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Abstract. A mathematical-physical model of the hypersonic anti-tank kinetic subcalibre projectile for 120 mm munition was built. Computer 
simulations of the projectile flight were performed for any angle of shooting, from 0° to 90°. Trajectories of projectile flights were determined 
considering all angles of shooting. Theoretical calculations were verified by experimental measurement of the projectile velocity in time while 
shooting on a test range. Some conclusions with regard to safety during hypersonic projectile shooting on the test range were formulated.
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to apply self-destruction of the projectile by the separation of 
stabilisers, or its division into several parts after a few seconds 
of projectile flight. For projectiles that do not undergo fragmen-
tation, it is necessary to know their maximum ranges, especially 
for the cases of unintentional firing at large angles.

Here, simulations of flight have been undertaken and tra-
jectories have been determined for the angles of firing from 0° 
(horizontal shot) to 90° (vertical shot) for the developed math-
ematical-physical model of the subcalibre projectile. The ini-
tial data used for simulations were obtained from experimental 
measurements of the projectile velocity in time. The main goal 
is to assess the safety zones when shooting hypersonic subcal-
ibre projectiles at military ranges.

2.	 Physical model of subcalibre projectile

To develop a physical model, the features of the object that 
have a significant influence on the analysed phenomena were 

1.	 Introduction

Subcalibre anti-tank projectiles are a modern kind of artillery 
ammunition used for the destruction of heavy armoured fighting 
vehicles (e.g. troop carriers). Kinetic energy in the order of 10 
MJ is delivered with an elongated metal rod, the so-called pen-
etrator, made of a sintered tungsten or sintered uranium pow-
ders, having the mass of a few kg and a velocity of over 1500 
m/s. The propulsion of the projectile to a hypersonic velocity is 
achieved in a gun barrel, due to the interaction of the combustion 
products of a propellant charge, i.e. due to powder gases under 
a maximum pressure of over 500 MPa. After hitting a target, the 
process of projectile penetration takes place (e.g. into a steel or 
composite tank armour). The penetrator’s diameter is several 
times lower than the calibre of the gun barrel from which the 
penetrator is fired, and hence the projectile’s name – subcalibre. 
A heavy penetrator moves in the barrel as a carrier integrated 
with so-called sabots, i.e. clamps made of lightweight metal (Al 
alloy) that drop off from the projectile when it leaves the barrel. 
Stable and straight-lined flight of the projectile is ensured by the 
fins fixed to the end of the penetrator [1–6]. A schematic of the 
subcalibre anti-tank projectile is shown in Fig. 1.

The development of subcalibre antitank projectiles was 
focused on increasing their velocity and slenderness, i.e. in-
creasing the ratio of projectile length to its diameter (l/d). At 
present, this parameter exceeds a value of 30. In the literature, 
models and simulations are described that are related to the 
internal ballistics of the penetrator driven in a barrel, and ex-
ternal ballistics of the penetrator related to the initial phase of 
projectile flight (up to several km) for an almost horizontal shot.

The hypersonic velocity of the projectile and its aerody-
namic shape allow a significantly greater maximum range to 
be achieved. Thus, ensuring safety has become very important 
when subcalibre projectiles are fired. One possible solution is 

Fig. 1. Construction of a subcalibre anti-tank projectile
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considered [7–12]. First of all, to develop a physical model of 
the projectile, it was necessary:
1.	To accept the coordinate systems that are necessary for the 

description of projectile movement and of the forces af-
fecting it.

2.	To determine the projectile structure, i.e.:
– geometrical characteristics;
– mass-inertia characteristics;
– tracer characteristic.

3.	To determine the component external forces and moments 
of the forces affecting the projectile and the functions de-
scribing them, i.e.:
– gravitational force and its moment;
– aerodynamic force and its moment;
– Coriolis force and its moment;
– Magnus force and its moment.

4.	The characteristics of the medium of the object’s motion, i.e. 
density, viscosity, temperature, and pressure of air depend-
ing on the flight altitude were taken into consideration. The 
atmospheric model implemented in the computer program 
was the Normal Atmosphere of Artillery (NAA) [7].
Movement of both spin- and fin-stabilised projectiles is most 

frequently described using one- or three-degrees-of-freedom 
mathematical models that differ in the number of dependent 
variables and simplifications taken into consideration for the 
forces and aerodynamic moments acting on the projectile during 
its flight. A point mass trajectory model was built according 
to NATO STANAG 4355. This model with three degrees of 
freedom assumes that the projectile is perfectly stabilised on its 
flight trajectory, i.e. the projectile’s axis follows the direction of 
its velocity vector. According to the principle of a momentum 
change, an equation of projectile movement in a system con-
nected with the Earth can be written as follows [13]:
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m ∙ u⃗̇  = DF⃗⃗⃗⃗  ⃗ + m ∙ g⃗ + m ∙ ⃗⃗ , (1) 

where: 
DF⃗⃗ ⃗⃗  ⃗ – negative acceleration caused by aerodynamic drag; 
m – projectile mass. 

DF⃗⃗ ⃗⃗  ⃗
m =  − (π∙ρ∙i∙d2

8∙m ) ∙ CD ∙ v ∙ v⃗ , (2) 
where: 
d – diameter of projectile; 
 – air density; 
CD – aerodynamic coefficiant; 
i – matching factor. 

g⃗ = −g0 ∙ (R2/r3)r = −g0 [
             X1/R
1 − 2 ∙ X2/R
              X3/R

], (3) 

where: 
g⃗  – Earth acceleration; 
R – Earth radius; 
lat – latitude; 
X1, X2, X3 – position of the projectile in space; 
g0 = 9.80665[1 − 0.0026 ∙ cos(2 ∙ lat)]; 
 – acceleration caused by Coriolis force; 

⃗⃗ = −2(ω⃗⃗ × u⃗ ) (4) 
 
v⃗  – relative velocity of projectile; 
u⃗  – velocity of projectile; 
w⃗⃗  – wind velocity; 

v⃗ = u⃗ − w⃗⃗⃗ ; (5) 
 
ω⃗⃗  – vector of Earth angular velocity: 

ω⃗⃗ = [
 ∙ cos(lat) ∙ cos(AZ)

 ∙ sin(lat)
− ∙ cos(lat) ∙ sin(AZ

]. (6) 
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A scalar form of equations of projectile movement is 

obtained by projection of the vector equation on the axes of 
the Earth coordinate system. Such designed mathematical 
model is a system of differential-algebraic equations, 
among which one can distinguish: 
- dynamic equations of motion of projectile mass center: 

du1
dt

= −(π ∙ ρ ∙ i ∙ d2

8 ∙ m ) ∙ CD0 ∙ v ∙ v1 − g0 ∙
X1
R

+ −2(sin(lat)∙u3+cos(lat)∙sin(AZ)∙u2) 

(7) 

du2
dt

= −(π ∙ ρ ∙ i ∙ d2

8 ∙ m ) ∙ CD0 ∙ v ∙ v2 − g0 (1 − 2X2
R )

+ 2(cos(lat)∙sin(AZ)∙u1+cos(lat)∙cos(AZ)∙u3) 

(8) 

du3
dt = −(π ∙ ρ ∙ i ∙ d2

8 ∙ m ) ∙ CD0 ∙ v ∙ v3 − g0 ∙
X3
R

+ −2(cos(lat) ∙ cos(AZ) ∙ u2
− sin(AZ) ∙ u1) 

(9) 

 
- kinematic equations of projectile mass center motion: 

dX1
dt = u1 (10) 

dX2
dt = u2 (11) 

dX3
dt = u3 (12) 

 
- algebraic additional equations: 

v1 = u1 − w1 (13) 

v2 = u2 − w2 (14) 

v3 = u3 − w3 (15) 

v = √v1
2 + v2

2 + v3
2 (16) 
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where:
d – diameter of projectile;
ρ – air density;

CD – aerodynamic coefficiant;
i – matching factor.
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4.	 Results of computer simulation of the 
projectile flight for small angles of shooting

Using the developed mathematical-physical model of a hyper-
sonic projectile, a computer simulation was performed, and the 
basic parameters of the projectile trajectory were determined. 
Firing with subcalibre projectiles is performed as “direct fire”, 
i.e. at very small angles of ±3°. Thus, in practice, it is the case of 
the so-called horizontal throw. The initial data of the designed 
simulation computer program for the examined hypersonic pro-
jectile are listed in Table 1.

For the simulation of the projectile flight, it is necessary to 
know how the aerodynamic coefficient depends on the velocity 
of the studied object. Such dependence for the projectile under 
study was determined using PRODAS [14], a commercial aero-
dynamics program.

Table 1 
Chosen parameters of a projectile under study

No. Parameter Value

1. Projectile mass 3.65 kg

2. Initial velocity 1670 m/s

3. Diameter 0.0244 m

4. Characteristic area of cross-section 4.676 ▪10–4 m2

5. Air density 1.225 kg/m3

6. Air temperature 15°C

7. Air pressure 1013.25 hPa

8. Wind 0 m/s

9. Gravity acceleration 9.80655 m/s2

10. Angle of the shooting 0 ÷ 90°

12. Coordinates of a cannon, X1, X2 0,0 m

Exemplary simulation results, generated with MATHCAD 
for the flight of the hypersonic projectile fired at small angles, 
are presented graphically in Figs. 2–4.

It can be seen from the diagrams in Fig. 3, that for firing 
angles larger than 1° the calculated projectile range is over 10 
km. Such range can pose a serious threat for the environment 
when subcalibre projectiles are fired on artillery ranges. From 

Fig. 4, for the examined hypersonic projectiles firing at small 
angles, this parameter does not influence the projectile velocity, 
because it shows a mono-tonic decrease with distance from the 
barrel outlet to the drop on the Earth’s surface.

To verify the developed theoretical model of the hypersonic 
projectile, continuous measurement of the projectile velocity 
was made on the initial segment of its flight, equal to 2550 m 
(i.e. the distance between the barrel’s outlet and the target).

Fig. 2. Height of the projectile flight vs. time for small angles of 
shooting
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Fig. 3. Flight trajectories of projectiles for small angles of shooting
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Fig. 4. Projectile velocity vs. time for small angles of shooting
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The shot angle was practically 0° (i.e. the so-called hori-
zontal shot), and the height of the cannon mouth was 2,5 m. 
For continuous measurement of the projectile velocity, a Wei-
bel-made Doppler radar with an SL 30031 antenna was used. 
The obtained experimental results are shown in Figs. 4 and 5, 
where they can be compared with the dependencies of projec-
tile velocity with time, which were determined theoretically. 
The dependence of the negative acceleration with time for the 
projectile is presented in Fig. 6. This figure was determined 
from the experimentally measured dependence u = f(t) shown 
in Fig. 5. The data consistency of the theoretical and exper-
imental relationships is acceptable, being in the order of 5% 
(Fig. 4), which verifies the correctness of the developed the-
oretical model of the hypersonic projectile during the initial 
phase of flight.

5.	 Results of computer simulation of projectile 
flight for large angles of shooting

Determination of the approximate range and ceiling for hyper-
sonic subcalibre projectiles is significant because of the safety 
assurance for people and objects in the area of exploited artil-
lery grounds. It is therefore necessary to predict rebounding 
shots (ricochets) or accidental projectile firing at large angles. 
Using the methodology applied in Sections 2–4, experimen-
tally verified for short shot ranges, we determined the approx-
imate flight trajectories of subcalibre projectiles for any angle 
of shot, including 90° (i.e. a vertical shot). Figs. 7–9 show the 
dependencies between the range parameters and the subcalibre 
projectile’s velocity versus flight time. In Fig. 7, the trajecto-
ries of hypersonic projectile flights for large angles of shooting 
(including vertical shots) are presented.

Fig. 5. Experimentally measured dependence of projectile velocity 
vs. time in the initial section of flight (0–2,5 km)
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Fig. 6. Negative acceleration of the projectile determined the from 
experimental dependence u = f(t) presented in Fig. 5
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Fig. 7. Height of the projectile flight vs. time for large angles of shooting
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6.	 Conclusions

We demonstrate the theoretical procedures for deter-mining 
the basic parameters of flight trajectory of hypersonic subcal-
ibre projectiles, in view of assuring the firing safety. For this 
purpose, a mathematical-physical projectile model for 120 mm 
calibre ammunition of the determined initial parameters and 
a simulation program of projectile flight were developed.

The physical and mathematical models were designed ac-
cording to the military standard NATO STANAG 4355. The 
simulation results were verified experimentally by measuring 
the velocity of the subcalibre projectile on the initial section of 
the flight trajectory equal to 2550 m. The experimental results 
are in good agreement with those calculated using the devel-
oped model. For greater distances of shooting, the calculated 
results of the simulations are merely approximate, but they 

Fig. 8. Flight trajectories of projectiles for large angles of shooting

Fig. 9. Projectile velocity vs. time for large angles of shooting
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correctly give a qualitative picture of hypersonic projectile 
flight.

It results from our simulations that for small angles of shot 
(0–7°), the projectile velocity does not depend on the angle of 
shooting and a range of over 10 km is obtained for shooting 
angles over 1.5°. The maximum height and range of the sub-
calibre projectiles are nearly 90 km and more than 100 km, 
respectively. The calculated range parameters of the subcal-
ibre projectile determine the area of potential threat for the 
surroundings.
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