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Abstract. We present counterparty risk by a jump in the underlying price and a structural change of the price process after the default of the
counterparty. The default time is modeled by a default-density approach. Then we study an exponential utility-indifference price of an European
option whose underlying asset is exposed to this counterparty risk. Utility-indifference pricing method normally consists in solving two opti-
mization problems. However, by using the minimal entropy martingale measure, we reduce it to solving only one optimal control problem. In
addition, to overcome the incompleteness obstacle generated by the possible jump and the change in structure of the price process, we employ
the BSDE-decomposition approach in order to decompose the problem into a global-before-default optimal control problem and an after-default
one. Each problem works in its own complete framework. We demonstrate the result by numerical simulation of an European option price under

the impact of the size of the jump, intensity of the default, absolute risk aversion and change in the underlying volatility.
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will
induce a drop in the firm’s stock value, although sometimes
this stock value could rise after a counterparty’s default. The
drop corresponds to a contagious loss when the asset is pos-
itively correlated with the counterparty, while the rise often
represents a negative correlation situation. Moreover, the de-
fault of a counterparty can increase (or decrease) the volatility
of the firm’s stock, as observed in the past crisis. In this paper,
we study the pricing of an European option whose underlying
asset is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times 7 is modeled
by a conditional density hypothesis. The default time 7 is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not [F-stopping time. In this incom-
plete market we use the utility-indifference pricing method first
adapted in [2]. The advantage of this method is the inclusion
of its economic justification and risk aversion, but the disad-
vantage is that we have to consider two optimal investment
problems with and without trading a derivative.

Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which includes a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to only one optimal control
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problem and utilize its advantages for an exponential utility
function. We then employ the decomposition of the value func-
tion before and after default proposed by [4], which separates
the problem into after-default and global before-default sub-
problems, and solves each subproblem by considering a back-
ward stochastic differential equation (BSDE). We solve the
utility-indifference price with exponential utility function for
a vanilla option whose underlying asset is influenced by coun-
terparty risk in which the underlying asset experiences not only
a jump in price, but also changes in its drift and/or volatility.
The paper is structured as follows. Section 2 lays out the
model and the option pricing problem with a default density
hypothesis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis

In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (S;),> . Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.

We consider a probability space (2, .7, P) equipped with
a Brownian motion W = (W,), t € [0, T| over a finite time
horizon 7 < oo and its natural filtration F = (%), t € [0, T
satisfying the usual conditions of right-continuity and complete-
ness. The default time is defined by a non-negative and finite
random variable 7 on (Q, ¢, P). Before the default time z, fil-
tration IF represents the information accessible to the investors.
When the default occurs, the investors observe it and add this
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new information  to the reference filtration F. We then intro-
duce the jump process D, =1I,.,, 0 <t <T, and D = (%)),
t € [0, T is the filtration generated by this jump process. Finally,
enlarged progressive filtration F VD, denoted by G = (%),
t € [0, T] represents the global information available for the
investors over [0, 7.

In the sequel, we make the basic assumption on the default
time of the counterparty, called the density hypothesis (see [1]).

Hypothesis 1. DH. For any ¢ € [0, T'], the conditional distribu-
tion of 7 given .%, admits a density with respect to the Lebesgue
measure, i.e. there exists a family of .7, ® #(Z#,)-measurable
positive functions (w, 8) — ¢,(9) such that

Pt € d6|.%;] = 0y,(0)d®.

We note that for any 6 > 0, the process {¢,(0),0 <t < T}
is a (P, F)-martingale.

Under the hypothesis (DH), the (P, F)-Brownian motion
W is a G-semimartingale and admits an explicit decomposition
in terms of the density a given by (see [1, 5, 6])

t
W =W~ [ 1ds 0<1<T. 0
0

where W is a (P, G)-Brownian motion and [}.Jds is a finite
variation G-adapted process defined by

/[]Sds _ /l/\T d<W, G)S +/l d<W,OC(’C))57
0 0 .

0<tr<T,
G, o (7) -

where G; = P[r > ¢|.%] is the conditional survival probability.
J admits the following decomposition

=TT +J (0 <, 0<t<T.
Furthermore, the process
t
Mt:Dt—/Ast, OStST, (2)
0

is a (P, G)-martingale (see [1]), where

t TNt
/Asds:/ %) 16 0<i<T.
0 0 G

0
is the (P, G)-predictable compensator of jump process D. By
denoting A, = “’G(f), we have

e Asset model:
The dynamics of the risky asset subject to a counterparty risk is
represented by a G-adapted discounted price process such that

St =8 Ies + 8 (D) <y, t€[0,T], 4)

where ST is an F-adapted process representing the discounted
price process in the default-free market, governed by:

696

dst = SH(ufdr+ofaw,),

' (5)
St = Sy, 0<1<T,

and {S/(0), 0 <t < T, 0 € [0, T]} is a measurable (in §) family
of F-adapted processes representing the discounted price pro-
cess after the default at time 7 = 6, governed by

dsj(0) = S7(0)(w!(0)dr+ 0 (6)dW,),
(6)
S9(0) = Sy (1+7), 6<t<T,

where 1, o are F-adapted processes and uf(6), 0%(0) are

Z ® B(R") measurable functions for all # € [0, 7] and y is
[F-adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We assume
that forall 7 € [0, T], 5, > 0 and y, € (-1, 1) almost everywhere,
and the following integrability condition is satisfied for all
0elo,T],

() o) ()
—i—/OT (GI]F)Zdt—I—/GT <0',d(9)>2dt <oo,  a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes u and o by

=

e = Ty + i (D)o,
Oy = Gt]FI»L->t + G;J(T)I'L'St

We can see from (4, 5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process S represents
the asset price before the default, and there is a jump in stock
price at the default time of the counterparty, whose size is rep-
resented by the process y, which may take positive or negative
values, corresponding to the proportional gain or loss on the
stock price. After the default at time z = 6, S9() represents the
asset price process, where there is a change in the coefficients
depending on the default time, for example, if we expect that
the volatility ad(ﬁ) after default is greater than the volatility ¢
before default, we can specify o(6) to be of the form o) = o
Fiae?t=9 4>0.

e Wealth dynamic:
Let7 = (7));c o, 77» Which is G-predictable, denote the amount of
wealth invested at time ¢ in the stock (also called trading strategy).
We also define the discounted strategy process z, = e "'7,,

Bull. Pol. Ac.: Tech. 65(5) 2017
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where 7 is the risk-free rate. Similarly to the previous section,
7 could be decomposed into the form

o=l + 7 () ey, 0<t<T.
The investor’s wealth, decomposed as

X_tﬁ = Xtﬁ:7FIT>[ +Xtﬁ.7d(r)11§[, O S t S T,

is a G-adapted process following the dynamics

_ s, .
dXT = 7=~ + (X" — &) )rdt,

where S, = e"'S, is the stock price process. )
Finally, the discounted wealth process X" = ¢ 'X[ has the
following dynamics
ds; ds;

dth = ﬁteirti =T—,

0<r<T 8
S, S, St 1, )]

and decomposition

X* = XF L XF 0., 0<i<T,
_ F d

o = WL+ m (T)ey, 0<t<T,

where X™F is the discounted wealth process before default,
governed by

F ds¥
ax! " = mel,
S
x*F - x_. o<
0 — 0> =~ t S T:

and X™'©-9(9) is the discounted wealth process after the default
takes place at r = 6, governed by

d dsé(0)
ax® ) = rd@)L e <r<T,
X Odg)y = X7+ .

3. Minimal entropy martingale measure and
its relation to Indifference pricing method

We consider the valuation problem of a derivative on the
risky asset S by utility indifference pricing method. The max-
imal expected utility one can obtain by trading in S via some
strategy =, if one starts with x and has to pay out B at 7, is
Va(x) = sup,e ,E[U(X7 — B)| Xy = x], where 7 is the set of
admissible trading strategies.

The utility indifference price Pr of the derivative is implic-
itly defined by

Vo(x) = Vg(x+ Pr), 9)

Bull. Pol. Ac.: Tech. 65(5) 2017

where Vy(x) = supyc E[UXT)| Xy = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity 7. In other
words, V(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.

The solution of the indifference pricing equation (9) has been

given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
n [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, of which the definition is given below.

Definition 1. Denote

P. = {0Q~P|Sislocal (Q,G)-martingale},

Pe,f = {QGPe’ H(Q’]P))<°°}:

where H(Q|P) is the relative entropy of O with respect to P, i.e.

H(Q|P)={f910gdeQv if Q<<P,

, otherwise.

If an equivalent local martingale measure IP* €
following condition

F, s satisfy the

H(QIP) = H (P*|P), VQ € F.y,

then P* is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,
U(x)=—exp(—px), p>0,
the utility indifference price Pr of the derivative can be derived
as

1
Pr=x+ —log (— sup E¥ [U(XF —B)|XF = x]>, (10)
ned
where P* is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers
to solving a unique optimization problem of the form

sup EV [U(XF
weo

—B)|X] = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
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Firstly, we denote G-adapted process F* as follows

F(B,¢) =B+ 5 (Gtﬁt) + Bioid;: +

4 (eﬁr% €¢t _

an
1A,

for all z € [0, T], where f and ¢ are G-predictable processes.
Similarly to the previous section, F*,  and ¢ could be decom-
posed into the following form

F (B, 9) = F' (B, 9)Ir=i + F (1) (B)Ie<
B = ﬁtFlrzt + ﬁtd(T)I‘L'<l>
o= ‘P;Flrzt + ¢td(7)11:<t,

for all ¢ € [0, T]. From the expression of £ (11) and 4, (3) we
have

g _gFF o L GFgFy2
F(B.¢)= ’“’+2(Gtﬁt) + )
+B[FG[F‘][F+)'[(eﬁt%e¢[ _ 1)’
and
Ftd(e)(ﬁ) = ﬁtd(e),u,d(e)+%(th(9)ﬁta’(9))2+ .
+B(6)5/(6)J(6).

Theorem 1. In the case x, o, 1, J¥ and u(9), 67(0), J4©),
y, are deterministic functions V0 < 0 <¢ < T, if there are
G-predictable processes £ and ¢ being solution of

o= [ (F0®B) -F @) ab

My + ﬁto}z + GtJ[ + %Ateﬁtyted)t == 0, (15)

(FF, F ?are defined in (12) and (13), respectively) and satisfying
the condition

E [p( [ o

(16)
+/ (eP¥%e? —1)%A ds)] < oo,
then the probability measure P* defined by
dP*
=Lr, 17
ap L 7)

where

L, = o~ JE (B.0)ds+§ 0:dDs) ,Ji B 5 o

(F* is defined in (11)) is a MEMM of S.
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Proof. By the assumption yi", 6, 1, JF and u(0), 67(0), J*(6), »,
are deterministic functions V0 < 6 <¢ < T, and combining
(12-14), and (15) we can see that ¢ is a G-predictable process
(actually, a deterministic function).

From (1) and (2), W,© = W, — [iJds is a (P, G)-Brownian
motion, and M, = D, — [JA,ds is a (P, G)-martingale. For

t p dSs
f() ﬁs sz and Ht —

the sake of convenience we define K, = ¢

= o~ F (B9)ds+[36sdDy) o that L, = K,H,. Applying Ito for-
mula for K, and H, on [0, T], we have, respectively,

dK; = {ﬁt“tdt+ﬁtctdm 2(ﬁt6t)2dt+ (e P — 1)th}
{ﬁt“t +3 (O'tﬁt) + (e P — 1)A; +Bth-]z}dt
+Kt7 {ﬁtG,dVVt + (eﬁt% - l)th},
and
dH, = H,- (—F' dt+( " —1)dDy)
= H,f(—F, dt + (e —1)dM, + (e” — 1)Adt).
Moreover,
d[K,H]; = K-H, | (e — 1)(P" — 1)dM,+
(e — 1) (P — 1)A,dt} .

Thus, Tto formula and the definition of F*(8, ¢) (11) give the
dynamic of the process L as
dL =L, { [ (P¥ — 1)+ (e

[ﬂt.ut +5 (o'tﬁt)
(% = 1A+ (e — 1><eﬁ”f —1)A, -
— L, {(P¥e? —1)aM, + B o,dWE},

— 1) (P —1)]dMm,
+ (e Aw 1)A; + Byo.J;

F(B.¢)]dr}
te0.7].

+ B G,dWG

The Novikov condition (16) is sufficient for L to be a (P, G)-mar-
tingale on [0, 7] (see Theorem 9 of [7]). Therefore, L is a strictly
positive (P, G)-martingale on [0, 7] and E[L;] = E[L¢) = 1. We
define the measure P* by

dP*
dP

=Lr.

Applying Ito formula for L,S, we have for 7 € [0, T,

d(LS) = L-S-{(B+1)c,dWS
+[(eﬁr%e¢t _ 1) +%+ %(eﬁr%etpt _ 1)]th
(e + 0 + B 7 + pAeP ) dr )

Since B, ¢ satisfies (15), it follows that S is a (%,
martingale on [0, 7.

G)-(local)
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From the definition (14) of ¢, in the case of 7 < T'we have

T T

- [ EB.0)as+ [ o,

— [[ R0t [ @ Bas— [ B0y
T T

_ /0 F*(B,0)ds+ / FZ(2)(B)ds

+/OTEF<13,¢)ds—/OTEF(IS,¢)ds

=—/0Tf;F(ﬁ,¢>ds,

and when z > T, we have

T T T
— [ EB.6)ds+ [ odD =~ [ FF(B.g)ds.
Moreover, from Definition 1, we have
» dP*
H(P*[P)=E" (1
©1p) =" (1o
- T T T 4s,
—E </ FS*(ﬁ,rp)der/ ¢SdDS+/ By
0 0 0 S5
i T T
—EF <_/ E:(ﬁ7¢)ds+/ (j)Sst)
0 0

= E“""(/OTI%F(w)ds) = f/OTFSF(ﬁ,q))ds,

)

(F¥(B, ¢) is deterministic because 1, 6, 1,, J¥ and u%(6), 6(6),
Jtd(G), y, are deterministic functions). For any equivalent mar-
tingale measure QO (recalling that EQ( fOT ﬁsféi“) = 0), by similar
argument we have

* T
E¢ (log Cg;) = E? (—/ FS]Fds) =
0

:f/OTFF(M)ds = H(P'[P).

In consequence,

HioP) = HOP)+5 (10 D).
= H(QIP")+H (P*|P).

Because H(Q|P*) > 0 (see Theorem 1.4.1 of [8]), P*is MEMM
by definition. O

4. Utility indifference price by MEMM method

Recalling from (10) that the utility indifference price of a va-
nilla option is

1 «
Pr=x+ —log (— sup EX'[U(XF —B)|X[ :x]>,
P ned

Bull. Pol. Ac.: Tech. 65(5) 2017

the valuation therefore consists in solving the optimization
problem A+

Ve(x) = sup Jo(x, ), (18)
4
where
Jo(x,m) = EV [U(XF —B)|X§ = x] =

1
C=B+—logLy,
p

and B is the option’s discounted pay-off.

In the following subsections, we will solve the optimiza-
tion problem in a defaultable context by using the approach
proposed by [4].

4.1. Decomposition of the optimal control problem. The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which sometimes
happens in a credit-related product. By definition of C in (19),
C could have the G-decomposition of the form

C=C"lor +CY (1) L<r, (20)
where C¥ = BF + %logL%F is Zr-measurable and C4(0) = BY(9)
+ %logL?(@) is measurable with respect to %y Q@ PBp-.

We define the value-function process of the after-default
optimization problem as

Vi (x) = esssupag)c.ra(0) /6 (%, 7 (6)),
(6,x) € [0,T] x (0,°0),
where
d( .d n?(0).d d
T3(x,7(0)) = E|U(x] (8) — C'(8)) e (6)
d
—c(0)ar(6)| Fo. X *(0) = x].
and .«7(6) is the set of all admissble strategies after default. By
using the backward recursive framework with BSDEs system
as in [4] (see equations (3.8) and (3.9)), we have the decompo-

sition of the global optimization problem (18) in the following
remark

Remark 1. Assume that V{(x) < oo a.s. forall (6, x) € [0, T]x
x (0, co), then

_ ' F _ F
Ve(x) = sup,rc 7 E U (X Cct | Gr +
. . (21)

+ Vg (xg T xle ) aofxg -t =],

where 7" is the set of all admissible strategies before default.
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4.2. Solution of the optimal investment problem. In our
model, we allow the drift and diffusion coefficients after the
default (14 o) to depend on the default time 7. This assumption
makes this optimization problem unable to be solved if one uses
the classical dynamic programming approach. In order to solve
the problem, we first find the after-default value-function and
then the before-default one using a recursive BSDE framework
as in [4].

4.2.1. The after-default utility maximization problem. In
the case of an exponential utility, the recursive framework in

[4, Theorem 4.2, case k = n] helps to find the solution of the
after-default value function ng(x) in the following simple form

Vi@ =U (x-¥§(8)) = —exp (p (x~¥5(9)) ).

where (Y4, Z¢) is a solution of the BSDE

1
—logaT(G) +

d d
/uf&%a

with the driver

2
fd(t72’9)__ut"(9)z_1(uf(9)> Pt L

Vi) = c(6)+

T
—/ Z4dw,, 9<1<T,
t

ol(6)" 2p\of(6) 2 acad(0)
1 p(6) 2
_ d 0o+ — t

4.2.2. The global before-default optimization problem. The
solution of the global before-default optimization problem is
also obtained using another BSDE as in [4, Theorem 4.2]. We
then get
Ve(x) = Ux—Yo) = —exp(—

p(x—Yp)), (22)

where (Y, Z,) is a solution of the BSDE
1 T T

Y, =C" 4+ —logGr + / f(s,Ys, Zy)ds — / ZdW;, (23)
p t t

for ¢ € [0, T] (note that (23) is exactly the equation Ej in [4]),
with the driver depending on Y,d — the solution of the previous
BSDE — as follows

F F 2
¢ 1 fu , p
f([’y’z):—c;yz_<tm> + inf {2

ved¥

Z+

1 uF S
+ - ol - UG+ i) ¢
pof O p( =Y (1))

Finally, by equation (10), the utility indifference price can be
calculated by

700

1 .
Pr = + —log <— sup (E¥ [U(XF
p nes

~BIXF =) =

+ ;log <— sup (E[U(XF —C) X[ :x])> =Y.

ned

5. Numerical results

For illustration, we price an European call option written on

a security exposed to a risk of counterparty default. The density

of default time is assumed to be an exponential distribution with

constant intensity A > 0: a(f) = Le *’. This assumption implies

the immersion property (see [1]) and consequently W © = W and

J = 0. Moreover, we assume the size of the jump y is constant.
In the proof of Theorem 1 we have

AL, =L, { .G dWE + (P7e? — 1)am, }

L has the G-decomposition of the form
Ly =L Loy + L) ilr<y, 0<1t<T, (24)
where LT and LY(9) are governed by, respectively,

drf — LF_(ﬁ,Fo}FdW (P 1)7Ldt), 0<t<T,

Ly =1,
and
dL; () = L (6)(B(6)o!(8)aW;), 0<:<T,

L5(©0) = LE (cPovets).

Also by equation (15), S, could be decomposed as

B = ﬁtFIrzt + ﬁtd(T)IrQ,

where
d
w'(6)
Bl(O)=—— e, T, (25)
t (c7'(6))?
and S is solution of
uF 4 (67)2BF +yre® P Y =0, 1[0, 7). (6)
where ¢ solves the following ODE
d T
0F) = FFB.0)+ 5 ([ Fiw)(Bras). e .7,
t
¢or = 0.

Furthermore, A admits the following expression, using Lam-
bert W-function (see [9])

F + (GIF)ZWI

€10, T (27)

Bull. Pol. Ac.: Tech. 65(5) 2017
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where o F
YA exp(9]) exp (%)

w; = lambertW
' (o )?

, t€10,T],

P explofexp( ) 1

CiE : >0>—.
We suppose that 1 and ¢" are constant and a,d(ﬁ) is a deter-
ministic function. In this example, we consider volatility after
default 67 in two cases:

e We expect that the volatility o%() after default is greater
than the volatility o before default, and the earlier the
default takes place, the larger this gap becomes, for in-
stance, 0%(0) = o¥(2 — %)

e We also expect that the volatility o%(9) after default is
greater than the volatility ¢* before default. However,
after the instantaneous increase, we suppose that the vol-
atility will decays overtime to the before-default value
(Fig. 1). For instance, we consider ¢/(0) of the following
form 6(0) = oF + ke "0,

and we have w, € R because

0.5 T T T T T T T T T

0.45F ]

04t .

035F 1

=
i
T

025k

Wolatility

0z

T T Default occur

D 1 1 1 1 1 1 1 1 1
1] 0.1 nz 03 04 05 06 07 08 08 1

Time

Fig. 1. For example: 6 = 0.2, 6/(6) = 6" + 0.1e ") and r = 0.3

We use a regression based method (see [10]) to simulate the
above BSDE processes to price the option with parameters in
Table 1.

Table 1
Results of parameters estimation
S K r lu]F = Iud o-]F T A P
100 100 | 0.05 0.05 0.2 1 0.1 1

In Fig. 2, we present the dependence of indifference price
on jump’s size, classifying by three forms of volatility. We
found that in the case where volatility is unchanged (“Indif-
ference price 17 curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
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Fig. 2. “Indifference price 1”: The volatility remains unchanged after
default. “Indifference price 2”: The relation between before-default
volatility and after-default volatility is 6(0) = ¢" (2 — % “Indifference
price 3”: The relation between before-default volatility and after-de-

fault volatility is g/(0) = " + 0.2¢71¢=9

price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Fig. 3,
we present the dependence of indifference price on the size of
the jump and intensity of default in the case the volatility after
default is unchanged.

UID price

0.05 0
Intensity -0.2

Jump size

Fig. 3. The changing of price by intensity and jump size

6. Conclusion

This paper studies the valuation problem of a derivative in the
presence of counterparty risk for the trading underlying asset,
where the price, drift and volatility of the asset may change
abruptly. We use the minimal entropy martingale measure ap-
proach to solve the utility indifference equation. This approach,

701



www.czasopisma.pan.pl P N www.journals.pan.pl
=

M. Ngo, T. Nguyeéi, and T. Duong

combined with an exponential utility function, helps reduce the
problem to solving a unique optimization problem. The main
contribution of this work is the derivation of the MEMM den-
sity in the above framework (with the presence of counterparty
risk). In order to solve the remaining optimization problem and
derive the derivative’s price, we employ the decomposition ap-
proach proposed by [4], and find the value function after and
before the default successively. Finally, we demonstrate numer-
ical calculation for a standard European option and are able to
quantify the impact of the default (size of the jump, change in
volatility) and its intensity on the derivative’s price. This result
is encouraging given the increasing awareness of counterparty
risk in the financial market.
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