re = 1.0, Le = 2.0, 
Ec = 0.02, N1 = 1.0, Pr = 0.72, Nb = 0.3,
Nt = 0.7, βe = 0.1, kp = 0.2, βi = 1.0, β2 = 1.0.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ(
η)

η

Le = 3.0
Le = 3.5
Le = 4.0
Le = 4.5

M = 0.3, fw = 0.1, Re = 1.0, G = 0.8, 
Ec = 0.02, N1 = 1.0, Pr = 0.72, Nb = 0.4,
Nt = 0.6, βe = 0.1, kp = 0.2, βi = 1.0, β2 = 1.0.

Fig. 5. Influence of fw on f ′ and Le on φ

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f′
(η

)

η

M = 0.1
M = 0.8
M = 1.5
M = 2.0

G = 0.8, fw = 0.1, Re = 1.0, Le = 2.0, 
Ec = 0.02, N1 = 1.0, Pr = 0.72, Nb = 0.3,
Nt = 0.7, βe = 0.1, kp = 0.2, βi = 1.0, β2 = 1.0.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−3

g(
η)

η

M = 0.1
M = 0.3
M = 0.5
M = 0.7

G = 0.8, fw = 0.1, Re = 1.0, Le = 2.0, 
Ec = 0.02, N1 = 1.0, Pr = 0.72, Nb = 0.3,
Nt = 0.7, βe = 0.1, kp = 0.2, βi = 1.0, β2 = 1.0.

Fig. 6. Influence of M on f ′ and g

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

θ(
η)

η

Pr = 2.0
Pr = 2.5
Pr = 3.0
Pr = 3.5

M = 0.3, fw = 0.1, Re = 1.0, Le = 2.0, 
Ec = 0.02, N1 = 1.0, G = 0.8, Nb = 0.3,
Nt = 0.7, βe = 0.1, kp = 0.2, βi = 1.0, β2 = 1.0.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10−3

g(
η)

η

N1 = 0.1
N1 = 0.5
N1 = 1.0
N1 = 1.5

M = 0.3, fw = 0.1, Re = 1.0, Le = 2.0, 
Ec = 0.02,G = 0.8, Pr = 1.5, Nb = 0.3,
Nt = 0.7, βe = 0.1, kp = 0.2, βi = 1.0, β2 = 1.0.

Fig. 7. Influence of Pr on θ and N1 on g

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

θ(
η)

η

Nb = 0.2
Nb = 0.5
Nb = 0.8
Nb = 1.0

M = 0.3, fw = 0.1, Re = 1.0, Le = 2.0, 
Ec = 0.02, N1 = 1.0, Pr = 1.5, G = 0.8,
Nt = 0.7, βe = 0.1, kp = 0.2, βi = 1.0, β2 = 1.0.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ(
η)

η

Nb = 0.8
Nb = 1.0
Nb = 1.3
Nb = 1.5

M = 0.3, fw = 0.1, Re = 1.0, Le = 2.0, 
Ec = 0.02, N1 = 1.0, Pr = 1.5, G = 0.8,
Nt = 0.7, βe = 0.1, kp = 0.2, βi = 1.0, β2 = 1.0.
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graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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Fig. 8. Influence of Nb on θ and φ

graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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Fig. 8. Influence of Nb on θ and φ

graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
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2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Shooting bvp4c
M fw Ec Le Pr Nb Nt βe βi β2 −θ ′ (0) −φ ′ (0) −θ ′ (0) −φ ′ (0)
0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620
0.5 0.150651 0.462813 0.150653 0.462815
0.7 0.149471 0.463007 0.149472 0.463009
1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351
0.3 0.199190 0.533777 0.199192 0.533779
0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611
0.1 0.111673 0.553274 0.111676 0.553276
0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938
1.5 0.153114 0.341616 0.153121 0.341618
2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017
1.5 0.205772 0.773660 0.205775 0.773662
2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841
0.7 0.132350 0.556662 0.132353 0.556664
0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949
0.8 0.148688 0.456202 0.148692 0.456204
1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489
0.3 0.152432 0.462407 0.152434 0.462411
0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547
4.0 0.152177 0.462490 0.152179 0.462491
5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332
0.8 0.151869 0.462619 0.151872 0.462620
1.0 0.142231 0.494938 0.142235 0.494941

Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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is an increasing function of the permeability parameter. This is 
because of the fact that the permeability parameter increases 
the thickness of the boundary layer of temperature and con-
centration. It is also expected that flow rate increases with  an 
increase of the permeability parameter, since the holes of the 
porous medium become large and the resistance in fluid flow 
may be reduced.

Fig. 4 shows the effect of ion-slip parameter βi on hor-
izontal and lateral velocities, respectively. In the presence 
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for an increasing value of Prandtl number, there is a smaller 
temperature boundary layer thickness. Fluids having  a larger 
Prandtl number have lower thermal diffusivity, and hence, the 
temperature decreases. The coupling parameter or material pa-
rameter N1 has decreasing effects on velocity component, as the 
induced velocity g(η) decreases with the increasing value of N1, 
as shown in Fig. 7. The influence of Brownian motion param-
eter Nb on the temperature and concentration profile is studied 
in Fig. 8. From these figures, we notice that an enhancement in 
the values of Nb gives raises the temperature, while it decreases 
the nanoparticle concentration profile. Brownian motion is the 
random motion of nanoparticles suspended in a fluid, caused 
by the collision of particles with the fluid particles. Due to 
the increment in Brownian motion effect, the kinetic energy of 
the molecules increases and hence, the temperature increases. 

lems and related fields. The main points are summarized as 
follows:
●	 Thermal and concentration boundary layer thickness in-

creases with the increase in thermophoresis parameter.
●	 Brownian motion parameter has opposite effect on tempera-

ture and concentration fields.
●	 Stronger magnetic parameter M results in an increase in 

temperature and concentration, and a decrease in stream 
and lateral velocity.

●	 Velocity components such as stream velocity, velocity distri-
bution along the stretching sheet, and angular velocity are all 
increased by the enhancement of the permeability parameter.

●	 A minor increase of the velocity along the x direction is 
observed for the increasing values of ion-slip and Hall cur-
rent parameter.
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Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Table 3. Numerical values of Nux and Shx for various values of
Pr, fw,kp,Re,G,Ec,M,βe,βi,N1.
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Fig. 3. Influence of β2 on θ and kp on f ′
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5. Concluding remarks
In this article, the effect of Hall current and ion-slip ef-
fects with variable thermal diffusivity on magneto-micropolar
nanofluid on a stretching porous medium is numerically and
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Fig. 7. Influence of Pr on θ and N1 on g
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Fig. 8. Influence of Nb on θ and φ

graphically analyzed by using the shooting method which has
been frequently used to calculate the solutions in many fluid
mechanics problems and related fields. The main points are
summarized as follows.

• Thermal and concentration boundary layer thickness in-
creases with the increase in thermophoresis parameter.

• Brownian motion parameter has opposite effect on tempera-
ture and concentration fields.

• Stronger magnetic parameter M results an increase in tem-
perature, concentration and decrease in stream and lateral
velocity.

• Velocity components such as stream velocity, velocity distri-
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Fig. 9. Influence of Nt on θ and ϕ
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Fig. 9. Influence of Nt on θ and φ

bution along the stretching sheet and angular velocity all are
increased by the enhancement of permeability parameter.

• Minor increase of the velocity along x-direction is observed
for the increasing values ion-slip and Hall current parameter.
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Fig. 9 illustrates the effect of the thermophoresis parameter Nt 
on temperature and nanoparticle concentration profiles. One 
can observe that temperature and concentration fields increase 
with the enhancement of Nt. The thermophoresis parameter 
plays an important role in temperature flow. Thermophoresis 
force increases when Nt is increased, which tends to move the 
nanoparticles from hot region to cold region and as a result, the 
temperature and boundary layer thickness increases.

5.	 Concluding remarks

In this article, the effect of Hall current and ion-slip effects with 
variable thermal diffusivity on magneto-micropolar nanofluid 
on a stretching porous medium is numerically and graphically 
analyzed using the shooting method, which has been frequently 
used to calculate the solutions in many fluid mechanics prob-
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