
695Bull.  Pol.  Ac.:  Tech.  65(5)  2017

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 65, No. 5, 2017
DOI: 10.1515/bpasts-2017-0074

*e-mail: thanh.duong@jvn.edu.vn

Manuscript submitted 2017-01-11, revised 2017-04-12 and 2017-05-10,  
initially accepted for publication 2017-05-15, published in October 2017.

Abstract. We present counterparty risk by a jump in the underlying price and a structural change of the price process after the default of the 
counterparty. The default time is modeled by a default-density approach. Then we study an exponential utility-indifference price of an European 
option whose underlying asset is exposed to this counterparty risk. Utility-indifference pricing method normally consists in solving two opti-
mization problems. However, by using the minimal entropy martingale measure, we reduce it to solving only one optimal control problem. In 
addition, to overcome the incompleteness obstacle generated by the possible jump and the change in structure of the price process, we employ 
the BSDE-decomposition approach in order to decompose the problem into a global-before-default optimal control problem and an after-default 
one. Each problem works in its own complete framework. We demonstrate the result by numerical simulation of an European option price under 
the impact of the size of the jump, intensity of the default, absolute risk aversion and change in the underlying volatility.
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problem and utilize its advantages for an exponential utility 
function. We then employ the decomposition of the value func-
tion before and after default proposed by [4], which separates 
the problem into after-default and global before-default sub-
problems, and solves each subproblem by considering a back-
ward stochastic differential equation (BSDE). We solve the 
utility-indifference price with exponential utility function for 
a vanilla option whose underlying asset is influenced by coun-
terparty risk in which the underlying asset experiences not only 
a jump in price, but also changes in its drift and/or volatility.

The paper is structured as follows. Section 2 lays out the 
model and the option pricing problem with a default density 
hypothesis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference 
pricing problem as well as the resulting MEMM density of our 
problem. Once we have this MEMM density, the option price 
is obtained using the decomposition approach and the BSDE 
calculation in Section 4. Finally we demonstrate the numerical 
simulation of a basic European option in Section 5.

2.	 Basic definition and hypothesis

In our model, the risky asset subject to a counterparty risk is 
denoted by a stochastic process S = (St)t ¸ 0. Our objective is to 
calculate the price of an European derivative (option) mature at 
a finite time horizon T on this security.

We consider a probability space (Ω, 
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1
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In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
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1
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duce a drop in the firm’s stock value, though sometimes this
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filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
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esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

 represents the information accessible to the investors. 
When the default occurs, the investors observe it and add this 
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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By using this MEMM and the result in [3], we can reduce the 
utility indifference pricing problem to only one optimal control 
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

. We then intro-
duce the jump process Dt = Iτ ∙ t, 0 ∙ t ∙ T, and 
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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The main motivation of considering the above definitions
of fractional variable order derivatives is a fact, that they are
widely presented in literature and can be applied in physi-
cal systems. In [22], the A -type of fractional variable order
derivative was successfully used to design the variable order
PD controller in robot arm control. In [23], the heat trans-
fer process in specific grid-holes media whose geometry is
changed in time was modeled by a new D-type definition.
Moreover, these definitions posses mutual duality properties
described in [24], which can be adapt to solve the fractional
variable order differential equations (see [21]).

2.2. Matrix forms of fractional variable order differences
The matrix form of the fractional constant order difference (1)
is given as follows ([25, 26]):
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hα , l = 0, . . . ,k. (2)

Let us define the 4-tuple T = (A ,B,D ,E ), where Tℓ is
the ℓ-th element of T and denotes a type of variable order
derivative (difference). The matrix numerical forms of the al-
ready mentioned variable order differences A , B, D , E are
the following
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where the matrices TℓW (ᾱ,k) ∈ R
(k+1)×(k+1), with ᾱ =

(α0, . . . ,αk), and ℓ= 1, . . .4, are already defined in [18, 27].

3. Solution of linear control system in state-space
form

Recall the 4-tuple T = (A ,B,D ,E ) and define other quadru-
ple T̃ = (D ,E ,A ,B), where Tℓ and T̃ℓ denote the ℓ-th ele-
ments of T and T̃ , respectively. We also define two n-tuples
T= (T1, . . . ,Tn), where T

i ∈ T , and T̃= (T̃1, . . . , T̃n), where
T̃

i ∈ T̃ , in both cases i = 1, . . . ,n, and such that if Ti = Tℓ

then T̃
i = T̃ℓ for some ℓ ∈ {1, . . . ,4}.

3.1. Time-variant control system Now, consider a time-
variant non-commensurate fractional variable order system

T
0 Dα(t)

t x = A(t)x+B(t)u, x(0) = 0 (3a)
y =C(t)x+D(t)u, (3b)

where x = x(t) ∈R
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p×m, for t ∈ R, i, j = 1, . . . ,n, r = 1, . . . ,m, s =

1, . . . , p; and T
i ∈ T is a type of variable order derivative def-

inition. We assume variable orders to be piece-wise constant
functions, i.e., for i = 1, . . . ,n

αi(t) = αν+1
i ∈ R for tν ≤ t < tν+1, ν = 0, . . . ,N −1,

where N ∈ N denotes the number of time-intervals.
System (3) can be approximated, with the discretization step

time h > 0, by the following numerical form
T
0 ∆α(l)
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and the sr-th entry of D(l) is dl
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)

xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.
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A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)

x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)

xl− j.

The B-type variable-order derivative and its discrete approxi-
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
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Under the hypothesis (DH), the (P,F)-Brownian motion W is
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default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
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In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
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filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
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and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.
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In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that
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In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
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mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t
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)2

dt +
∫ T

θ

(

µd
t (θ)

σd
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dt

+
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σF
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dt +
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θ
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σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
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t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
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θ− +πF
θ γθ .
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

)-Brownian motion and s0t Jsds is a finite 
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-adapted process defined by

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

[τ > tj
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

t ] is the conditional survival probability. 
J admits the following decomposition

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]
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is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by
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where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
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which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
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+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F
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where XπF,F is the discounted wealth process before default,
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,

XπF,F
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fault takes place at τ = θ , governed by
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θ− +πF
θ γθ .
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)
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price process in the default-free market, governed by:
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which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by
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counted stock price process S can be written as:
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counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
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negative values, corresponding to the proportional gain or loss
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represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
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Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
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strategy). We also define the discounted strategy process πt =
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t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

, 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Indifference pricing with counterparty risk

Abstract. We present counterparty risk by a jump in the underlying price and a structural change of the price process after the default of
the counterparty. The default time is modeled by a default-density approach. Then we study an exponential utility-indifference price of an
European option whose underlying asset is exposed to this counterparty risk. Utility-indifference pricing method normally consists in solving
two optimization problems. However, by using the minimal entropy martingale measure, we reduce to solving just one optimal control problem.
In addition, to overcome the incompleteness obstacle generated by the possible jump and the change in structure of the price process, we employ
the BSDE-decomposition approach in order to decompose the problem into a global-before-default optimal control problem and an after-default
one. Each problem works in its own complete framework. We demonstrate the result by numerical simulation of an European option price
under the impact of jump’s size, intensity of the default, absolute risk aversion and change in the underlying volatility.

Key words: utility function, indifference pricing, counterparty risk, minimal entropy, BSDE.

1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

)-predictable compensator of jump process D. By 
denoting λt = αt(t)

Gt
, we have

	

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-adapted discounted price process such that

	

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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where S

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
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αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
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0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t
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αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
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and
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}

is a measurable (in θ ) fam-
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process after the default at time τ = θ , governed by
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Sd
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t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
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which ensure that the dynamics of the discounted price process
is well defined.
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dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
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t (θ)
, θ < t ≤ T,

Xπd(θ),d
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-adapted process representing the discounted 
price process in the default-free market, governed by:

	

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-adapted processes representing the discounted price pro-
cess after the default at time τ = θ, governed by

	

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:
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Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
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Abstract. We present counterparty risk by a jump in the underlying price and a structural change of the price process after the default of
the counterparty. The default time is modeled by a default-density approach. Then we study an exponential utility-indifference price of an
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-adapted processes and μt
d(θ), σt

d(θ) are 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Indifference pricing with counterparty risk

Abstract. We present counterparty risk by a jump in the underlying price and a structural change of the price process after the default of
the counterparty. The default time is modeled by a default-density approach. Then we study an exponential utility-indifference price of an
European option whose underlying asset is exposed to this counterparty risk. Utility-indifference pricing method normally consists in solving
two optimization problems. However, by using the minimal entropy martingale measure, we reduce to solving just one optimal control problem.
In addition, to overcome the incompleteness obstacle generated by the possible jump and the change in structure of the price process, we employ
the BSDE-decomposition approach in order to decompose the problem into a global-before-default optimal control problem and an after-default
one. Each problem works in its own complete framework. We demonstrate the result by numerical simulation of an European option price
under the impact of jump’s size, intensity of the default, absolute risk aversion and change in the underlying volatility.

Key words: utility function, indifference pricing, counterparty risk, minimal entropy, BSDE.

1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)

xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)

x(t − jh)
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∑
j=0

(−1) j
(

αl
j

)

xl− j.

The B-type variable-order derivative and its discrete approxi-
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Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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ences). We admit the order is changing in time, i.e., α(t) ∈ R
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-adapted process that represents the percentage price’s change 
immediately at the default time of the counterparty. We assume 
that for all t 2 [0, T ], σt > 0 and γt 2 (–1, 1) almost everywhere, 
and the following integrability condition is satisfied for all 
θ 2 [0, T ],

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-adapted processes μ and σ by

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
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is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(
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σF
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)2

dt +
∫ T

θ

(

µd
t (θ)

σd
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dt

+
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σF
t
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dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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●	 Wealth dynamic:
Let π– = (π–t)t 2 [0, T ], which is 
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-predictable, denote the amount of 
wealth invested at time t in the stock (also called trading strategy). 
We also define the discounted strategy process πt = e–rtπ–t,  
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where r is the risk-free rate. Similarly to the previous section, 
π– could be decomposed into the form

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
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0 Jsds is a finite
variation G-adapted process defined by
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where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
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Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t
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αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],
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which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
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t has the
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-adapted process following the dynamics

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],
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which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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3.	 Minimal entropy martingale measure and  
its relation to Indifference pricing method

We consider the valuation problem of a derivative on the 
risky asset S by utility indifference pricing method. The max-
imal expected utility one can obtain by trading in S via some 
strategy π, if one starts with x and has to pay out B at T, is 
VB(x) = supπ 2 

Indifference pricing with counterparty risk

3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)

xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)

x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)

xl− j.

The B-type variable-order derivative and its discrete approxi-
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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ditional expected utility we can achieve by starting with initial 
capital x and do not pay out anything at the maturity T. In other 
words, V0(x) is the value-function of the optimization problem 
without trading derivative. Utility indifference price Pr is the 
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent 
claim B. That is, in this case, the utility indifference price is 
the minimum price of the contingent claim B for the investor 
as a seller.

The solution of the indifference pricing equation (9) has been 
given perfectly for the case of an exponential utility using the 
minimal entropy martingale measure (see Definition 1 below) 
in [3]. The authors of [3] reduced the problem of solving two 
optimizations in both sides of equation (9) to a single one, then 
associated this problem with the finding of a minimal entropy 
martingale measure, of which the definition is given below.
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,
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∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.
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then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
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the utility indifference price Pr of the derivative can be derived
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Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)
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sup
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EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
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Firstly, we denote G-adapted process F∗ as follows

F∗
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1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
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(σF

t βF
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t σF
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(12)
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d
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1
2
(σd
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d
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2

+β d
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d
t (θ)J

d
t (θ). (13)
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(

1
2
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0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds
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< ∞, (16)
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

) is the relative entropy of Q with respect to 
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claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
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(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

¤ 2 Pe,  f satisfy the 
following condition
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

¤ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential 
utility,
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and
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t (θ)(β ) =β d
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t (θ)+
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(σd

t (θ)β
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t (θ))
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t (θ)σ
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t (θ)J
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THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2
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(βsσs)

2 ds+
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(eβsγseφs −1)2Asds
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< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
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0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
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dSs
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(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1
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As a result, the utility indifference pricing valuation refers 

to solving a unique optimization problem of the form
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,
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as
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where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
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EP∗ [U(Xπ
T −B)|Xπ
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We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +
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for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form
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THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T
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(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
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∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds
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< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
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where

Lt = e(−
∫ t
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s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
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(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
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From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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Abstract. We present counterparty risk by a jump in the underlying price and a structural change of the price process after the default of
the counterparty. The default time is modeled by a default-density approach. Then we study an exponential utility-indifference price of an
European option whose underlying asset is exposed to this counterparty risk. Utility-indifference pricing method normally consists in solving
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-predictable processes. 
Similarly to the previous section, F¤, β and ϕ could be decom-
posed into the following form
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We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as
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where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +
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(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,
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for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF
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for all t ∈ [0,T ]. From the expression of F∗
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pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-
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defined by
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where V0(x) = supπ∈A E[U(Xπ
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capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
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martingale measure, whose definition is given below.
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U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
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, (10)

where P∗ is the minimal entropy martingale measure.
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sup
π∈A

EP∗ [U(Xπ
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We now proceed to calculate the MEMM for the risky asset in
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(σtβt)
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(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
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F∗
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βt = βF
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φt = φF
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t , σF
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∫ t
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dSs
Ss− ,
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Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

,

Indifference pricing with counterparty risk

3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

,

for all t 2 [0, T ]. From the expression of Ft
¤ (11) and At (3) we 

have

	

Indifference pricing with counterparty risk

3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Indifference pricing with counterparty risk

3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

,
� (12)

and

	

Indifference pricing with counterparty risk

3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd
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Theorem 1. In the case μt

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by
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t = πF
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,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by
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terms of the density α given by (see [1, 5, 6])
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t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
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Jsds =
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d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
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where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition
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Furthermore, the process
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is a (P,G)-martingale (see [1]), where
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is the (P,G)-predictable compensator of jump process D. By
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• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that
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and
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Abstract. We present counterparty risk by a jump in the underlying price and a structural change of the price process after the default of
the counterparty. The default time is modeled by a default-density approach. Then we study an exponential utility-indifference price of an
European option whose underlying asset is exposed to this counterparty risk. Utility-indifference pricing method normally consists in solving
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-predictable processes β and ϕ being solution of
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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(11)
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Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form
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THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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Proof. By the assumption μt

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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that
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terms of the density α given by (see [1, 5, 6])

WG
t =Wt −
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0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
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0 Jsds is a finite
variation G-adapted process defined by
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τ
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where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition
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Furthermore, the process
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is a (P,G)-martingale (see [1]), where
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Asds =
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is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-predictable process 
(actually, a deterministic function).

From (1) and (2), Wt

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

)-martingale. For 

the sake of convenience we define Kt = e
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 and Ht = 

= ee(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs), so that Lt = KtHt . Applying Ito for-

mula for Kt and Ht on [0,T ], we have, respectively,

dKt = Kt−

{

βt µtdt +βtσtdWt +
1
2
(βtσt)

2dt +(eβt γt −1)dDt

}

= Kt−

{

βt µt +
1
2
(σtβt)

2 +(eβt γt −1)At +βtσt Jt

}

dt

+Kt−

{

βtσtdWG
t +(eβt γt −1)dMt

}

,

and
dHt = Ht−(−F∗

t dt +(eφt −1)dDt)

= Ht−(−F∗
t dt +(eφt −1)dMt +(eφt −1)Atdt).

Moreover,

d[K,H]t = Kt−Ht−

[

(eφt −1)(eβt γt −1)dMt+

(eφt −1)(eβt γt −1)Atdt
]

.

Thus, Ito formula and the definition of F∗(β ,φ) (11) give the
dynamic of the process L as

dLt = Lt−
{[

(eφt −1)+(eβt γt −1)+(eφt −1)(eβt γt −1)
]

dMt

+βtσtdWG
t +

[

βt µt +
1
2
(σtβt)

2 +(eβt γt −1)At +βtσt Jt

+(eφt −1)At +(eφt −1)(eβt γt −1)At −F∗
t (β ,φ)

]

dt
}

= Lt−
{

(eβt γt eφt −1)dMt +βtσtdWG
t
}

, t ∈ [0,T ].

The Novikov condition (16) is sufficient for L to be a (P,G)-
martingale on [0,T ] (see Theorem 9 of [7]). Therefore, L
is a strictly positive (P,G)-martingale on [0,T ] and E[LT ] =
E[L0] = 1. We define the measure P∗ by

dP∗

dP
= LT .

Applying Ito formula for LtSt we have for t ∈ [0,T ],

d(LtSt) = Lt−St−
{

(βt +1)σtdWG
t

+[(eβt γt eφt −1)+ γt + γt(eβt γt eφt −1)]dMt

+(µt +σt Jt +βtσ2
t + γtAteβt γt eφt )dt

}

.

Since β ,φ satisfies (15), it follows that S is a (P∗,G)-(local)
martingale on [0,T ].
From the definition (14) of φ , in the case of τ ≤ T we have

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs

=−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

τ
Fd

s (τ)(β )ds−
∫ T

τ
FF

s (β ,φ)ds

=−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

τ
Fd

s (τ)(β )ds

+
∫ τ

0
FF

s (β ,φ)ds−
∫ T

0
FF

s (β ,φ)ds

=−
∫ T

0
FF

s (β ,φ)ds,

and when τ > T , we have

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs =−

∫ T

0
FF

s (β ,φ)ds.

Moreover, from Definition 1, we have

H (P∗|P) = EP∗
(

log
dP∗

dP

)

= EP∗
(

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs +

∫ T

0
βs

dSs

Ss−

)

= EP∗
(

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs

)

= EP∗
(

−
∫ T

0
FF

s (β ,φ)ds
)

=−
∫ T

0
FF

s (β ,φ)ds,

(FF(β ,φ) is deterministic because µF
t , σF

t , λt , JFt
and µd

t (θ), σd
t (θ), Jd

t (θ), γt are deterministic func-
tions). For any equivalent martingale measure Q
(

recalling that EQ
(

∫ T
0 βs−

dSs
Ss−

)

= 0
)

, by similar argument
we have

EQ
(

log
dP∗

dP

)

= EQ
(

−
∫ T

0
FF

s ds
)

=−
∫ T

0
FF

s (β ,φ)ds

= H (P∗|P) .

In consequence,

H (Q|P) = H (Q|P∗)+EQ
(

log
dP∗

dP

)

,

= H (Q|P∗)+H (P∗|P) .

Because H (Q|P∗) ≥ 0 (see Theorem 1.4.1 of [8]), P∗ is an
MEMM by definition.

4. Utility indifference price by MEMM method
Recalling from (10) that the utility indifference price of a
Vanilla Option is

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

,

the valuation therefore consists in solving the optimization
problem

VC(x) = sup
π∈A

J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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1
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and
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Moreover,
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The Novikov condition (16) is sufficient for L to be a (P,G)-
martingale on [0,T ] (see Theorem 9 of [7]). Therefore, L
is a strictly positive (P,G)-martingale on [0,T ] and E[LT ] =
E[L0] = 1. We define the measure P∗ by
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= LT .

Applying Ito formula for LtSt we have for t ∈ [0,T ],
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Since β ,φ satisfies (15), it follows that S is a (P∗,G)-(local)
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0
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)

= EP∗
(

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
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In consequence,
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Because H (Q|P∗) ≥ 0 (see Theorem 1.4.1 of [8]), P∗ is an
MEMM by definition.

4. Utility indifference price by MEMM method
Recalling from (10) that the utility indifference price of a
Vanilla Option is

Pr = x+
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,

the valuation therefore consists in solving the optimization
problem

VC(x) = sup
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J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
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whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
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and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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3. Minimal entropy martingale measure and its
relation to Indifference pricing method

We consider the valuation problem of a derivative on the risky
asset S by utility indifference pricing method. The maximal ex-
pected utility one can obtain by trading in S via some strategy
π , if one starts with x and has to pay out B at T , is VB(x) =
supπ∈A E[U(Xπ

T −B)|Xπ
0 = x], where A is the set of admissi-

ble trading strategies.
The utility indifference price Pr of the derivative is implicitly
defined by

V0(x) =VB(x+Pr), (9)

where V0(x) = supπ∈A E[U(Xπ
T )|Xπ

0 = x] is the maximal con-
ditional expected utility we can achieve by starting with initial
capital x and do not pay out anything at the maturity T . In other
words, V0(x) is the value-function of the optimization problem
without trading derivative. Utility indifference price Pr is the
price which equates the expected utility including the contin-
gent claim B with the expected utility without the contingent
claim B. That is, in this case, the utility indifference price is
the minimum price of the contingent claim B for the investor
as a seller.
The solution of the indifference pricing equation (9) has been
given perfectly for the case of an exponential utility using the
minimal entropy martingale measure (see Definition 1 below)
in [3]. The authors of [3] reduced the problem of solving two
optimizations in both sides of equation (9) to a single one, then
associated this problem with the finding of a minimal entropy
martingale measure, whose definition is given below.

DEFINITION 1. Denote

Pe = {Q ∼ P|S is local (Q,G)-martingale} ,
Pe, f = {Q ∈ Pe| H(Q|P)< ∞} ,

where H (Q|P) is the relative entropy of Q with respect to P,
i.e.

H (Q|P) =

{

∫

Ω log dQ
dP dQ, if Q << P,

∞, otherwise.

If an equivalent local martingale measure P∗ ∈ Pe, f satisfy the
following condition

H (Q|P)≥ H (P∗|P) , ∀Q ∈ Pe, f ,

then P∗ is called a MEMM.

According to Proposition 3 in [3], in case of an exponential
utility,

U(x) =−exp(−px), p > 0,

the utility indifference price Pr of the derivative can be derived
as

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

, (10)

where P∗ is the minimal entropy martingale measure.
As a result, the utility indifference pricing valuation refers to
solving a unique optimization problem of the form

sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x].

We now proceed to calculate the MEMM for the risky asset in
the defaultable context presented in the previous Section.
Firstly, we denote G-adapted process F∗ as follows

F∗
t (β ,φ) = βt µt +

1
2
(σtβt)

2 +βtσt Jt +(eβt γt eφt −1)At ,

(11)

for all t ∈ [0,T ], where β and φ are G-predictable processes.
Similarly to the previous section, F∗, β and φ could be decom-
posed into the following form

F∗
t (β ,φ) = FF

t (β ,φ)Iτ>t +Fd(τ)(β )Iτ≤t ,

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

φt = φF
t Iτ≥t +φ d

t (τ)Iτ<t ,

for all t ∈ [0,T ]. From the expression of F∗
t (11) and At (3) we

have

FF
t (β ,φ) = βF

t µF
t +

1
2
(σF

t βF
t )

2 +βF
t σF

t JFt +λt(eβt γt eφt −1),

(12)

and

Fd
t (θ)(β ) =β d

t (θ)µ
d
t (θ)+

1
2
(σd

t (θ)β
d
t (θ))

2

+β d
t (θ)σ

d
t (θ)J

d
t (θ). (13)

THEOREM 1. In the case µF
t , σF

t , λt , JFt and µd
t (θ),

σd
t (θ), Jd

t (θ), γt are deterministic functions ∀0 ≤ θ ≤ t ≤ T ,
if there are G-predictable processes β and φ being solution of

φt =
∫ T

t

(

Fd
s (t)(β )−FF

s (β ,φ)
)

ds, (14)

µt +βtσ2
t +σt Jt + γtAteβt γt eφt = 0, (15)

(FF, Fd are defined in (12) and (13), respectively) and satisfy-
ing the condition

E
[

exp
(

1
2

∫ T

0
(βsσs)

2 ds+
∫ T

0
(eβsγseφs −1)2Asds

)]

< ∞, (16)

then the probability measure P∗ defined by

dP∗

dP
= LT , (17)

where

Lt = e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs)e

∫ t
0 βs

dSs
Ss− ,

(F∗ is defined in (11)) is a MEMM of S.

Proof. By the assumption µF
t , σF

t , λt , JFt and µd
t (θ), σd

t (θ),
Jd

t (θ), γt are deterministic functions ∀0≤ θ ≤ t ≤ T , and com-
bining (12), (13), (14), and (15) we can see that φ is a G-
predictable process (actually, a deterministic function).
From (1) and (2), WG

t = Wt −
∫ t

0 Jsds is a (P,G)-Brownian
motion, and Mt = Dt −

∫ t
0 Asds is a (P,G)-martingale. For

the sake of convenience we define Kt = e
∫ t

0 βs
dSs
Ss− and Ht =
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Applying Ito formula for LtSt we have for t 2 [0, T ],

e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs), so that Lt = KtHt . Applying Ito for-

mula for Kt and Ht on [0,T ], we have, respectively,

dKt = Kt−

{

βt µtdt +βtσtdWt +
1
2
(βtσt)

2dt +(eβt γt −1)dDt

}

= Kt−

{

βt µt +
1
2
(σtβt)

2 +(eβt γt −1)At +βtσt Jt

}

dt

+Kt−

{

βtσtdWG
t +(eβt γt −1)dMt

}

,

and
dHt = Ht−(−F∗

t dt +(eφt −1)dDt)

= Ht−(−F∗
t dt +(eφt −1)dMt +(eφt −1)Atdt).

Moreover,

d[K,H]t = Kt−Ht−

[

(eφt −1)(eβt γt −1)dMt+

(eφt −1)(eβt γt −1)Atdt
]

.

Thus, Ito formula and the definition of F∗(β ,φ) (11) give the
dynamic of the process L as

dLt = Lt−
{[

(eφt −1)+(eβt γt −1)+(eφt −1)(eβt γt −1)
]

dMt

+βtσtdWG
t +

[

βt µt +
1
2
(σtβt)

2 +(eβt γt −1)At +βtσt Jt

+(eφt −1)At +(eφt −1)(eβt γt −1)At −F∗
t (β ,φ)

]

dt
}

= Lt−
{

(eβt γt eφt −1)dMt +βtσtdWG
t
}

, t ∈ [0,T ].

The Novikov condition (16) is sufficient for L to be a (P,G)-
martingale on [0,T ] (see Theorem 9 of [7]). Therefore, L
is a strictly positive (P,G)-martingale on [0,T ] and E[LT ] =
E[L0] = 1. We define the measure P∗ by

dP∗

dP
= LT .

Applying Ito formula for LtSt we have for t ∈ [0,T ],

d(LtSt) = Lt−St−
{

(βt +1)σtdWG
t

+[(eβt γt eφt −1)+ γt + γt(eβt γt eφt −1)]dMt

+(µt +σt Jt +βtσ2
t + γtAteβt γt eφt )dt

}

.

Since β ,φ satisfies (15), it follows that S is a (P∗,G)-(local)
martingale on [0,T ].
From the definition (14) of φ , in the case of τ ≤ T we have

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs

=−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

τ
Fd

s (τ)(β )ds−
∫ T

τ
FF

s (β ,φ)ds

=−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

τ
Fd

s (τ)(β )ds

+
∫ τ

0
FF

s (β ,φ)ds−
∫ T

0
FF

s (β ,φ)ds

=−
∫ T

0
FF

s (β ,φ)ds,

and when τ > T , we have

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs =−

∫ T

0
FF

s (β ,φ)ds.

Moreover, from Definition 1, we have

H (P∗|P) = EP∗
(

log
dP∗

dP

)

= EP∗
(

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs +

∫ T

0
βs

dSs

Ss−

)

= EP∗
(

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs

)

= EP∗
(

−
∫ T

0
FF

s (β ,φ)ds
)

=−
∫ T

0
FF

s (β ,φ)ds,

(FF(β ,φ) is deterministic because µF
t , σF

t , λt , JFt
and µd

t (θ), σd
t (θ), Jd

t (θ), γt are deterministic func-
tions). For any equivalent martingale measure Q
(

recalling that EQ
(

∫ T
0 βs−

dSs
Ss−

)

= 0
)

, by similar argument
we have

EQ
(

log
dP∗

dP

)

= EQ
(

−
∫ T

0
FF

s ds
)

=−
∫ T

0
FF

s (β ,φ)ds

= H (P∗|P) .

In consequence,

H (Q|P) = H (Q|P∗)+EQ
(

log
dP∗

dP

)

,

= H (Q|P∗)+H (P∗|P) .

Because H (Q|P∗) ≥ 0 (see Theorem 1.4.1 of [8]), P∗ is an
MEMM by definition.

4. Utility indifference price by MEMM method
Recalling from (10) that the utility indifference price of a
Vanilla Option is

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

,

the valuation therefore consists in solving the optimization
problem

VC(x) = sup
π∈A

J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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From the definition (14) of ϕ, in the case of τ ∙ T we have
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.

Thus, Ito formula and the definition of F∗(β ,φ) (11) give the
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The Novikov condition (16) is sufficient for L to be a (P,G)-
martingale on [0,T ] (see Theorem 9 of [7]). Therefore, L
is a strictly positive (P,G)-martingale on [0,T ] and E[LT ] =
E[L0] = 1. We define the measure P∗ by

dP∗
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= LT .

Applying Ito formula for LtSt we have for t ∈ [0,T ],
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.

Since β ,φ satisfies (15), it follows that S is a (P∗,G)-(local)
martingale on [0,T ].
From the definition (14) of φ , in the case of τ ≤ T we have
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(FF(β ,φ) is deterministic because µF
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t (θ), γt are deterministic func-
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In consequence,
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log
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,

= H (Q|P∗)+H (P∗|P) .

Because H (Q|P∗) ≥ 0 (see Theorem 1.4.1 of [8]), P∗ is an
MEMM by definition.

4. Utility indifference price by MEMM method
Recalling from (10) that the utility indifference price of a
Vanilla Option is

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

,

the valuation therefore consists in solving the optimization
problem

VC(x) = sup
π∈A

J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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t (θ), Jd

t (θ), γt are deterministic func-
tions). For any equivalent martingale measure Q
(

recalling that EQ
(

∫ T
0 βs−

dSs
Ss−

)

= 0
)

, by similar argument
we have

EQ
(

log
dP∗

dP

)

= EQ
(

−
∫ T

0
FF

s ds
)

=−
∫ T

0
FF

s (β ,φ)ds

= H (P∗|P) .

In consequence,

H (Q|P) = H (Q|P∗)+EQ
(

log
dP∗

dP

)

,

= H (Q|P∗)+H (P∗|P) .

Because H (Q|P∗) ≥ 0 (see Theorem 1.4.1 of [8]), P∗ is an
MEMM by definition.

4. Utility indifference price by MEMM method
Recalling from (10) that the utility indifference price of a
Vanilla Option is

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

,

the valuation therefore consists in solving the optimization
problem

VC(x) = sup
π∈A

J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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(F

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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(β, ϕ) is deterministic because μt

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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, σt

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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, λt, Jt

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)
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Pr = x+
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the valuation therefore consists in solving the optimization
problem

VC(x) = sup
π∈A

J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

¤) ¸ 0 (see Theorem 1.4.1 of [8]), 
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Key words: utility function, indifference pricing, counterparty risk, minimal entropy, BSDE.

1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

¤ is MEMM 
by definition.� □

4.	 Utility indifference price by MEMM method

Recalling from (10) that the utility indifference price of a va-
nilla option is

e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs), so that Lt = KtHt . Applying Ito for-

mula for Kt and Ht on [0,T ], we have, respectively,

dKt = Kt−

{

βt µtdt +βtσtdWt +
1
2
(βtσt)

2dt +(eβt γt −1)dDt

}

= Kt−

{

βt µt +
1
2
(σtβt)

2 +(eβt γt −1)At +βtσt Jt

}

dt

+Kt−

{

βtσtdWG
t +(eβt γt −1)dMt

}

,

and
dHt = Ht−(−F∗

t dt +(eφt −1)dDt)

= Ht−(−F∗
t dt +(eφt −1)dMt +(eφt −1)Atdt).

Moreover,

d[K,H]t = Kt−Ht−

[

(eφt −1)(eβt γt −1)dMt+

(eφt −1)(eβt γt −1)Atdt
]

.

Thus, Ito formula and the definition of F∗(β ,φ) (11) give the
dynamic of the process L as

dLt = Lt−
{[

(eφt −1)+(eβt γt −1)+(eφt −1)(eβt γt −1)
]

dMt

+βtσtdWG
t +

[

βt µt +
1
2
(σtβt)

2 +(eβt γt −1)At +βtσt Jt

+(eφt −1)At +(eφt −1)(eβt γt −1)At −F∗
t (β ,φ)

]

dt
}

= Lt−
{

(eβt γt eφt −1)dMt +βtσtdWG
t
}

, t ∈ [0,T ].

The Novikov condition (16) is sufficient for L to be a (P,G)-
martingale on [0,T ] (see Theorem 9 of [7]). Therefore, L
is a strictly positive (P,G)-martingale on [0,T ] and E[LT ] =
E[L0] = 1. We define the measure P∗ by

dP∗

dP
= LT .

Applying Ito formula for LtSt we have for t ∈ [0,T ],

d(LtSt) = Lt−St−
{

(βt +1)σtdWG
t

+[(eβt γt eφt −1)+ γt + γt(eβt γt eφt −1)]dMt

+(µt +σt Jt +βtσ2
t + γtAteβt γt eφt )dt

}

.

Since β ,φ satisfies (15), it follows that S is a (P∗,G)-(local)
martingale on [0,T ].
From the definition (14) of φ , in the case of τ ≤ T we have

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs

=−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

τ
Fd

s (τ)(β )ds−
∫ T

τ
FF

s (β ,φ)ds

=−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

τ
Fd

s (τ)(β )ds

+
∫ τ

0
FF

s (β ,φ)ds−
∫ T

0
FF

s (β ,φ)ds

=−
∫ T

0
FF

s (β ,φ)ds,

and when τ > T , we have

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs =−

∫ T

0
FF

s (β ,φ)ds.

Moreover, from Definition 1, we have

H (P∗|P) = EP∗
(

log
dP∗

dP

)

= EP∗
(

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs +

∫ T

0
βs

dSs

Ss−

)

= EP∗
(

−
∫ T

0
F∗

s (β ,φ)ds+
∫ T

0
φsdDs

)

= EP∗
(

−
∫ T

0
FF

s (β ,φ)ds
)

=−
∫ T

0
FF

s (β ,φ)ds,

(FF(β ,φ) is deterministic because µF
t , σF

t , λt , JFt
and µd

t (θ), σd
t (θ), Jd

t (θ), γt are deterministic func-
tions). For any equivalent martingale measure Q
(

recalling that EQ
(

∫ T
0 βs−

dSs
Ss−

)

= 0
)

, by similar argument
we have

EQ
(

log
dP∗

dP

)

= EQ
(

−
∫ T

0
FF

s ds
)

=−
∫ T

0
FF

s (β ,φ)ds

= H (P∗|P) .

In consequence,

H (Q|P) = H (Q|P∗)+EQ
(

log
dP∗

dP

)

,

= H (Q|P∗)+H (P∗|P) .

Because H (Q|P∗) ≥ 0 (see Theorem 1.4.1 of [8]), P∗ is an
MEMM by definition.

4. Utility indifference price by MEMM method
Recalling from (10) that the utility indifference price of a
Vanilla Option is

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

,

the valuation therefore consists in solving the optimization
problem

VC(x) = sup
π∈A

J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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the valuation therefore consists in solving the optimization 
problem 

Indifference pricing with counterparty risk

where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣XπF,F
0 = x

]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

	

e(−
∫ t

0 F∗
s (β ,φ)ds+

∫ t
0 φsdDs), so that Lt = KtHt . Applying Ito for-

mula for Kt and Ht on [0,T ], we have, respectively,

dKt = Kt−

{

βt µtdt +βtσtdWt +
1
2
(βtσt)

2dt +(eβt γt −1)dDt

}

= Kt−

{

βt µt +
1
2
(σtβt)

2 +(eβt γt −1)At +βtσt Jt

}

dt

+Kt−

{

βtσtdWG
t +(eβt γt −1)dMt

}

,

and
dHt = Ht−(−F∗

t dt +(eφt −1)dDt)

= Ht−(−F∗
t dt +(eφt −1)dMt +(eφt −1)Atdt).

Moreover,

d[K,H]t = Kt−Ht−

[

(eφt −1)(eβt γt −1)dMt+

(eφt −1)(eβt γt −1)Atdt
]

.

Thus, Ito formula and the definition of F∗(β ,φ) (11) give the
dynamic of the process L as

dLt = Lt−
{[

(eφt −1)+(eβt γt −1)+(eφt −1)(eβt γt −1)
]

dMt

+βtσtdWG
t +

[

βt µt +
1
2
(σtβt)

2 +(eβt γt −1)At +βtσt Jt

+(eφt −1)At +(eφt −1)(eβt γt −1)At −F∗
t (β ,φ)

]

dt
}

= Lt−
{

(eβt γt eφt −1)dMt +βtσtdWG
t
}

, t ∈ [0,T ].

The Novikov condition (16) is sufficient for L to be a (P,G)-
martingale on [0,T ] (see Theorem 9 of [7]). Therefore, L
is a strictly positive (P,G)-martingale on [0,T ] and E[LT ] =
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Because H (Q|P∗) ≥ 0 (see Theorem 1.4.1 of [8]), P∗ is an
MEMM by definition.

4. Utility indifference price by MEMM method
Recalling from (10) that the utility indifference price of a
Vanilla Option is

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

,

the valuation therefore consists in solving the optimization
problem

VC(x) = sup
π∈A

J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in
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tions). For any equivalent martingale measure Q
(

recalling that EQ
(

∫ T
0 βs−

dSs
Ss−

)

= 0
)

, by similar argument
we have

EQ
(

log
dP∗

dP

)

= EQ
(

−
∫ T

0
FF

s ds
)

=−
∫ T

0
FF

s (β ,φ)ds

= H (P∗|P) .

In consequence,

H (Q|P) = H (Q|P∗)+EQ
(

log
dP∗

dP

)

,

= H (Q|P∗)+H (P∗|P) .

Because H (Q|P∗) ≥ 0 (see Theorem 1.4.1 of [8]), P∗ is an
MEMM by definition.

4. Utility indifference price by MEMM method
Recalling from (10) that the utility indifference price of a
Vanilla Option is

Pr = x+
1
p

log
(

− sup
π∈A

EP∗ [U(Xπ
T −B)|Xπ

0 = x]
)

,

the valuation therefore consists in solving the optimization
problem

VC(x) = sup
π∈A

J0(x,π), (18)

where

J0(x,π) = EP∗ [U(Xπ
T −B)|Xπ

0 = x] = E[U(Xπ
T −C)|Xπ

0 = x],

C = B+
1
p

logLT , (19)

and B is the option’s discounted pay-off.
In the following subsections, we will solve the optimization
problem in a defaultable context by using the approach pro-
posed by [4].

4.1. Decomposition of the optimal control problem The
whole problem is decomposed into two sub-problems: before
and after the default. In this work, the pay-off is subject to
change depending on the default’s occurrence, which some-
times happens in a credit-related product. By definition of C in
(19), C could have the G-decomposition of the form

C =CFIτ>T +Cd(τ)Iτ≤T , (20)
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where C

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form
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is represented by a G-adapted discounted price process such
that
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where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF
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and
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of wealth invested at time t in the stock (also called trading
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

T -measurable and Cd(θ) = Bd(θ) 
+ 1

p logLT
d(θ) is measurable with respect to 
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two optimization problems. However, by using the minimal entropy martingale measure, we reduce to solving just one optimal control problem.
In addition, to overcome the incompleteness obstacle generated by the possible jump and the change in structure of the price process, we employ
the BSDE-decomposition approach in order to decompose the problem into a global-before-default optimal control problem and an after-default
one. Each problem works in its own complete framework. We demonstrate the result by numerical simulation of an European option price
under the impact of jump’s size, intensity of the default, absolute risk aversion and change in the underlying volatility.

Key words: utility function, indifference pricing, counterparty risk, minimal entropy, BSDE.

1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

T    
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣XπF,F
0 = x

]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

,

Indifference pricing with counterparty risk

where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣XπF,F
0 = x

]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

,

where

,

Indifference pricing with counterparty risk

where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣XπF,F
0 = x

]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t
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t
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.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where
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∣

∣

∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark
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∣
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
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logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
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Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
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log
(

− sup
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(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)
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1
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log
(

− sup
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(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)
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and
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Also by equation (15), βt could be decomposed as
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where
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t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
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T is FT -measurable and Cd(θ) =
Bd(θ)+ 1
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T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
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θ (θ) = x
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,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form
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(
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θ (θ)

)

=−exp
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,

where
(
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+
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows
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t

σF
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.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
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log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)

xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)

x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)

xl− j.

The B-type variable-order derivative and its discrete approxi-

1

d(θ) is the set of all admissble strategies after default. By 
using the backward recursive framework with BSDEs system 
as in [4] (see equations (3.8) and (3.9)), we have the decompo-
sition of the global optimization problem (18) in the following 
remark
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as
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d(θ)),
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,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form
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=−exp
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,

where
(
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
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logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows
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Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
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)
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5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣XπF,F
0 = x

]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−
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βtσtdWG
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}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld
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t = LF
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(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
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t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE
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∫ T
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calculated by
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)
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5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have
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.

L has the G-decomposition of the form

Lt = LF
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)

xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)

x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)

xl− j.

The B-type variable-order derivative and its discrete approxi-

1

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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4.2. Solution of the optimal investment problem. In our 
model, we allow the drift and diffusion coefficients after the 
default (μd, σd) to depend on the default time τ. This assumption 
makes this optimization problem unable to be solved if one uses 
the classical dynamic programming approach. In order to solve 
the problem, we first find the after-default value-function and 
then the before-default one using a recursive BSDE framework 
as in [4].

4.2.1. The after-default utility maximization problem. In 
the case of an exponential utility, the recursive framework in 
[4, Theorem 4.2, case k = n] helps to find the solution of the 
after-default value function Vθd(x) in the following simple form

Indifference pricing with counterparty risk

where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as
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θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
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where
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∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[
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(

XπF,F
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)
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+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)
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∣

∣

∣
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]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
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(
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t (θ)

σd
t (θ)

)2

+
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inf
α∈A d(θ)

∣
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−σd
t (θ)α +
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t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{
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2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
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U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)
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∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[
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(

XπF,F
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)
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+
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θ γθ

)
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0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
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logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
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s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
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+ inf
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t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣
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∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)
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+
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θ +πF

θ γθ

)

dθ
∣
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XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Indifference pricing with counterparty risk

where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where
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d(θ)) = E
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U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
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XπF,F
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+
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)
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∣

∣
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]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
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s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)
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t (θ)
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(
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t (θ)
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+
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1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
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t
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)2

+ inf
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−σF
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U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)
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∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[
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(

XπF,F
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)
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+
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)
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]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)
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t (θ)

)2
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
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(

µF
t

σF
t

)2

+ inf
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{
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∣
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−σF
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U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
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t −1)λdt
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, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
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t−(θ)(β
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t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
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mization problem as
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]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)
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,

where
(
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+
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows
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.

Finally, by equation (10), the utility indifference price can be
calculated by
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1
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− sup
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(EP∗ [U(Xπ
T −B)|Xπ
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)
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− sup
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)
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5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)
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βt = βF
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where
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, t ∈ (θ ,T ], (25)

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

, ,

Indifference pricing with counterparty risk

where CF = BF + 1
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T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as
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θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where
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∣Fθ ,X
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θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
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, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form
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x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
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(
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t (θ)

σd
t (θ)

)2
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inf
α∈A d(θ)

∣

∣

∣z
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t (θ)
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∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣
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p
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t
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t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
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U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
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0 V d
θ
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XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣XπF,F
0 = x

]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
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s dWs, θ ≤ t ≤ T,

with the driver
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∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(
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t

σF
t

)2

+ inf
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U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
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βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[
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(

XπF,F
T −CF

)

GT

+
∫ T
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θ
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XπF,F
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θ γθ

)

dθ
∣
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∣XπF,F
0 = x

]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
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t (θ)
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t (θ)

)2
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
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(

µF
t

σF
t

)2

+ inf
v∈A F

{
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∣
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−σF
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U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
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t σF
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t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣
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∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ
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XπF,F
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θ γθ

)

dθ
∣
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∣XπF,F
0 = x

]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
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logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
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s dWs, θ ≤ t ≤ T,

with the driver
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows
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t

σF
t
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.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
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log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
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log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,
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)

, 0 ≤ t ≤ T,

LF
0 = 1,

and
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t−(θ)(β
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t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF
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θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where
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U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)
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∣Fθ ,X
πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
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)
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+
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)
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]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(
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θ (θ)

)

=−exp
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))

,

where
(
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+
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∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣
z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t
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2p

(

µF
t

σF
t

)2

+ inf
v∈A F
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p
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∣

∣

∣

∣
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t
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t v
∣

∣

∣

∣
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p
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t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
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p logLd
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∣

∣
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,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
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∣
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
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the after-default value function V d
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Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows
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.

Finally, by equation (10), the utility indifference price can be
calculated by
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1
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log
(

− sup
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(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)
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1
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log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,
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and
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Also by equation (15), βt could be decomposed as
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where
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t (θ)
(σd
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form
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(
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=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(
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is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
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.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
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log
(

− sup
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(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)
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1
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log
(

− sup
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(E[U(Xπ
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0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
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t (θ) are governed by, respectively,
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5.	 Numerical results

For illustration, we price an European call option written on 
a security exposed to a risk of counterparty default. The density 
of default time is assumed to be an exponential distribution with 
constant intensity λ > 0: α(θ) = λe–λθ. This assumption implies 
the immersion property (see [1]) and consequently W

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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J = 0. Moreover, we assume the size of the jump γ is constant.
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]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form
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,

where
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
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logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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1. Introduction

In financial market, a firm’s price could be influenced by the
default of another counterparty. Generally, this default will in-
duce a drop in the firm’s stock value, though sometimes this
stock value could rise after a counterparty’s default. The drop
corresponds to a contagious loss when the asset is positively
correlated with the counterparty, while the rise often repre-
sents a negative correlation situation. Moreover, the default of
a counterparty can increase (or decrease) the volatility of the
firm’s stock, as observed in the past crisis. In this paper, we
study the pricing of an European option whose underlying as-
set is exposed to a counterparty risk. The global market infor-
mation is modeled by a progressive enlargement of a reference
filtration (see [1]), denoted by F, representing the default-free
information, and the dependence of default times τ is modeled
by a conditional density hypothesis. The default time τ is in
general a totally inaccessible stopping time with respect to the
enlarged filtration G, but is not an F-stopping time. To price
in this incomplete market we use the utility-indifference pric-
ing method first adapted by [2]. The advantage of this method
is the inclusion of its economic justification and risk aversion,
but the disadvantage is that we have to consider two optimal
investment problems with and without trading a derivative.
Our main contribution in this paper is the calculation of the
minimal entropy martingale measure (MEMM) for our pricing
model which included a jump and changes in the coefficients
of the price process after the default time of the counterparty.
By using this MEMM and the result in [3], we can reduce the
utility indifference pricing problem to just one optimal con-
trol problem and utilize its advantages for an exponential util-
ity function. We then employ the decomposition of the value
function before and after default proposed by [4], which sepa-
rates the problem into after-default and global before-default
subproblems, and solves each subproblem by considering a
backward stochastic differential equation (BSDE). We solve
the utility-indifference price with exponential utility function
for a vanilla option whose underlying asset is influenced by
counterparty risk in which the underlying asset experiences not
only a price’s jump but also changes in its drift and/or volatil-
ity.
The paper is structured as follows. Section 2 lays out the model

and the option pricing problem with a default density hypoth-
esis. In Section 3 we present the minimal entropy martin-
gale measure approach (MEMM) to solve the utility-difference
pricing problem as well as the resulting MEMM density of our
problem. Once we have this MEMM density, the option price
is obtained using the decomposition approach and the BSDE
calculation in Section 4. Finally we demonstrate the numerical
simulation of a basic European option in Section 5.

2. Basic definition and hypothesis
In our model, the risky asset subject to a counterparty risk is
denoted by a stochastic process S = (St)t≥0. Our objective is to
calculate the price of an European derivative (option) mature at
a finite time horizon T on this security.
We consider a probability space (Ω, F , P) equipped with a
Brownian motion W = (Wt), t ∈ [0,T ] over a finite time hori-
zon T < ∞ and its natural filtration F= (Ft), t ∈ [0,T ] satisfy-
ing the usual conditions of right-continuity and completeness.
The default time is defined by a non-negative and finite random
variable τ on (Ω, G , P). Before the default time τ , filtration F
represents the information accessible to the investors. When
the default occurs, the investors observe it and add this new in-
formation τ to the reference filtration F. We then introduce the
jump process Dt = Iτ≤t , 0 ≤ t ≤ T , and D = (Dt), t ∈ [0,T ] is
the filtration generated by this jump process. Finally, enlarged
progressive filtration F∨D, denoted by G= (Gt), t ∈ [0,T ] rep-
resents the global information available for the investors over
[0,T ].
In the sequel, we make the basic assumption on the default
time of the counterparty, called density hypothesis (see [1]).

HYPOTHESIS 1 DH. For any t ∈ [0,T ], the conditional dis-
tribution of τ given Ft admits a density with respect to the
Lebesgue measure, i.e. there exists a family of Ft ⊗B(R+)-
measurable positive functions (ω,θ)→ αt(θ) such that

P[τ ∈ dθ |Ft ] = αt(θ)dθ .

We note that for any θ ≥ 0, the process {αt(θ),0 ≤ t ≤ T}
is a (P,F)-martingale.
Under the hypothesis (DH), the (P,F)-Brownian motion W is
a G-semimartingale and admits an explicit decomposition in

1

-decomposition of the form
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where Lt

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver
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t (θ)
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∣
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∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows
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∣

∣

∣
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∣

∣

∣

∣
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t (t))
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.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
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t−
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βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
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d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)
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∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[
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+
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)
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]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
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logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
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t
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s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
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t (θ)

z− 1
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+
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
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(

µF
t

σF
t

)2

+ inf
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{
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∣
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t
−σF
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U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
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t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[
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(

XπF,F
T −CF

)
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+
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)
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]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
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t
Zd

s dWs, θ ≤ t ≤ T,

with the driver
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t (θ)
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t (θ)
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
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+ inf
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−σF

t v
∣

∣

∣

∣

2
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U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
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where LF
t and Ld
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d
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d
t (θ)dWt), θ < t ≤ T
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θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1
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T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as
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θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where
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U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)
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Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then
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+
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(
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))

,

where
(
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+
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s dWs, θ ≤ t ≤ T,
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d
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BSDE - as follows
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.

Finally, by equation (10), the utility indifference price can be
calculated by
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1
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log
(

− sup
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(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)
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1
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log
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− sup
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(E[U(Xπ
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)
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5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form
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where CF = BF + 1
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T is FT -measurable and Cd(θ) =
Bd(θ)+ 1
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T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as
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θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
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T (θ)−Cd(θ))αT (θ)
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θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p

µd
t (θ)

σd
t (θ)

∣

∣

∣

2
.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p
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t (θ)

σd
t (θ)

∣

∣

∣

2
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
2p

(

µd
t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣

∣z

−σd
t (θ)α +

1
p
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t (θ)
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t (θ)

∣

∣

∣

2
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
2p

(

µF
t

σF
t

)2

+ inf
v∈A F

{

p
2

∣

∣

∣

∣

z+
1
p

µF
t

σF
t
−σF

t v
∣

∣

∣

∣

2

− 1
p

U(y+ vγt −Y d
t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
θ (x,π

d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣

∣

∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[
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(
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)
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+
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)

dθ
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]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)

z− 1
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(
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)2
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t

z− 1
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(

µF
t
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)2

+ inf
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{
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−σF
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}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where

Jd
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d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣
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∣
Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
θ (x) < ∞ a.s. for all (θ ,x) ∈

[0,T ]× (0,∞), then

VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T
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θ +πF

θ γθ

)

dθ
∣
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∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(

−p
(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+

1
p

logαT (θ)

+
∫ T

t
f d(s,Zd

s ,θ)ds−
∫ T

t
Zd

s dWs, θ ≤ t ≤ T,

with the driver

f d(t,z,θ) = −µd
t (θ)

σd
t (θ)
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2p

(
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t (θ)

σd
t (θ)

)2

+
p
2

inf
α∈A d(θ)

∣

∣
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t (θ)α +

1
p
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t (θ)
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t (θ)

∣

∣

∣
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.

4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t
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t
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)2

+ inf
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∣

∣

∣
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∣

∣

∣

∣
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t (t))

}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
t = LF

t−

(

βF
t σF

t dWt − (eβF
t γ eφF

t −1)λdt
)

, 0 ≤ t ≤ T,

LF
0 = 1,

and

dLd
t (θ) = Ld

t−(θ)(β
d
t (θ)σ

d
t (θ)dWt), θ < t ≤ T

Ld
θ (θ) = LF

θ−(eβF
θ γ eφF

θ ).

Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where

β d
t (θ) =− µd

t (θ)
(σd

t (θ))2
, t ∈ (θ ,T ], (25)
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .
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,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
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VC(x) = supπF∈A F E
[

U
(

XπF,F
T −CF

)

GT

+
∫ T

0 V d
θ

(

XπF,F
θ +πF

θ γθ

)

dθ
∣

∣

∣
XπF,F

0 = x
]

, (21)

where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(
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(
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θ (θ)

))

,

where
(
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)

is a solution of the BSDE

Y d
t (θ) = Cd(θ)+
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+
∫ T

t
f d(s,Zd

s ,θ)ds−
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows

f (t,y,z) =−µF
t

σF
t
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+ inf
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}

.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
t and Ld

t (θ) are governed by, respectively,

dLF
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t −1)λdt
)
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0 = 1,

and
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t−(θ)(β
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t (θ)σ

d
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θ (θ) = LF

θ−(eβF
θ γ eφF
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Also by equation (15), βt could be decomposed as

βt = βF
t Iτ≥t +β d

t (τ)Iτ<t ,

where
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t (θ) =− µd

t (θ)
(σd
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where CF = BF + 1
p logLF

T is FT -measurable and Cd(θ) =
Bd(θ)+ 1

p logLd
T (θ) is measurable with respect to FT ⊗BR+ .

We define the value-function process of the after-default opti-
mization problem as

V d
θ (x) = esssupπd(θ)∈A d(θ)J

d
θ (x,π

d(θ)),
(θ ,x) ∈ [0,T ]× (0,∞),

where
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d(θ)) = E
[

U(Xπd(θ),d
T (θ)−Cd(θ))αT (θ)

∣
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Fθ ,X

πd(θ),d
θ (θ) = x

]

,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form

V d
θ (x) =U

(

x−Y d
θ (θ)

)

=−exp
(
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(

x−Y d
θ (θ)

))

,

where
(

Y d ,Zd
)

is a solution of the BSDE
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t (θ) = Cd(θ)+
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+
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T

t
f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows
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.

Finally, by equation (10), the utility indifference price can be
calculated by

Pr = x+
1
p

log
(

− sup
π∈A

(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)

= x+
1
p

log
(

− sup
π∈A

(E[U(Xπ
T −C)|Xπ

0 = x])
)

= Y0.

5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)
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βt = βF
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t (θ) =− µd

t (θ)
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Bd(θ)+ 1

p logLd
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,

and A d(θ) is the set of all admissble strategies after default.
By using the backward recursive framework with BSDEs sys-
tem as in [4] (see equations (3.8) and (3.9)), we have the de-
composition of the global optimization problem (18) in the fol-
lowing remark

REMARK 1. Assume that V d
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where A F is the set of all admissible strategies before default.

4.2. Solution of the optimal investment problem In our
model, we allow the drift and diffusion coefficients after the
default (µd ,σd) to depend on the default time τ . This assump-
tion makes this optimization problem unable to be solved if one
uses the classical dynamic programming approach. In order to
solve the problem, we first find the after-default value-function
and then the before-default one using a recursive BSDE frame-
work as in [4].

4.2.1. The after-default utility maximization problem
In the case of an exponential utility, the recursive framework
in [4, Theorem 4.2, case k = n] helps to find the solution of
the after-default value function V d

θ (x) in the following simple
form
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,

where
(
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4.2.2. The global before-default optimization problem
The solution of the global before-default optimization problem
is also obtained using another BSDE as in [4, Theorem 4.2].
We then get

VC(x) =U(x−Y0) =−exp(−p(x−Y0)), (22)

where (Yt ,Zt) is a solution of the BSDE

Yt =CF+
1
p

logGT +
∫ T
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f (s,Ys,Zs)ds−

∫ T

t
ZsdWs, (23)

for t ∈ [0,T ] (note that (23) is exactly the equation E0 in [4]),
with the driver depending on Y d

t - the solution of the previous
BSDE - as follows
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.

Finally, by equation (10), the utility indifference price can be
calculated by
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1
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log
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− sup
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(EP∗ [U(Xπ
T −B)|Xπ

0 = x])
)
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1
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log
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− sup
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(E[U(Xπ
T −C)|Xπ
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)
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5. Numerical results
For illustration, we price an European call option written on
a security exposed to a risk of counterparty default. The den-
sity of default time is assumed to be an exponential distribution
with constant intensity λ > 0: α(θ) = λe−λθ . This assump-
tion implies the immersion property (see [1]) and consequently
WG =W and J = 0. Moreover, we assume the jump’s size γ is
constant.
In the proof of Theorem 1 we have

dLt = Lt−

{

βtσtdWG
t +(eβt γ eφt −1)dMt

}

.

L has the G-decomposition of the form

Lt = LF
t Iτ>t +Ld(τ)t Iτ≤t , 0 ≤ t ≤ T, (24)

where LF
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t (θ) are governed by, respectively,
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and
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d
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Also by equation (15), βt could be decomposed as
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where
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t (θ) =− µd
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,  t 2 [θ, T ],� (25)

and βt

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
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adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
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σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics
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+(X̄ π̄
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Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics
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and decomposition
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,
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fault takes place at τ = θ , governed by
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We suppose that µF and σF are constant and σd
t (θ) is a deter-

ministic function. In this example, we consider volatility after
default σd in two cases:

• We expect that the volatility σd(θ) after default is greater
than the volatility σF before default, and the earlier the de-
fault takes place, the larger this gap becomes, for instance,
σd(θ) = σF(2− θ

T ).
• We also expect that the volatility σd(θ) after default is

greater than the volatility σF before default. However, af-
ter the instantaneous increase, we suppose that the volatil-
ity will decays overtime to the before-default value (Figure
1). For instance, we consider σd

t (θ) of the following form
σd

t (θ) = σF+ k1e−k2(t−θ).

We use a regression based method (see [10]) to simulate the
above BSDE processes to price the option with parameters in
Table 1.

In Figure 2, we present the dependence of indifference price
on jump’s size, classifying by three forms of volatility. We

Table 1
Results of parameters estimation
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Fig. 2. "Indifference price 1" : The volatility remains unchanged after
default. "Indifference price 2" : The relation between before-default
volatility and after-default volatility is σd(θ) = σF(2− θ

T ). "Indif-
ference price 3" : The relation between before-default volatility and
after-default volatility is σd

t (θ) = σF+0.2e−0.1(t−θ).

found that in the case where volatility is unchanged ("Indif-
ference price 1" curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Figure
3, we present the dependence of indifference price on jump’s
size and intensity of default in the case the volatility after de-
fault is unchanged.

6. Conclusion
This paper studies the valuation problem of a derivative un-
der the presence of counterparty risk for the trading underly-
ing asset, where the price, drift and volatility of the asset may
change abruptly. We use the minimal entropy martingale mea-
sure approach to solve the utility indifference equation. This
approach, combined with an exponential utility function, helps
reduce the problem to solving a unique optimization problem.
The main contribution of this work is the derivation of the
MEMM density in the above framework (with the presence of
counterparty risk). In order to solve the remaining optimiza-
tion problem and derive the derivative’s price, we employ the
decomposition approach proposed by [4], and find the value
function after and before the default successively. Finally, we
demonstrate numerical calculation for a standard European op-
tion and are able to quantify the impact of the default (jump’s
size, change in volatility) and its intensity on the derivative’s
price. This result is encouraging given the increasing aware-
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We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics
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t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics
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t = π̄t e−rt dSt
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= πt
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, 0 ≤ t ≤ T, (8)

and decomposition
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t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
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where XπF,F is the discounted wealth process before default,
governed by
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,

XπF,F
0 = X0− , 0 ≤ t ≤ T,
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We suppose that µF and σF are constant and σd
t (θ) is a deter-

ministic function. In this example, we consider volatility after
default σd in two cases:

• We expect that the volatility σd(θ) after default is greater
than the volatility σF before default, and the earlier the de-
fault takes place, the larger this gap becomes, for instance,
σd(θ) = σF(2− θ

T ).
• We also expect that the volatility σd(θ) after default is

greater than the volatility σF before default. However, af-
ter the instantaneous increase, we suppose that the volatil-
ity will decays overtime to the before-default value (Figure
1). For instance, we consider σd

t (θ) of the following form
σd

t (θ) = σF+ k1e−k2(t−θ).

We use a regression based method (see [10]) to simulate the
above BSDE processes to price the option with parameters in
Table 1.

In Figure 2, we present the dependence of indifference price
on jump’s size, classifying by three forms of volatility. We

Table 1
Results of parameters estimation

S K r µF = µd σF T λ p
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Fig. 2. "Indifference price 1" : The volatility remains unchanged after
default. "Indifference price 2" : The relation between before-default
volatility and after-default volatility is σd(θ) = σF(2− θ

T ). "Indif-
ference price 3" : The relation between before-default volatility and
after-default volatility is σd

t (θ) = σF+0.2e−0.1(t−θ).

found that in the case where volatility is unchanged ("Indif-
ference price 1" curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Figure
3, we present the dependence of indifference price on jump’s
size and intensity of default in the case the volatility after de-
fault is unchanged.

6. Conclusion
This paper studies the valuation problem of a derivative un-
der the presence of counterparty risk for the trading underly-
ing asset, where the price, drift and volatility of the asset may
change abruptly. We use the minimal entropy martingale mea-
sure approach to solve the utility indifference equation. This
approach, combined with an exponential utility function, helps
reduce the problem to solving a unique optimization problem.
The main contribution of this work is the derivation of the
MEMM density in the above framework (with the presence of
counterparty risk). In order to solve the remaining optimiza-
tion problem and derive the derivative’s price, we employ the
decomposition approach proposed by [4], and find the value
function after and before the default successively. Finally, we
demonstrate numerical calculation for a standard European op-
tion and are able to quantify the impact of the default (jump’s
size, change in volatility) and its intensity on the derivative’s
price. This result is encouraging given the increasing aware-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

 = 

Fig. 1. For example : σF = 0.2, σd
t (θ) = σF+0.1e−3(t−θ) and τ =

0.3.

and βF
t is solution of

µF
t +(σF

t )
2βF

t + γλeφF
t eβF

t γ = 0, t ∈ [0,T ], (26)

where φF
t solves the following ODE

(φF
t )

′ = FF
t (β ,φ)+

d
dt

(

∫ T

t
Fd

s (t)(β )ds
)

, t ∈ (0,T ),

φF
T = 0.

Furthermore, βF
t admits the following expression, using Lam-

bert W-function (see [9])

βF
t =−

µF
t + (σF

t )2wt
γ

(σF
t )

2
, t ∈ [0,T ], (27)

where

wt = lambertW





γ2λ exp(φF
t )exp

(

−γµF
t

(σF
t )2

)

(σF
t )

2



 , t ∈ [0,T ],

and we have wt ∈ R because
γ2λ exp(φF

t )exp
(

−γµFt
(σF

t )2

)

(σF
t )2 > 0 >− 1

e .

We suppose that µF and σF are constant and σd
t (θ) is a deter-

ministic function. In this example, we consider volatility after
default σd in two cases:

• We expect that the volatility σd(θ) after default is greater
than the volatility σF before default, and the earlier the de-
fault takes place, the larger this gap becomes, for instance,
σd(θ) = σF(2− θ

T ).
• We also expect that the volatility σd(θ) after default is

greater than the volatility σF before default. However, af-
ter the instantaneous increase, we suppose that the volatil-
ity will decays overtime to the before-default value (Figure
1). For instance, we consider σd

t (θ) of the following form
σd

t (θ) = σF+ k1e−k2(t−θ).

We use a regression based method (see [10]) to simulate the
above BSDE processes to price the option with parameters in
Table 1.

In Figure 2, we present the dependence of indifference price
on jump’s size, classifying by three forms of volatility. We

Table 1
Results of parameters estimation

S K r µF = µd σF T λ p

100 100 0.05 0.05 0.2 1 0.1 1

Jump size
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

U
ID

 p
ric

e

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8
B-S
Indifference price 1
Indifference price 2
Indifference price 3

Fig. 2. "Indifference price 1" : The volatility remains unchanged after
default. "Indifference price 2" : The relation between before-default
volatility and after-default volatility is σd(θ) = σF(2− θ

T ). "Indif-
ference price 3" : The relation between before-default volatility and
after-default volatility is σd

t (θ) = σF+0.2e−0.1(t−θ).

found that in the case where volatility is unchanged ("Indif-
ference price 1" curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Figure
3, we present the dependence of indifference price on jump’s
size and intensity of default in the case the volatility after de-
fault is unchanged.

6. Conclusion
This paper studies the valuation problem of a derivative un-
der the presence of counterparty risk for the trading underly-
ing asset, where the price, drift and volatility of the asset may
change abruptly. We use the minimal entropy martingale mea-
sure approach to solve the utility indifference equation. This
approach, combined with an exponential utility function, helps
reduce the problem to solving a unique optimization problem.
The main contribution of this work is the derivation of the
MEMM density in the above framework (with the presence of
counterparty risk). In order to solve the remaining optimiza-
tion problem and derive the derivative’s price, we employ the
decomposition approach proposed by [4], and find the value
function after and before the default successively. Finally, we
demonstrate numerical calculation for a standard European op-
tion and are able to quantify the impact of the default (jump’s
size, change in volatility) and its intensity on the derivative’s
price. This result is encouraging given the increasing aware-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

,  t 2 [θ, T ],

Fig. 1. For example : σF = 0.2, σd
t (θ) = σF+0.1e−3(t−θ) and τ =

0.3.

and βF
t is solution of

µF
t +(σF

t )
2βF

t + γλeφF
t eβF

t γ = 0, t ∈ [0,T ], (26)

where φF
t solves the following ODE

(φF
t )

′ = FF
t (β ,φ)+

d
dt

(

∫ T

t
Fd

s (t)(β )ds
)

, t ∈ (0,T ),

φF
T = 0.

Furthermore, βF
t admits the following expression, using Lam-

bert W-function (see [9])

βF
t =−

µF
t + (σF

t )2wt
γ

(σF
t )

2
, t ∈ [0,T ], (27)

where

wt = lambertW





γ2λ exp(φF
t )exp

(

−γµF
t

(σF
t )2

)

(σF
t )

2



 , t ∈ [0,T ],

and we have wt ∈ R because
γ2λ exp(φF

t )exp
(

−γµFt
(σF

t )2

)

(σF
t )2 > 0 >− 1

e .

We suppose that µF and σF are constant and σd
t (θ) is a deter-

ministic function. In this example, we consider volatility after
default σd in two cases:

• We expect that the volatility σd(θ) after default is greater
than the volatility σF before default, and the earlier the de-
fault takes place, the larger this gap becomes, for instance,
σd(θ) = σF(2− θ

T ).
• We also expect that the volatility σd(θ) after default is

greater than the volatility σF before default. However, af-
ter the instantaneous increase, we suppose that the volatil-
ity will decays overtime to the before-default value (Figure
1). For instance, we consider σd

t (θ) of the following form
σd

t (θ) = σF+ k1e−k2(t−θ).

We use a regression based method (see [10]) to simulate the
above BSDE processes to price the option with parameters in
Table 1.

In Figure 2, we present the dependence of indifference price
on jump’s size, classifying by three forms of volatility. We

Table 1
Results of parameters estimation

S K r µF = µd σF T λ p

100 100 0.05 0.05 0.2 1 0.1 1

Jump size
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

U
ID

 p
ric

e
10.4

10.6

10.8

11

11.2

11.4

11.6

11.8
B-S
Indifference price 1
Indifference price 2
Indifference price 3

Fig. 2. "Indifference price 1" : The volatility remains unchanged after
default. "Indifference price 2" : The relation between before-default
volatility and after-default volatility is σd(θ) = σF(2− θ

T ). "Indif-
ference price 3" : The relation between before-default volatility and
after-default volatility is σd

t (θ) = σF+0.2e−0.1(t−θ).

found that in the case where volatility is unchanged ("Indif-
ference price 1" curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Figure
3, we present the dependence of indifference price on jump’s
size and intensity of default in the case the volatility after de-
fault is unchanged.

6. Conclusion
This paper studies the valuation problem of a derivative un-
der the presence of counterparty risk for the trading underly-
ing asset, where the price, drift and volatility of the asset may
change abruptly. We use the minimal entropy martingale mea-
sure approach to solve the utility indifference equation. This
approach, combined with an exponential utility function, helps
reduce the problem to solving a unique optimization problem.
The main contribution of this work is the derivation of the
MEMM density in the above framework (with the presence of
counterparty risk). In order to solve the remaining optimiza-
tion problem and derive the derivative’s price, we employ the
decomposition approach proposed by [4], and find the value
function after and before the default successively. Finally, we
demonstrate numerical calculation for a standard European op-
tion and are able to quantify the impact of the default (jump’s
size, change in volatility) and its intensity on the derivative’s
price. This result is encouraging given the increasing aware-
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We suppose that µF and σF are constant and σd
t (θ) is a deter-

ministic function. In this example, we consider volatility after
default σd in two cases:

• We expect that the volatility σd(θ) after default is greater
than the volatility σF before default, and the earlier the de-
fault takes place, the larger this gap becomes, for instance,
σd(θ) = σF(2− θ

T ).
• We also expect that the volatility σd(θ) after default is

greater than the volatility σF before default. However, af-
ter the instantaneous increase, we suppose that the volatil-
ity will decays overtime to the before-default value (Figure
1). For instance, we consider σd

t (θ) of the following form
σd

t (θ) = σF+ k1e−k2(t−θ).

We use a regression based method (see [10]) to simulate the
above BSDE processes to price the option with parameters in
Table 1.

In Figure 2, we present the dependence of indifference price
on jump’s size, classifying by three forms of volatility. We

Table 1
Results of parameters estimation
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Fig. 2. "Indifference price 1" : The volatility remains unchanged after
default. "Indifference price 2" : The relation between before-default
volatility and after-default volatility is σd(θ) = σF(2− θ

T ). "Indif-
ference price 3" : The relation between before-default volatility and
after-default volatility is σd

t (θ) = σF+0.2e−0.1(t−θ).

found that in the case where volatility is unchanged ("Indif-
ference price 1" curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Figure
3, we present the dependence of indifference price on jump’s
size and intensity of default in the case the volatility after de-
fault is unchanged.

6. Conclusion
This paper studies the valuation problem of a derivative un-
der the presence of counterparty risk for the trading underly-
ing asset, where the price, drift and volatility of the asset may
change abruptly. We use the minimal entropy martingale mea-
sure approach to solve the utility indifference equation. This
approach, combined with an exponential utility function, helps
reduce the problem to solving a unique optimization problem.
The main contribution of this work is the derivation of the
MEMM density in the above framework (with the presence of
counterparty risk). In order to solve the remaining optimiza-
tion problem and derive the derivative’s price, we employ the
decomposition approach proposed by [4], and find the value
function after and before the default successively. Finally, we
demonstrate numerical calculation for a standard European op-
tion and are able to quantify the impact of the default (jump’s
size, change in volatility) and its intensity on the derivative’s
price. This result is encouraging given the increasing aware-
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fault takes place, the larger this gap becomes, for instance,
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ter the instantaneous increase, we suppose that the volatil-
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1). For instance, we consider σd
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We use a regression based method (see [10]) to simulate the
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found that in the case where volatility is unchanged ("Indif-
ference price 1" curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Figure
3, we present the dependence of indifference price on jump’s
size and intensity of default in the case the volatility after de-
fault is unchanged.

6. Conclusion
This paper studies the valuation problem of a derivative un-
der the presence of counterparty risk for the trading underly-
ing asset, where the price, drift and volatility of the asset may
change abruptly. We use the minimal entropy martingale mea-
sure approach to solve the utility indifference equation. This
approach, combined with an exponential utility function, helps
reduce the problem to solving a unique optimization problem.
The main contribution of this work is the derivation of the
MEMM density in the above framework (with the presence of
counterparty risk). In order to solve the remaining optimiza-
tion problem and derive the derivative’s price, we employ the
decomposition approach proposed by [4], and find the value
function after and before the default successively. Finally, we
demonstrate numerical calculation for a standard European op-
tion and are able to quantify the impact of the default (jump’s
size, change in volatility) and its intensity on the derivative’s
price. This result is encouraging given the increasing aware-
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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We suppose that µF and σF are constant and σd
t (θ) is a deter-

ministic function. In this example, we consider volatility after
default σd in two cases:

• We expect that the volatility σd(θ) after default is greater
than the volatility σF before default, and the earlier the de-
fault takes place, the larger this gap becomes, for instance,
σd(θ) = σF(2− θ

T ).
• We also expect that the volatility σd(θ) after default is

greater than the volatility σF before default. However, af-
ter the instantaneous increase, we suppose that the volatil-
ity will decays overtime to the before-default value (Figure
1). For instance, we consider σd

t (θ) of the following form
σd

t (θ) = σF+ k1e−k2(t−θ).

We use a regression based method (see [10]) to simulate the
above BSDE processes to price the option with parameters in
Table 1.

In Figure 2, we present the dependence of indifference price
on jump’s size, classifying by three forms of volatility. We

Table 1
Results of parameters estimation

S K r µF = µd σF T λ p

100 100 0.05 0.05 0.2 1 0.1 1

Jump size
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

U
ID

 p
ric

e

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8
B-S
Indifference price 1
Indifference price 2
Indifference price 3

Fig. 2. "Indifference price 1" : The volatility remains unchanged after
default. "Indifference price 2" : The relation between before-default
volatility and after-default volatility is σd(θ) = σF(2− θ

T ). "Indif-
ference price 3" : The relation between before-default volatility and
after-default volatility is σd

t (θ) = σF+0.2e−0.1(t−θ).

found that in the case where volatility is unchanged ("Indif-
ference price 1" curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Figure
3, we present the dependence of indifference price on jump’s
size and intensity of default in the case the volatility after de-
fault is unchanged.

6. Conclusion
This paper studies the valuation problem of a derivative un-
der the presence of counterparty risk for the trading underly-
ing asset, where the price, drift and volatility of the asset may
change abruptly. We use the minimal entropy martingale mea-
sure approach to solve the utility indifference equation. This
approach, combined with an exponential utility function, helps
reduce the problem to solving a unique optimization problem.
The main contribution of this work is the derivation of the
MEMM density in the above framework (with the presence of
counterparty risk). In order to solve the remaining optimiza-
tion problem and derive the derivative’s price, we employ the
decomposition approach proposed by [4], and find the value
function after and before the default successively. Finally, we
demonstrate numerical calculation for a standard European op-
tion and are able to quantify the impact of the default (jump’s
size, change in volatility) and its intensity on the derivative’s
price. This result is encouraging given the increasing aware-
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We suppose that µF and σF are constant and σd
t (θ) is a deter-

ministic function. In this example, we consider volatility after
default σd in two cases:

• We expect that the volatility σd(θ) after default is greater
than the volatility σF before default, and the earlier the de-
fault takes place, the larger this gap becomes, for instance,
σd(θ) = σF(2− θ

T ).
• We also expect that the volatility σd(θ) after default is

greater than the volatility σF before default. However, af-
ter the instantaneous increase, we suppose that the volatil-
ity will decays overtime to the before-default value (Figure
1). For instance, we consider σd

t (θ) of the following form
σd

t (θ) = σF+ k1e−k2(t−θ).

We use a regression based method (see [10]) to simulate the
above BSDE processes to price the option with parameters in
Table 1.

In Figure 2, we present the dependence of indifference price
on jump’s size, classifying by three forms of volatility. We

Table 1
Results of parameters estimation

S K r µF = µd σF T λ p

100 100 0.05 0.05 0.2 1 0.1 1

Jump size
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

U
ID

 p
ric

e

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8
B-S
Indifference price 1
Indifference price 2
Indifference price 3

Fig. 2. "Indifference price 1" : The volatility remains unchanged after
default. "Indifference price 2" : The relation between before-default
volatility and after-default volatility is σd(θ) = σF(2− θ

T ). "Indif-
ference price 3" : The relation between before-default volatility and
after-default volatility is σd

t (θ) = σF+0.2e−0.1(t−θ).

found that in the case where volatility is unchanged ("Indif-
ference price 1" curve), the utility indifference price without
jump (that is, jump’s size is 0) is equal to the Black-Scholes
price of 10.4506 as expected. Furthermore, the indifference
price is larger as the volatility after default is larger. In Figure
3, we present the dependence of indifference price on jump’s
size and intensity of default in the case the volatility after de-
fault is unchanged.

6. Conclusion
This paper studies the valuation problem of a derivative un-
der the presence of counterparty risk for the trading underly-
ing asset, where the price, drift and volatility of the asset may
change abruptly. We use the minimal entropy martingale mea-
sure approach to solve the utility indifference equation. This
approach, combined with an exponential utility function, helps
reduce the problem to solving a unique optimization problem.
The main contribution of this work is the derivation of the
MEMM density in the above framework (with the presence of
counterparty risk). In order to solve the remaining optimiza-
tion problem and derive the derivative’s price, we employ the
decomposition approach proposed by [4], and find the value
function after and before the default successively. Finally, we
demonstrate numerical calculation for a standard European op-
tion and are able to quantify the impact of the default (jump’s
size, change in volatility) and its intensity on the derivative’s
price. This result is encouraging given the increasing aware-
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We suppose that μ

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
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We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t
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S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt
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St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd
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where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
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,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by
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is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
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S̄t−
+(X̄ π̄
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t has the

following dynamics

dXπ
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and decomposition
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t = XπF,F

t Iτ>t +Xπd(τ),d
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t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,
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governed by
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SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
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(2 ¡ θT).
●	 We also expect that the volatility σd(θ) after default is 

greater than the volatility σ

terms of the density α given by (see [1, 5, 6])
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that
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We can see from (4), (5) and (6) that the dynamics of the dis-
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dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF
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,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by
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 before default. However, 
after the instantaneous increase, we suppose that the vol-
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form σt
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terms of the density α given by (see [1, 5, 6])

WG
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∫ t

0
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where WG is a (P,G)-Brownian motion and
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variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ
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where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process
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∫ t
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is a (P,G)-martingale (see [1]), where
∫ t
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αθ (θ)
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dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
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which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
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 + k1e–k2(t¡θ).

price of 10.4506 as expected. Furthermore, the indifference 
price is larger as the volatility after default is larger. In Fig. 3, 
we present the dependence of indifference price on the size of 
the jump and intensity of default in the case the volatility after 
default is unchanged.

Fig. 1. For example: σ

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
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∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd
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t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
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which ensure that the dynamics of the discounted price process
is well defined.
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We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
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• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
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strategy). We also define the discounted strategy process πt =
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t has the
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,
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 = 0.2, σt
d(θ) = σ

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
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∫ t∧τ
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Gs
+

∫ t

τ

d〈W,α(τ)〉s
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, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
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αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],
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which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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 + 0.1e–3(t¡θ) and τ = 0.3

We use a regression based method (see [10]) to simulate the 
above BSDE processes to price the option with parameters in 
Table 1.

Table 1 
Results of parameters estimation

S K r μ

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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 = μd σ

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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In Fig. 2, we present the dependence of indifference price 
on jump’s size, classifying by three forms of volatility. We 
found that in the case where volatility is unchanged (“Indif-
ference price 1” curve), the utility indifference price without 
jump (that is, jump’s size is 0) is equal to the Black-Scholes 

Fig. 2. “Indifference price 1”: The volatility remains unchanged after 
default. “Indifference price 2”: The relation between before-default 
volatility and after-default volatility is σd(θ) = σ

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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(2 ¡ θT . “Indifference 
price 3”: The relation between before-default volatility and after-de-

fault volatility is σt
d(θ) = σ

terms of the density α given by (see [1, 5, 6])

WG
t =Wt −

∫ t

0
Jsds, 0 ≤ t ≤ T, (1)

where WG is a (P,G)-Brownian motion and
∫ t

0 Jsds is a finite
variation G-adapted process defined by
∫ t

0
Jsds =

∫ t∧τ

0

d〈W,G〉s

Gs
+

∫ t

τ

d〈W,α(τ)〉s

αs(τ)
, 0 ≤ t ≤ T,

where Gt = P[τ > t|Ft ] is the conditional survival probability.
J admits the following decomposition

Jt = JFt Iτ>t + Jd
t (τ)Iτ≤t , 0 ≤ t ≤ T.

Furthermore, the process

Mt = Dt −
∫ t

0
Asds, 0 ≤ t ≤ T, (2)

is a (P,G)-martingale (see [1]), where
∫ t

0
Asds =

∫ τ∧t

0

αθ (θ)
Gθ

dθ , 0 ≤ t ≤ T,

is the (P,G)-predictable compensator of jump process D. By
denoting λt =

αt (t)
Gt

, we have

At = λt(1−Dt), 0 ≤ t ≤ T. (3)

• Asset model:
The dynamics of the risky asset subject to a counterparty risk
is represented by a G-adapted discounted price process such
that

St = SFt Iτ>t +Sd
t (τ)Iτ≤t , t ∈ [0,T ], (4)

where SF is an F-adapted process representing the discounted
price process in the default-free market, governed by:

dSFt = SFt (µ
F
t dt +σF

t dWt), (5)
SF0 = S0− , 0 ≤ t ≤ T,

and
{

Sd
t (θ),θ ≤ t ≤ T,θ ∈ [0,T ]

}

is a measurable (in θ ) fam-
ily of F-adapted processes representing the discounted price
process after the default at time τ = θ , governed by

dSd
t (θ) = Sd

t (θ)(µ
d
t (θ)dt +σd

t (θ)dWt), (6)
Sd

θ (θ) = SFθ−(1+ γθ ), θ < t ≤ T,

where µF, σF are F-adapted processes and µd
t (θ),σd

t (θ) are
Ft ⊗B(R+) measurable functions for all t ∈ [0,T ] and γ is F-
adapted process that represents the percentage price’s change
immediately at the default time of the counterparty. We as-
sume that for all t ∈ [0,T ], σt > 0 and γt ∈ (−1,1) almost ev-
erywhere, and the following integrability condition is satisfied
for all θ ∈ [0,T ],

∫ T

0

(

µF
t

σF
t

)2

dt +
∫ T

θ

(

µd
t (θ)

σd
t (θ)

)2

dt

+
∫ T

0

(

σF
t

)2
dt +

∫ T

θ

(

σd
t (θ)

)2
dt < ∞, a.s,

which ensure that the dynamics of the discounted price process
is well defined.
We denote two G-adapted processes µ and σ by

µt = µF
t Iτ>t +µd

t (τ)Iτ≤t ,
σt = σF

t Iτ>t +σd
t (τ)Iτ≤t .

We can see from (4), (5) and (6) that the dynamics of the dis-
counted stock price process S can be written as:

dSt = St−(µtdt +σtdWt + γtdDt), 0 ≤ t ≤ T. (7)

The interpretation of the contagion risk model for the dis-
counted asset price S is as follows. The process SF represents
the asset price before the default, and there is a jump on the
stock price at the default time of the counterparty, whose size
is represented by the process γ , which may take positive or
negative values, corresponding to the proportional gain or loss
on the stock price. After the default at time τ = θ , Sd(θ)
represents the asset price process, where there is a change in
the coefficients depending on the default time, for example, if
we expect that the volatility σd(θ) after default is greater than
the volatility σF before default, we can specify σd(θ) to be of
the form σd

t (θ) = σF+ae−b(t−θ), a > 0.

• Wealth dynamic:
Let π̄ = (π̄t)t∈[0,T ], which is G-predictable, denote the amount
of wealth invested at time t in the stock (also called trading
strategy). We also define the discounted strategy process πt =
e−rt π̄t , where r is the risk-free rate. Similarly to the previous
section, π̄ could be decomposed into the form

π̄t = π̄F
t Iτ≥t + π̄d

t (τ)Iτ<t , 0 ≤ t ≤ T.

The investor’s wealth, decomposed as

X̄ π̄
t = X̄ π̄,F

t Iτ>t + X̄ π̄,d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

is a G-adapted process following the dynamics

dX̄ π̄
t = π̄t

dS̄t

S̄t−
+(X̄ π̄

t − π̄t)rdt, 0 ≤ t ≤ T,

where S̄t = ertSt is the stock price process.
Finally, the discounted wealth process Xπ

t = e−rt X̄ π̄
t has the

following dynamics

dXπ
t = π̄t e−rt dSt

St−
= πt

dSt

St−
, 0 ≤ t ≤ T, (8)

and decomposition

Xπ
t = XπF,F

t Iτ>t +Xπd(τ),d
t (τ)Iτ≤t , 0 ≤ t ≤ T,

πt = πF
t Iτ≥t +πd

t (τ)Iτ<t , 0 ≤ t ≤ T,

where XπF,F is the discounted wealth process before default,
governed by

dXπF,F
t = πF

t
dSFt
SFt

,

XπF,F
0 = X0− , 0 ≤ t ≤ T,

and Xπd(θ),d(θ) is the discounted wealth process after the de-
fault takes place at τ = θ , governed by

dXπd(θ),d
t (θ) = πd

t (θ)
dSd

t (θ)
Sd

t (θ)
, θ < t ≤ T,

Xπd(θ),d
θ (θ) = Xπ,F

θ− +πF
θ γθ .
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Fig. 3. The changing of price by intensity and jump size

6.	 Conclusion

This paper studies the valuation problem of a derivative in the 
presence of counterparty risk for the trading underlying asset, 
where the price, drift and volatility of the asset may change 
abruptly. We use the minimal entropy martingale measure ap-
proach to solve the utility indifference equation. This approach, 
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combined with an exponential utility function, helps reduce the 
problem to solving a unique optimization problem. The main 
contribution of this work is the derivation of the MEMM den-
sity in the above framework (with the presence of counterparty 
risk). In order to solve the remaining optimization problem and 
derive the derivative’s price, we employ the decomposition ap-
proach proposed by [4], and find the value function after and 
before the default successively. Finally, we demonstrate numer-
ical calculation for a standard European option and are able to 
quantify the impact of the default (size of the jump, change in 
volatility) and its intensity on the derivative’s price. This result 
is encouraging given the increasing awareness of counterparty 
risk in the financial market.
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