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Abstract. The classical Cayley-Hamilton theorem is extended to Drazin inverse matrices and to standard inverse matrices. It is shown that
knowing the characteristic polynomial of the singular matrix or nonsingular matrix, it is possible to write the analog Cayley-Hamilton equations

for Drazin inverse matrix and for standard inverse matrices.
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1. Introduction

The classical Cayley-Hamilton theorem [2, 14, 20] says that
every square matrix satisfies its own characteristic equation.
The Cayley-Hamilton theorem has been extended to rectan-
gular matrices [3, 11], block matrices [3, 5], pairs of block
matrices [5] and standard and singular two-dimensional linear
(2-D) systems [4, 9].

In [12] the Cayley-Hamilton theorem has been extended to
n-dimensional (n-D) real polynomial matrices. An extension of
the Cayley-Hamilton theorem for continuous-time linear sys-
tems with delays has been given in [8].

In [7, 10] the Cayley-Hamilton theorem has been extended
to the fractional standard and descriptor continuous-time and
discrete-time linear systems.

The Cayley-Hamilton theorem and its generalizations have
been used in control systems, electrical circuits, systems with
delays, singular systems, 2-D linear systems, etc. [1, 6, 1317,
21-29].

The Drazin inverse matrix method for fractional descriptor
continuous-time and discrete-time linear systems has been
introduced in [18, 19].

In this paper the Cayley-Hamilton theorem will be extended
to the Drazin inverse matrices and standard inverse matrices.

The paper is organized as follows. In Section 2 the basic defi-
nitions and theorems concerning Drazin inverse, minimal char-
acteristic polynomials, Lagrange-Sylvester formula and Cayley-
Hamilton theorem are recalled. Cayley-Hamilton theorem is
extended to the Drazin inverses in Section 3 and to standard inverse
matrices in Section 4. Concluding remarks are given in Section 5.

2. Preliminaries

The smallest nonnegative integer ¢ is called the index of the
matrix £ € R if
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rank £9 = rank B9 (1)

Definition 1. A matrix E” is called the Drazin inverse of the
matrix E € R if it satisfies the conditions

EEP = EPE, (2a)
EPEEP = EP, (2b)
EPET™ = E4, (2¢)

where ¢ is the index of E.

The Drazin inverse E” of a square matrix E always exists and
is unique [14, 18, 19]. If detE # 0 then E” = E~' (standard
inverse matrix).

A procedure for computation of £” is given in [19].

The characteristic polynomial of the matrix 4 € R"™"

p(A)=det[[, A—A]= 2" +a, 2" +. . +aA+a, (3

and its minimal polynomial (1) are related by [2, 20]

_ o)

P4 D)’

“)

where D(4) is the greatest common divisor of entries of the
adjoint matrix [[,A — 4], If the eigenvalues 4, 4,, ..., 4, of
the matrix A are distinct, i.e. ;# 4;if i# j, i,j =1, ..., n, then
D(A) =1and ¥(1) = 9(4) [2, 20].

Consider a matrix 4 € R™" with the minimal characteristic
polynomial

YD) =(A-)"(A-)"..A-2)", )
where 4y, 4,, ..., 4, are the eigenvalues of the matrix 4 and

imi = m < n. It is assumed that the function /(1) is well-defined
on the spectrum ¢ = {41, A2, ..., A} of the matrix 4, i.e.
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S0 SO =L

e (6)
f(mk—l)(ik> — S(4)

d/«bm,{—l

are finite [2, 17].
In this case the matrix f(4) is well-defined and it is given by
the Lagrange-Sylvester formula [2, 17]

fA4)= iznf(zi) +Zn V) ... 7
i=1
+ Ziy S V().

where

U A=At )
TG kDG =D AT | )

and

Y1) .
Y(A)=——FF,i=L...r 9
)= e ©)

Theorem 1. Let

V() =det[1,A- f(A4)]

n n—1 (10)
=A"+a, A" +. . +al+a,

be the minimal characteristic polynomial of the matrix f(4).

Then the matrix f(A4) satisfies its characteristic equation, i.e.

[F(AD +a,,[f(D +..+a[ f(D]+ayl, =0. (11)

Proof. Proof is given in [7].

For f(A) = A we have the classical Cayley-Hamilton theorem
[2, 20].

Theorem 2. Let 4;, k=1, ..., n be the eigenvalues of the
matrix 4 € R™" and f(1) be well-defined on the spectrum
o4 = {1, A2, ..., A,} of the matrix 4, then f(4;), k=1, ..., nare
the eigenvalues of the matrix f(A4).

Proof. Proof is given in [2, 20].

In particular case we have the following. If A, = a; + jf,
k=1, ..., n are the nonzero eigenvalues of 4 € R"", then il
k=1, ..., n are the eigenvalues of the inverse matrix A7
Theorem 3. If the characteristic equation of the nonsingular
matrix 4 € R™" has the form

P(A) = det[ T, A — A]
=V +a, A" +. . +ad+a, =0,

(12)

then the characteristic equation of the inverse matrix 4" € R”"
is given by

a A+ a, "+t a, A+1=0. (13)
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Proof. In [21] it has been shown that if 4;, k = 1, ..., n are the
nonzero roots of the equation (12), then AL k=1, ..., narethe
nonzero roots of the equation (13). Therefore, by Theorem 2 if
(12) is the characteristic equation of 4, then the characteristic
equation of 4~' has the form (13). o

3. Cayley-Hamilton theorem
for Drazin inverse matrices

In this section the classical Cayley-Hamilton theorem will be
extended to Drazin inverse matrices. By assumption the matrix
E € R™ is singular, i.e. detE = gy = 0.

Theorem 4. If

det[l,s—E]=s"+a, ;s" " +..+as, (14)
then
@ EP +ay,(EP) +..+a, (EP) +(EP) =0, (15)
where E” € R™" is the Drazin inverse of the matrix E.
Proof. Using (14) and the classical Cayley-Hamilton theorem
we obtain
E"+a, [E"' +. +a,E* +a,E=0. (16)

Premultiplying and postmultiplying (16) by the Drazin inverse
matrix E” we obtain

EPE"E® +a, \[EF°PE"E® + .. 0
+a,EPE*EP + o, EPEEP =0
and using (2a) and (2b)

EPE"™ va, EPE"? 4+ . +a,EPE+aEP =0 (18)

since
19)
for k=1.2,...,n.
Postmultiplying (18) by E” and using (19) we obtain
EPE"™2 +a, EPE"3 + ..
(20)
+a,EP +a,(EP)? =0.
Repeating n — 2 times this procedure we obtain (15). o
Example 1. The Drazin inverse of the singular matrix
1 0 -1
E=0 1 0 (21)
0 -1 0

has the form [14]
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I -2 -1
EP=l0 1 o0 (22)
0 -1 0
The characteristic polynomial of (21) is
s=1 0 1
det[I;s—E]=| 0 s—1 0/=s>—2s>+s. (23)
0 1 s
From the classical Cayley-Hamilton theorem we have
1 o -1 [1 0o -17
E*-2E*+E=[0 1 0] -20 1 0
0 -1 0 0 -1 0
(24)
1 0 -1 0 0 0
+/0 1 0 (=/0 0 O}
0 -1 0 0 0 0
Applying Theorem 4 to (22) we obtain
1 -2 -1
EP —2(EPY? +(EPY’ =|0 1 0
0 -1 0
5 3 (25)
1 -2 -1 I -2 -1 0 00
-210 1 0] +0 1 0] =/0 00
0 -1 O 0 -1 0 0 00

Postmultiplying (15) by (E”)X, k=1, 2, ... we obtain the fol-
lowing corollary.
Corollary 1. If (14) is the characteristic polynomial of £, then
Dy k+l DN k+2 Dyn+k-1
a(E”)Y" +ay(EX) ™ +.+a, (EP)™ 26)
+(EPY™F =0 for k=12,....

4. Cayley-Hamilton theorem for inverse matrices

Theorem 5. If the characteristic equation of the matrix 4 € R™"
has the form

det[/,s — A]=5"+a, " +..+as+aq, (27)
then the inverse matrix 4 satisfies the equation
=1\n —1\n-1 -1
ay (4 +a,(4 +..4+a, A +1
oA +ay(4™) i L

=agA" +a, A" + .. +a, AT +1,=0.

Proof. From classical Cayley-Hamilton theorem and (27) we
have
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A" +a, A"+ +aA+ayl, =0. (29)

Postmultiplication of (29) by (4~')" yields
I, +a, (A DY+ . +a,(A™)" +a,(4H" =0 (30)

since 447" =I,andA* = (47" = (4") " fork=0,1,...,n.0
Remark 1. Proof of Theorem 5 follows also from Theorem 3
and Cayley-Hamilton theorem applied to the matrix 4" and to
the characteristic equation (13).

Example 2. The characteristic equation of the matrix

A= 0 ! (€20
-2 -3
has the form
S —
det[1,s — A] = =5 +35+2=0. 32
[/, ] ‘2 o3 (32)
The inverse matrix of (31) is
-3 1
A= 2 (33)
1 0
and by Theorem 5 it satisfies the equation
2A 4347 + 1, =2(47Y 4347+ 1,
2
2‘_3 1 3‘_3 1 {1 o}
=4 2 20 I 2 2|t

B 0 0
1o o]
Premultiplying (28) by A™', k = 1, 2, ... we obtain the following
corollary.
Corollary 2. If (27) is the characteristic equation of the matrix
A, then
ag A" a4 va, AT a7 =0
for k=1.2,....

(35)

Example 3. (Continuation of Example 2)
The characteristic equation of the matrix (31) is given by (32).
Using (35) for £k = 1 and (32) we obtain

2473 +3472+ 47"

e
=2 3+33 1+2 2
7313 T o e
4 4 2 2
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The considerations presented in this section for A4 can be easily
extended to 4* for k=2, 3, .... For example Theorem 3 can
be extended to A" for k = 2, 3, ... as follows.

Theorem 6. If the characteristic equation of the matrix 4,
k=2,3, ... has the form

p(A) =det[1,A— 4"]

(37)
=V +a, A +. . +ad+a,=0,

then the characteristic equation of the inverse matrix 4 * € ™"
is given by

a ' +a v +a, A+1=0. (38)
Proof. Proof is similar to the proof of Theorem 3.
Example 4. For the matrix
A= 0 ! 39)
-3 -4
we have
A° = (40)
12 13
and
s |A+3 4 )
det[/,A—-A"]= =4 -101+9=0. 41
12 A1-13
The inverse matrix of (40) has the form
13 4
2\-1_ 4~2_| 9 9
(47) =4 =l 4 (42)
3 3
and
det[[LA—A4721=| 9 9
4 5.1 (43)
3 3
=94* =104 +1=0.

5. Concluding remarks

The classical Cayley-Hamilton theorem has been extended to
the Drazin inverse matrices and standard inverse matrices.

It has been shown that if the characteristic polynomial of
the singular matrix £ has the form (14), then the Drazin inverse
matrix E” satisfies the equation (15) (Theorem 4). If the char-
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acteristic equation of the nonsingular matrix 4 has the form
(27), then the inverse matrix 4~ satisfies the equation (28)
(Theorem 5). The theorems can be extended to any integer
powers k = 2, 3, ... of the matrices (Theorem 6). The theorems
have been illustrated by numerical examples.

The considerations can be extended to fractional linear sys-
tems.
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