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Abstract. The paper is devoted to the construction of observers for linear fractional multi–order difference systems with Riemann–Liouville– 
and Grünwald–Letnikov–type operators. Basing on the Z-transform method the sufficient condition for the existence of the presented observers 
is established. The behaviour of the constructed observer is demonstrated in numerical examples.
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h = 1 has been studied in [24, 25]. The aim of the present paper 
is to study the construction of the full-order observers for linear 
fractional muti–order discrete–time systems with the Riemann–
Liouville– and Grünwald–Letnikov–type difference operators 
with the step h > 0. We restrict the design of the observers for 
the systems whose fractional orders are from the interval (0, 1], 
because the systems with fractional orders higher than one can 
be always transform to systems with orders less than or equal 
to one, see for instance [26].

The paper is organized in the following way. Section 2 
gathers preliminary notations, facts and definitions needed in 
the sequel. In Section 3 the initial value problems for fractional 
multi–order systems are presented. The main results of the 
paper, namely the construction of the fractional observer, that 
estimates the unknown state vector, is presented in Section 5. 
Since the fractional order system corresponding to the error 
vector should be asymptotically stable in order to guarantee 
the estimation of the unknown state of the system by the ob-
server, the condition for asymptotic stability of fractional order 
systems is given in Section 4. Additionally, two examples that 
illustrate our results are presented. Finally, the conclusions are 
drawn.

2.	 Preliminaries

Let h > 0, a 2 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
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α
j

)
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where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R
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1. Introduction
Recently, there is a large increase in interest of fractional cal-
culus application as well theoretical and practical points of
view, see for example [1–12]. Basic information, ideas and
some applications of fractional calculus can be found for ex-
ample in [5, 13, 14]. In the paper we focus on systems with
forward h-difference operators, so we restrict our consider-
ation to the discrete fractional calculus that was initiated in
[15]. This work found its continuation in [8,16–19]. Recently,
nabla and delta derivatives are defined and generalized to frac-
tional orders, obtaining two formulations that are discrete ver-
sions of the Grünwald—Letnikov derivatives, see [20]. Mod-
ern technical applications and signals force to discretization
of the considered systems and as the consequence a replace-
ment of derivatives by differences with small enough steps.
The main reason of considering forward difference operators
is that the delta-domain approach has been promoted as an
effective tool for dynamic system modeling and control. In
[21] the authors demonstrate that the numerical properties of
structure detection are improved by a delta-domain model and
such delta-domain models provide models closely linked to the
continuous-time systems. Additionally, the delta-domain ap-
proach allows to address the question of preservation of the
system properties under Euler discretization scheme.

The important problem in the systems’ theory is the esti-
mation of the unknown state of a system from outputs and in-
puts. This problem is known as “observing the state", hence
the name “observer". Therefore the estimation of the unknown
state is the task of the observer. In the construction of observers
the outputs and inputs applied to the systems are used. In
the last few decades state estimators (or observers) have been
widely used in control and signal processing, see for instance
[22, 23]. The problem of the observer synthesis for fractional
discrete–time systems with Grünwald–Letnikov–type operator
and the step h = 1 has been studied in [24, 25]. The aim of
the present paper is to study the construction of the full-order
observers for linear fractional muti–order discrete–time sys-
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tems with the Riemann–Liouville– and Grünwald–Letnikov–
type difference operators with the step h > 0. We restrict the
design of the observers for the systems whose fractional orders
are from the interval (0,1], because the systems with fractional
orders higher than one can be always transform to systems with
orders less than or equal to one, see for instance [26].

The paper is organized in the following way. Section 2 gath-
ers preliminary notations, facts and definitions needed in the
sequel. In Section 3 the initial value problems for fractional
multi–order systems are presented. The main results of the
paper, namely the construction of the fractional observer, that
estimates the unknown state vector, is presented in Section 5.
Since the fractional order system corresponding to the error
vector should be asymptotically stable in order to guarantee
the estimation of the unknown state of the system by the ob-
server, the condition for asymptotic stability of fractional order
systems is given in Section 4. Additionally, two examples that
illustrate our results are presented. Finally, the conclusions are
drawn.

2. Preliminaries
Let h > 0, a ∈ R and (hN)a := {a,a + h,a + 2h, ...}. For
a function x : (hN)a → R the forward h-difference operator
is defined as (see [27]) (∆hx)(t) := x(t+h)−x(t)

h , where t ∈

(hN)a and (∆0
hx)(t) := x(t). Let k ∈ N0 and ∆k

h := ∆h ◦ · · · ◦
∆h is k-fold application of operator ∆h. Then (∆k

hx)(t) =
h−k ∑k

i=0(−1)k−i(k
i
)
x(t + ih) . Let us introduce the family of

sequences on Z parameterized by µ > 0 and given by the val-
ues: c(µ)(q) =

(q−µ−1
q

)
= (−1)q(µ

q
)

for q ∈ N0 and cµ(q) = 0
for q < 0.

DEFINITION 1. For a function x : (hN)a → R the frac-
tional h-sum of order α > 0 is given by

(
a∆−α

h x
)
(t) :=

hα
(

c(−α) ∗ x
)
(q) , where t = a+qh, x(q) := x(a+qh), q∈N0

and “∗" denotes a convolution operator, i.e.
(

c(−α) ∗ x
)
(q) :=

∑q
s=0

(q−s+α−1
q−s

)
x(s) . Additionally, we define

(
a∆0

hx
)
(t) :=

x(t).

For a = 0 we will write shortly ∆−α
h instead of 0∆−α

h . Note

1

 parameterized 
by μ > 0 and given by the values: c(μ)(q) = (q ¡ μ ¡ 1

q ) = (–1)q(μq)  
for q 2 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

0 and cμ(q) = 0 for q < 0.

Definition 1. For a function x : (h
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l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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1
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xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0
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hα(t)
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erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
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In [15, 16], three general types of variable order derivative
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of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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0 and “¤” denotes a con-
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1.	 Introduction

Recently, there is a large increase in interest of fractional cal-
culus application as well theoretical and practical points of 
view, see for example [1–12]. Basic information, ideas and 
some applications of fractional calculus can be found for ex-
ample in [5, 13,14]. In the paper we focus on systems with 
forward h-difference operators, so we restrict our consideration 
to the discrete fractional calculus that was initiated in [15]. 
This work found its continuation in [8, 16–19]. Recently, nabla 
and delta derivatives are defined and generalized to fractional 
orders, obtaining two formulations that are discrete versions of 
the Grünwald–Letnikov derivatives, see [20]. Modern technical 
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that the numerical properties of structure detection are improved 
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discretization scheme.
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decades state estimators (or observers) have been widely used 
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problem of the observer synthesis for fractional discrete–time 
systems with Grünwald–Letnikov–type operator and the step 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
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hαl
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∑
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(

αl
j
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xl− j.
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
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(t) and x(q) := x(a+qh). Then
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= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα
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, where t ∈ (hN)a and x̃(s) =
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For simplicity of notation if h = 1, then we write:
a
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∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α
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)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α
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then for |z|> 1 we have
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(−1)q
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(
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)
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(
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(1)

and
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1− z−1)α]
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. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t − qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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–α is defined as the convolution of two 

sequences, namely sequences c(–α) and x–. Hence by the fact 
that the Z-transform of the convolution of two sequences is the 
product of the Z-transforms of the separate sequences one gets 
the following proposition.
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1. Introduction
Recently, there is a large increase in interest of fractional cal-
culus application as well theoretical and practical points of
view, see for example [1–12]. Basic information, ideas and
some applications of fractional calculus can be found for ex-
ample in [5, 13, 14]. In the paper we focus on systems with
forward h-difference operators, so we restrict our consider-
ation to the discrete fractional calculus that was initiated in
[15]. This work found its continuation in [8,16–19]. Recently,
nabla and delta derivatives are defined and generalized to frac-
tional orders, obtaining two formulations that are discrete ver-
sions of the Grünwald—Letnikov derivatives, see [20]. Mod-
ern technical applications and signals force to discretization
of the considered systems and as the consequence a replace-
ment of derivatives by differences with small enough steps.
The main reason of considering forward difference operators
is that the delta-domain approach has been promoted as an
effective tool for dynamic system modeling and control. In
[21] the authors demonstrate that the numerical properties of
structure detection are improved by a delta-domain model and
such delta-domain models provide models closely linked to the
continuous-time systems. Additionally, the delta-domain ap-
proach allows to address the question of preservation of the
system properties under Euler discretization scheme.

The important problem in the systems’ theory is the esti-
mation of the unknown state of a system from outputs and in-
puts. This problem is known as “observing the state", hence
the name “observer". Therefore the estimation of the unknown
state is the task of the observer. In the construction of observers
the outputs and inputs applied to the systems are used. In
the last few decades state estimators (or observers) have been
widely used in control and signal processing, see for instance
[22, 23]. The problem of the observer synthesis for fractional
discrete–time systems with Grünwald–Letnikov–type operator
and the step h = 1 has been studied in [24, 25]. The aim of
the present paper is to study the construction of the full-order
observers for linear fractional muti–order discrete–time sys-

∗e-mail: m.wyrwas@pb.edu.pl

tems with the Riemann–Liouville– and Grünwald–Letnikov–
type difference operators with the step h > 0. We restrict the
design of the observers for the systems whose fractional orders
are from the interval (0,1], because the systems with fractional
orders higher than one can be always transform to systems with
orders less than or equal to one, see for instance [26].

The paper is organized in the following way. Section 2 gath-
ers preliminary notations, facts and definitions needed in the
sequel. In Section 3 the initial value problems for fractional
multi–order systems are presented. The main results of the
paper, namely the construction of the fractional observer, that
estimates the unknown state vector, is presented in Section 5.
Since the fractional order system corresponding to the error
vector should be asymptotically stable in order to guarantee
the estimation of the unknown state of the system by the ob-
server, the condition for asymptotic stability of fractional order
systems is given in Section 4. Additionally, two examples that
illustrate our results are presented. Finally, the conclusions are
drawn.

2. Preliminaries
Let h > 0, a ∈ R and (hN)a := {a,a + h,a + 2h, ...}. For
a function x : (hN)a → R the forward h-difference operator
is defined as (see [27]) (∆hx)(t) := x(t+h)−x(t)

h , where t ∈

(hN)a and (∆0
hx)(t) := x(t). Let k ∈ N0 and ∆k

h := ∆h ◦ · · · ◦
∆h is k-fold application of operator ∆h. Then (∆k

hx)(t) =
h−k ∑k

i=0(−1)k−i(k
i
)
x(t + ih) . Let us introduce the family of

sequences on Z parameterized by µ > 0 and given by the val-
ues: c(µ)(q) =

(q−µ−1
q

)
= (−1)q(µ

q
)

for q ∈ N0 and cµ(q) = 0
for q < 0.

DEFINITION 1. For a function x : (hN)a → R the frac-
tional h-sum of order α > 0 is given by

(
a∆−α

h x
)
(t) :=

hα
(

c(−α) ∗ x
)
(q) , where t = a+qh, x(q) := x(a+qh), q∈N0

and “∗" denotes a convolution operator, i.e.
(

c(−α) ∗ x
)
(q) :=

∑q
s=0

(q−s+α−1
q−s

)
x(s) . Additionally, we define

(
a∆0

hx
)
(t) :=

x(t).

For a = 0 we will write shortly ∆−α
h instead of 0∆−α

h . Note

1

)a let us define y(q) :=  
:= (a∆h

–αx)(t) and x–(q) := x(a + qh). Then
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
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then for |z|> 1 we have
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∞
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(−1)q
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α
q
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z−q=

∞
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q
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and
Z
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The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.
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y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then
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For h = 1 the equation (3) can be rewritten as
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(
1− z−1)−α X(z) , where
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→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃
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)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
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)
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, where t ∈ (hN)a and x̃(s) =
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For simplicity of notation if h = 1, then we write:
a
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2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(
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(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=
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(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
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)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
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For simplicity of the notation, if h = 1, then we write:
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1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
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(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.
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Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
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(a+qh) = h−α

(
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(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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1
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)
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where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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1
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(
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)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)
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∑
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)
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1
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The B-type variable-order derivative and its discrete approxi-
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
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ences). We admit the order is changing in time, i.e., α(t) ∈ R
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where k ∈ N.
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. Note that by (3) we get
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
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(t) and x(q) := x(a+qh). Then
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)
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h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
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For simplicity of notation if h = 1, then we write:
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2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by
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For the case h = 1 we write: a∆α :=a ∆α
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Using the properties of Z-transform the following proposi-
tion can be proven.
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For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.
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h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by
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∑
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c(α)(q)x(t − qh) . (6)

For simplicity of the notation, if h = 1, then we write:
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1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define
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Then
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1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets
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(a+qh) = h−α
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(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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where ỹ(q) := (a/h∆1
–α x̃)(a/h + q). Then using (4) one can easily 

proof the following lemma, that is also proven in [28] without 
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

Lemma 1 [27]. Let x : (h

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Numerical solution of fractional variable order linear control system
in state-space form

Wiktor Malesza1 ∗, Michal Macias1 ∗∗

1 Warsaw University of Technology, Faculty of Electrical Engineering, ul. Koszykowa 75, 00-625 Warszawa, Poland

Abstract. The aim of this paper is to introduce a matrix approach for approximate solving non-commensurate fractional variable order linear
control systems in state-space form. The approach is based on switching schemes that realize variable order derivatives. The obtained numerical
solution is compared with simulation and analog model results

Key words: variable order fractional calculus, differential equations, analog modeling

1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R
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gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
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where t 2 (h
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An analog model of particular type of fractional variable order
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)a.
For the case h = 1 we write: a∆α := a∆1

α.
Using the properties of Z-transform the following proposi-

tion can be proven.

Proposition 2 [30]. For a 2 
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is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-
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for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
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h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,
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The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=
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(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
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y(q) is treated as a sequence.
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= x(a+qh) and

of course x : N0 → R. Note that by (3) we get
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h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.
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For simplicity of notation if h = 1, then we write:
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2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
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h x
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(t) :=(
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(
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))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
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Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
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(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].
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q
)
,

then for |z|> 1 we have

Z
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c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
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∞

∑
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q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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For simplicity of the notation, if h = 1, then we write: 
a∆⁓α := a∆⁓1

α. In [30] the following proposition is proven.
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

, α 2 (0, 1] let us define y(q) :=  
:= (a∆⁓ h

αx)(t), where t 2 (h
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The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
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state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
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2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R
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The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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are recalled, together with their discrete approximations and
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commensurate fractional variable order system is presented.
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state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
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2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and
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∑
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(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

0. Then

	

M. Wyrwas

that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
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h x
)
(a+qh) = h−α

(
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(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

0, then one 
gets (a∆⁓ h

αx)(a + qh) = h–α(0∆⁓αx–)(q).
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By comparison of the formulas (5) and (7) one can show 
the relation between the Riemann–Liouville– and Grünwald–
Letnikov–type fractional h-difference operator. The following 
proposition describes this relation and it has been proven in [30].

Proposition 4 [30]. Let x : (h
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In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα
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∑
j=0
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(

α
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xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
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2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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h-difference operator can be expressed by the Grünwald–Let-
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problems for control systems with all types of multi–order op-
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Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�
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h x
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It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.
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In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
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Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
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
 ∈ R

n
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Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
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�
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
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hα

l

∑
j=0

(−1) j
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α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
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The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
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lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
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l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
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be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
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type will be used as a base of generalization onto variable order
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, k = 1, …, m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently 
written as

Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+ 1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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instead of the Grünwald–Letnikov–type h-difference operator. 
Now, we restrict our considerations to the systems with the 
Grünwald–Letnikov–type difference operator, but for systems 
with Riemann–Liouville–type operator one gets the same results.

Using Lemma 2 the system (8a) can be rewritten in the form:

	

Full-order observers for fractional difference systems
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It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
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�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
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the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
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�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
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Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-
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tion of drag expression in [7]. Numerical implementations
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culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
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of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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∑
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j
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xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
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able order derivatives and their discrete approximations (differ-
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for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
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culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
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tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
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2. Fractional variable order operators
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tional constant and variable order derivatives and differences.
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ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
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the initial condition (8b) can be rewritten as x–(0) = (x–1(0), …, 
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and systems, particularly those involving diffusion processes.
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using fractional calculus, as was demonstrated in [4, 5].
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In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
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using fractional calculus, as was demonstrated in [4, 5].
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able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
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able order equations have been used to describe time evolu-
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be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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0. Define 0∆⁓ (α)x– := (0∆⁓α1x–1, …, 0∆⁓αnx–n)T. 
Then system (9) has the following matrix form

	

Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
R

n×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

0, H := diag{hα1, …, hαn} 2 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

n×n, A = (aij) 2 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

n×n  
and B = (bik) 2 
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gration and differentiation onto non-integer order operators.
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l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
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lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

n×m. By Definition 3 it is easy to see that system 
(10) has the unique solution given by the recurrence formula

	

Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
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h x
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h) =
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a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
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ai jx j(t)+
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n
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where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as
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(t) =
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ai jx j(t)+
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∑
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where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
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system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

0, where 

Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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(α)(i) := diag{c(α1)(i), …, c(αn)(i)}, 
i = 1, …, q + 1, and consequently we have
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It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
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where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.
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where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.
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that system (10) has the unique solution given by the recur-
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Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then
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�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
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h xi
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(t) =
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ai jx j(t)+
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∑
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where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.
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�
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Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
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T . Then system (9) has the following
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Now, we show how the solutions of system (8a) look like
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Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
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1− z−1�α1

, . . . ,
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The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.
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diag{hα1
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Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
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Z [u1](z), . . . , Z [um](z)
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. Hence one
gets
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PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
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where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
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where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.
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where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
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(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula
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∑
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C
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i = 1, . . . ,q+1, and consequently we have
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−
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where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=
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0�∆(α)x
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(q+1), where q ∈N0

and
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Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1
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, . . . ,
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The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
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∑
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Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:
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,
� (12)

where x(a + kh) = (x1(a + kh), …, xn(a + kh))T for k = 0, …, 
q + 1 and u(a + kh) = (u1(a + kh), …, um(a + kh))T for 
k = 0, …, q.

Now, we show how the solutions of system (8a) look like 
in term of fundamental matrices associated to the considered 
systems. Let us define y(q) := (0∆⁓(α)x–)(q + 1), where q 2 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-
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PROPOSITION 4 [30]. Let x : (hN)a →R. Then
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h x
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h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
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a�∆αi
h xi
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where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.
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written as
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where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
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where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
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where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula
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where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
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Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=
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Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)
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The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

.

Taking into account Proposition 3 and using the properties of 
Z-transform one gets the following formula:

	

Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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,� (13)

where X(z) = (

M. Wyrwas

that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
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)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
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∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z− 1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+ qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.
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2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
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(
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))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
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Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α
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)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z− 1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
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a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
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h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
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2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).
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type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
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(t) :=(
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(
a∆−(1−α)

h x
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(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
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Using the properties of Z-transform the following proposi-
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For α = 1 we have Z [y] (z) = 1
h ((z− 1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.
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The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
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For simplicity of the notation, if h = 1, then we write:
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1 . In [30] the following proposition is proven.
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Then
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where X(z) = Z [x](z) and x(q) := x(a+ qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
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)
(a+ qh) = h−α

(
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By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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Proof. Note that for x–(q) = x(a + qh) and u–(q) = u(a + qh) 
system (8a) can be written in the equivalent matrix form (10). 
The idea of the proof is to take the Z-transform of each equation 
of system (10) and use formula (13). Then we get the system 
of algebraic equations:

Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].
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that the fractional h-sum of order α does not change the do-
main of the function and a∆−α

h x : (hN)a →R. Let us recall that
the Z-transform of a sequence {y(q)}q∈N0 is a complex func-
tion given by Y (z) := Z [y](z) = ∑∞

q=0 y(q)z−q , where z ∈ C

is a complex number for which the series ∑∞
q=0 y(q)z−q con-

verges absolutely. Then the inverse Z-transform addresses the
reverse problem, i.e., given a function Y (z) and a region of
convergence, find the signal y(q) whose Z-transform is Y (z)
and has the specified region of convergence. The presented
Z-transform involves, by definition, only the values y(q) of
the sequence {y(q)}q∈N0 . Note that since c(α)(q) = (−1)q(α

q
)
,

then for |z|> 1 we have

Z

[
c(α)

]
(z) =

∞

∑
q=0

(−1)q
(

α
q

)
z−q=

∞

∑
g=0

(
q−α −1

q

)
z−q

=
(
1− z−1)α

(1)

and
Z

−1
[(

1− z−1)α]
= c(α)

. (2)

The operator a∆−α
h is defined as the convolution of two se-

quences, namely sequences c(−α) and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

PROPOSITION 1. For t = a + qh ∈ (hZ)a let us define
y(q) :=

(
a∆−α

h x
)
(t) and x(q) := x(a+qh). Then

Z [y] (z) = hα (
1− z−1)−α X(z) , (3)

where X(z) := Z [x] (z).

For h = 1 the equation (3) can be rewritten as
Z

[
a∆−α

1 x
]
(z) =

(
1− z−1)−α X(z) , where

(
a∆−α

1 x
)
(a+q)=:

y(q) is treated as a sequence.
Let s ∈ N a

h
and x̃ : N a

h
→ R be defined by x̃(s) := x(sh).

Then s = a
h +q, q ∈ N0 and x(q) = x̃

( a
h +q

)
= x(a+qh) and

of course x : N0 → R. Note that by (3) we get

Z [y] = hα
Z [ỹ] , (4)

where ỹ(q) :=
(

a
h
∆−α

1 x̃
)
( a

h +q). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators for any h > 0 and h = 1.

LEMMA 1 [27]. Let x : (hN)a → R and α > 0. Then(
a∆−α

h x
)
(t) = hα

(
a
h
∆−α

1 x̃
)( t

h
)
, where t ∈ (hN)a and x̃(s) =

x(sh).

For simplicity of notation if h = 1, then we write:
a
h
∆−α := a

h
∆−α

1 .

2.1. Fractional difference operators and relation between
them Let us recall the definition of the Riemann–Liouville–
and Grünwald–Letnikov–type h-difference operators and the
forms of images in the Z-transform of the considered differ-
ence operators.

The definition of the Riemann–Liouville–type fractional h-
difference operator can be found, for example, in [29] (for h =
1) or in [27, 28] (for any h > 0).

DEFINITION 2. Let α ∈ (0,1]. The Riemann–Liouville–
type fractional h-difference operator a∆α

h of order α for
a function x : (hN)a → R is defined by

(
a∆α

h x
)
(t) :=(

∆h

(
a∆−(1−α)

h x
))

(t), where t ∈ (hN)a.

For the case h = 1 we write: a∆α :=a ∆α
1 .

Using the properties of Z-transform the following proposi-
tion can be proven.

PROPOSITION 2 [30]. For a ∈ R, α ∈ (0,1] let us define
y(q) :=

(
a∆α

h x
)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = zh−α (

1− z−1)α X(z)− zh−αx(a) , (5)
where X(z) = Z [x](z) and x(q) := x(a+qh).

For α = 1 we have Z [y] (z) = 1
h ((z−1)X(z)− zx(0)) , that

also agrees with the transform of difference ∆h of x.
Using Lemma 1 one can proof the transition formula for the

Riemann–Liouville–type fractional h-difference operators be-
tween the cases for any h > 0 and h = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

LEMMA 2 [27]. Let x : (hN)a → R and α > 0. Then,(
a∆α

h x
)
(t) = h−α( a

h
∆α x̃)( t

h ) , where t ∈ (hN)a and x̃(s) =

x(sh).

The next type of the operator, that is considered, is the
Grünwald–Letnikov–type fractional h-difference operator, see
for example [3,4,14,31–36] for cases h= 1 and also for general
case h > 0.

DEFINITION 3. Let α ∈ R. The Grünwald–Letnikov–type
h-difference operator a∆̃α

h of order α for a function x : (hN)a →
R is defined by

(
a∆̃α

h x
)
(t) := h−α

t−a
h

∑
q=0

c(α)(q)x(t −qh) . (6)

For simplicity of the notation, if h = 1, then we write:
a∆̃α :=a ∆̃α

1 . In [30] the following proposition is proven.
PROPOSITION 3 [30]. For a ∈ R, α ∈ (0,1] let us define

y(q) :=
(

a∆̃α
h x

)
(t), where t ∈ (hN)a and t = a+ qh, q ∈ N0.

Then
Z [y] (z) = h−α (

1− z−1)α X(z) , (7)
where X(z) = Z [x](z) and x(q) := x(a+qh).

Observe that by (7) if x(q) = x(a+ qh), q ∈ N0, then one
gets

(
a∆̃α

h x
)
(a+qh) = h−α

(
0∆̃α x

)
(q).

By comparison of the formulas (5) and (7) one can show
the relation between the Riemann–Liouville– and Grünwald–
Letnikov—type fractional h-difference operator. The follow-
ing proposition describes this relation and it has been proven
in [30].

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

[u–m](z))T. Hence one gets

Full-order observers for fractional difference systems

PROPOSITION 4 [30]. Let x : (hN)a →R. Then
�

0�∆α
h x

�
(t+

h) =
�

a∆α
h x

�
(t) , for t ∈ (hN)a.

It is well known that the Z-transform method can be used in
finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi–order difference sys-
tems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem
of solvability of fractional–order systems defined by differ-
ence equations with the Grünwald–Letnikov–type h-difference
operator is discussed only, because the Riemann–Liouville–
type h-difference operator can be expressed by the Grünwald–
Letnikov–type operator, see Proposition 4. Solutions to initial
value problems for control systems with all types of multi–
order operators were stated in [37]. Let us consider the follow-
ing initial value problem given by
�

a�∆αi
h xi

�
(t+h)=

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i= 1, . . . ,n (8a)

x(a) =




x1(a)
...

xn(a)


 ∈ R

n
. (8b)

where a ∈ R, αi ∈ (0,1], h > 0, xi : (hN)a → R is the state
function, t ∈ (hN)a, ai j,bik ∈ R, i, j = 1, . . . ,n, k = 1, . . . ,m,
n,m ∈ N1, and uk : (hN)a → R, k = 1, . . . ,m is the input func-
tion applied to the system.

Of course, by Proposition 4 system (8a) can be equivalently
written as

�
a∆αi

h xi
�
(t) =

n

∑
j=1

ai jx j(t)+
m

∑
k=1

bikuk(t) , i = 1, . . . ,n

where the Riemann–Liouville–type h-difference operator is
used instead of the Grünwald–Letnikov–type h-difference op-
erator. Now, we restrict our considerations to the systems with
the Grünwald-Letnikov–type difference operator, but for sys-
tems with Riemann–Liouville–type operator one gets the same
results.

Using Lemma 2 the system (8a) can be rewritten in the form:
�

0�∆αi xi

�
(q+1)= hαi

n

∑
j=1

ai jx j(q)+hαi
m

∑
k=1

bikuk(q) , i= 1, . . . ,n

(9)
where q ∈ N0, xi : N0 → R, xi(q) := xi(a+ qh), i = 1, . . . ,n
and u j : N0 → R u j(q) := u(a + qh), j = 1, . . . ,m. More-
over, the initial condition (8b) can be rewritten as x(0) =
(x1(0), . . . ,xn(0))T ∈Rn.

Let x(q) := (x1(q), . . . ,xn(q))T ∈ Rn and u(q) :=
(u1(q), . . . ,um(q))T ∈ Rm for q ∈ N0. Define 0�∆(α)x :=
(0�∆α1x1, . . . , 0�∆αnxn)

T . Then system (9) has the following
matrix form�

0�∆(α)x
�
(q+1) = HAx(q)+HBu(q) , (10)

where q ∈ N0, H := diag{hα1, . . . ,hαn} ∈ Rn×n, A = (ai j) ∈
Rn×n and B = (bik) ∈ Rn×m. By Definition 3 it is easy to see
that system (10) has the unique solution given by the recur-
rence formula

x(q+1) = HAx(q)+HBu(q)−
q+1

∑
i=1

C
(α)(i)x(q− i+1) , (11)

for any q ∈ N0, where C (α)(i) := diag{c(α1)(i), . . . ,c(αn)(i)},
i = 1, . . . ,q+1, and consequently we have

x(a+(q+1)h)=HAx(a+qh)+HBu(a+qh)

−
q+1

∑
i=1

C
(α)(i)x(a+(q− i+1)h) ,

(12)

where x(a + kh) = (x1(a + kh), . . . ,xn(a + kh))T for k =
0, . . . ,q+1 and u(a+ kh) = (u1(a+ kh), . . . ,um(a+ kh))T for
k = 0, . . . ,q.

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(q) :=

�
0�∆(α)x

�
(q+1), where q ∈N0

and

Λ(α) := diag
��

1− z−1�−α1
, . . . ,

�
1− z−1�−αn

�

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

Z [y] (z) = zH−1Λ(−α)X(z)− zH−1x(0) , (13)

where X(z) = (Z [x1](z), . . . ,Z [xn](z))T . Note that
H−1 = diag{h−α1, . . . ,h−αn} and Λ(−α) = Λ−1

(α)
=

diag{
�
1− z−1�α1

, . . . ,
�
1− z−1�αn}.

The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

PROPOSITION 5. Let αi ∈ (0,1], i = 1, . . . ,n and Φ be
the fundamental matrix for system (8a) such that x(t) =

Φ( t−a
h )x(a)+

t−a
h −1
∑

i=0
Φ( t−a

h − i−1)HBu(a+ ih) is the solution

to the initial value problem (8). Then

Z [Φ](z) =
�
I− z−1Λ(α)HA

�−1 Λ(α) =
�
Λ(−α)− z−1HA

�−1
,

where Λ(α) = diag{
�
1− z−1�−α1

, . . . ,
�
1− z−1�−αn}, H =

diag{hα1
1 , . . . ,hαn

n }.

Proof. Note that for x(q) = x(a+ qh) and u(q) = u(a+ qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equa-
tion of system (10) and use formula (13). Then we get the
system of algebraic equations:

zH−1Λ(−α)X(z)− zH−1x(0) = AX(z)+BU(z) ,

where U(z) =
�

Z [u1](z), . . . , Z [um](z)
�T

. Hence one
gets

�
zI−Λ(α)HA

�
X(z) = zΛ(α)x(0)+Λ(α)HBU(z) ,
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for x(0) = x(a) =
[

x1(a1) . . . xn(an)
]T

. Then

X(z) =
(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.

Remark 1. Note that Λ(α) = Λ−1
(−α)

and
(
I − z−1Λ(α)HA

)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
(−α)

=
(
Λ(−α)− z−1HA

)−1
.

Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

X(z) =
(
I − z−1Λ(α)HA

)−1 Λ(α)x(a)

+
(
zΛ(−α)−HA

)−1 HBU(z)

=z−1 (zΛ(−α)−HA
)−1 x(a)

+
(
zΛ(−α)−HA

)−1 BU(z) ,

(14)

where Λ(α) = diag{
(
1− z−1)−α1

, . . . ,
(
1− z−1)−αn}, H =

diag{hα1, . . . ,hαn}.

PROPOSITION 6. Let R be the set of all roots of the equation

det
(
I − z−1Λ(α)HA

)
= 0 . (15)

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).

Remark 2. In fact, the z-domain solution of (8a), under the
condition x0 = 0, is as follows

X(z) =
(
zΛ(−α)−HA

)−1 HBU(z) .

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det
(
zΛ(−α)−HA

)
= 0 . (16)

Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
(16) are strictly inside the unit circle, then (8a) is asymptoti-
cally stable.

5. Observers
In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the ex-
istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(
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)
(q+1) =
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0∆̃(α)x

)
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for x(0) = x(a) =
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. Then

X(z) =
(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.

Remark 1. Note that Λ(α) = Λ−1
(−α)

and
(
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)−1 Λ(α) =
(
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)−1 Λ−1
(−α)
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.
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(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
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Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).
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state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
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THEOREM 7. If there exists matrix K such that all roots of
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(a) If all elements from R are strictly inside the unit circle, then
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Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
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cally stable.
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observer and formulate the conditions that guarantee the ex-
istence of observers.
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with the output given by:
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where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
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, e :=
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: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(

0∆̃(α)e
)
(q+1) =

(
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)
(q+1)−

(
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)
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for x(0) = x(a) =
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. Then
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(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
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∑
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Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
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and
(
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)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
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=
(
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)−1
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Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
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(
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det
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Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
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Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
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set of the roots of the following equation

det
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Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
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observer and formulate the conditions that guarantee the ex-
istence of observers.
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(
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)
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is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
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n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
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Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
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det
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are strictly inside the unit circle, then the observer for the sys-
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)
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one gets
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Consequently, since an initial condition is arbitrary, we get the 
thesis.� □

Remark 1. Note that Λ(α) = Λ–1
(–α) and
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4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).
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(a) If all elements from R are strictly inside the unit circle, then
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istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.
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−K(y(q)−Cx̂(q))

=HA(x(q)− x̂(q))−K(y(q)−Cx̂(q)) .

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

Hence for h = 1 the result coincides with Proposition 3 given 
in [26].

4.	 Stability of fractional multi–order systems

In this section we state the asymptotic stability conditions of 
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution 
to the state equations (8a), which are equivalently rewritten in 
the matrix form as (10) and we get
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for x(0) = x(a) =
[

x1(a1) . . . xn(an)
]T

. Then

X(z) =
(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.

Remark 1. Note that Λ(α) = Λ−1
(−α)

and
(
I − z−1Λ(α)HA

)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
(−α)

=
(
Λ(−α)− z−1HA

)−1
.

Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

X(z) =
(
I − z−1Λ(α)HA

)−1 Λ(α)x(a)

+
(
zΛ(−α)−HA

)−1 HBU(z)

=z−1 (zΛ(−α)−HA
)−1 x(a)

+
(
zΛ(−α)−HA

)−1 BU(z) ,

(14)

where Λ(α) = diag{
(
1− z−1)−α1

, . . . ,
(
1− z−1)−αn}, H =

diag{hα1, . . . ,hαn}.

PROPOSITION 6. Let R be the set of all roots of the equation

det
(
I − z−1Λ(α)HA

)
= 0 . (15)

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).

Remark 2. In fact, the z-domain solution of (8a), under the
condition x0 = 0, is as follows

X(z) =
(
zΛ(−α)−HA

)−1 HBU(z) .

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det
(
zΛ(−α)−HA

)
= 0 . (16)

Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
(16) are strictly inside the unit circle, then (8a) is asymptoti-
cally stable.

5. Observers
In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the ex-
istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(

0∆̃(α)e
)
(q+1) =

(
0∆̃(α)x

)
(q+1)−

(
0∆̃(α)x̂

)
(q+1)

=HAx(q)+HBu(q)−HAx̂(q)−HBu(q)
−K(y(q)−Cx̂(q))

=HA(x(q)− x̂(q))−K(y(q)−Cx̂(q)) .
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(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.
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(−α)

and
(
I − z−1Λ(α)HA

)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
(−α)

=
(
Λ(−α)− z−1HA

)−1
.

Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

X(z) =
(
I − z−1Λ(α)HA

)−1 Λ(α)x(a)

+
(
zΛ(−α)−HA
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=z−1 (zΛ(−α)−HA
)−1 x(a)

+
(
zΛ(−α)−HA

)−1 BU(z) ,

(14)

where Λ(α) = diag{
(
1− z−1)−α1

, . . . ,
(
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diag{hα1, . . . ,hαn}.

PROPOSITION 6. Let R be the set of all roots of the equation

det
(
I − z−1Λ(α)HA

)
= 0 . (15)

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).

Remark 2. In fact, the z-domain solution of (8a), under the
condition x0 = 0, is as follows

X(z) =
(
zΛ(−α)−HA

)−1 HBU(z) .

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det
(
zΛ(−α)−HA

)
= 0 . (16)

Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
(16) are strictly inside the unit circle, then (8a) is asymptoti-
cally stable.

5. Observers
In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the ex-
istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(

0∆̃(α)e
)
(q+1) =

(
0∆̃(α)x

)
(q+1)−

(
0∆̃(α)x̂

)
(q+1)

=HAx(q)+HBu(q)−HAx̂(q)−HBu(q)
−K(y(q)−Cx̂(q))

=HA(x(q)− x̂(q))−K(y(q)−Cx̂(q)) .
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for x(0) = x(a) =
[

x1(a1) . . . xn(an)
]T

. Then

X(z) =
(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.

Remark 1. Note that Λ(α) = Λ−1
(−α)

and
(
I − z−1Λ(α)HA

)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
(−α)

=
(
Λ(−α)− z−1HA

)−1
.

Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

X(z) =
(
I − z−1Λ(α)HA

)−1 Λ(α)x(a)

+
(
zΛ(−α)−HA

)−1 HBU(z)

=z−1 (zΛ(−α)−HA
)−1 x(a)

+
(
zΛ(−α)−HA

)−1 BU(z) ,

(14)

where Λ(α) = diag{
(
1− z−1)−α1

, . . . ,
(
1− z−1)−αn}, H =

diag{hα1, . . . ,hαn}.

PROPOSITION 6. Let R be the set of all roots of the equation

det
(
I − z−1Λ(α)HA

)
= 0 . (15)

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).

Remark 2. In fact, the z-domain solution of (8a), under the
condition x0 = 0, is as follows

X(z) =
(
zΛ(−α)−HA

)−1 HBU(z) .

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det
(
zΛ(−α)−HA

)
= 0 . (16)

Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
(16) are strictly inside the unit circle, then (8a) is asymptoti-
cally stable.

5. Observers
In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the ex-
istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(

0∆̃(α)e
)
(q+1) =

(
0∆̃(α)x

)
(q+1)−

(
0∆̃(α)x̂

)
(q+1)

=HAx(q)+HBu(q)−HAx̂(q)−HBu(q)
−K(y(q)−Cx̂(q))

=HA(x(q)− x̂(q))−K(y(q)−Cx̂(q)) .
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where Λ(α) = diag{(1 ¡ z–1)–α1, …, (1 ¡ z–1)–αn}, H = diag{hα1, 
…, hαn}.

Proposition 6. Let R be the set of all roots of the equation

	

M. Wyrwas

for x(0) = x(a) =
[

x1(a1) . . . xn(an)
]T

. Then

X(z) =
(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.

Remark 1. Note that Λ(α) = Λ−1
(−α)

and
(
I − z−1Λ(α)HA

)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
(−α)

=
(
Λ(−α)− z−1HA

)−1
.

Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

X(z) =
(
I − z−1Λ(α)HA

)−1 Λ(α)x(a)

+
(
zΛ(−α)−HA

)−1 HBU(z)

=z−1 (zΛ(−α)−HA
)−1 x(a)

+
(
zΛ(−α)−HA

)−1 BU(z) ,

(14)

where Λ(α) = diag{
(
1− z−1)−α1

, . . . ,
(
1− z−1)−αn}, H =

diag{hα1, . . . ,hαn}.

PROPOSITION 6. Let R be the set of all roots of the equation

det
(
I − z−1Λ(α)HA

)
= 0 . (15)

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).

Remark 2. In fact, the z-domain solution of (8a), under the
condition x0 = 0, is as follows

X(z) =
(
zΛ(−α)−HA

)−1 HBU(z) .

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det
(
zΛ(−α)−HA

)
= 0 . (16)

Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
(16) are strictly inside the unit circle, then (8a) is asymptoti-
cally stable.

5. Observers
In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the ex-
istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(

0∆̃(α)e
)
(q+1) =

(
0∆̃(α)x

)
(q+1)−

(
0∆̃(α)x̂

)
(q+1)

=HAx(q)+HBu(q)−HAx̂(q)−HBu(q)
−K(y(q)−Cx̂(q))

=HA(x(q)− x̂(q))−K(y(q)−Cx̂(q)) .
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.� (15)

Then the following items are satisfied.
a)	 If all elements from R are strictly inside the unit circle, then 

system (8a) is asymptotically stable.
b)	 If there is z 2 R such that jzj > 1, then system (8a) is not 

stable.

Proof. The proof is similar to those presented in [30]. Here the 
proof is based on the formula of Z-transform of function Φ(¢) 
from Proposition 5, see formula (14).� □

Remark 2. In fact, the z-domain solution of (8a), under the 
condition x0 = 0, is as follows

M. Wyrwas

for x(0) = x(a) =
[

x1(a1) . . . xn(an)
]T

. Then

X(z) =
(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.

Remark 1. Note that Λ(α) = Λ−1
(−α)

and
(
I − z−1Λ(α)HA

)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
(−α)

=
(
Λ(−α)− z−1HA

)−1
.

Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

X(z) =
(
I − z−1Λ(α)HA

)−1 Λ(α)x(a)

+
(
zΛ(−α)−HA

)−1 HBU(z)

=z−1 (zΛ(−α)−HA
)−1 x(a)

+
(
zΛ(−α)−HA

)−1 BU(z) ,

(14)

where Λ(α) = diag{
(
1− z−1)−α1

, . . . ,
(
1− z−1)−αn}, H =

diag{hα1, . . . ,hαn}.

PROPOSITION 6. Let R be the set of all roots of the equation

det
(
I − z−1Λ(α)HA

)
= 0 . (15)

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).

Remark 2. In fact, the z-domain solution of (8a), under the
condition x0 = 0, is as follows

X(z) =
(
zΛ(−α)−HA

)−1 HBU(z) .

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det
(
zΛ(−α)−HA

)
= 0 . (16)

Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
(16) are strictly inside the unit circle, then (8a) is asymptoti-
cally stable.

5. Observers
In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the ex-
istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+ qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(

0∆̃(α)e
)
(q+1) =

(
0∆̃(α)x

)
(q+ 1)−

(
0∆̃(α)x̂

)
(q+ 1)

=HAx(q)+HBu(q)−HAx̂(q)−HBu(q)
−K(y(q)−Cx̂(q))

=HA(x(q)− x̂(q))−K(y(q)−Cx̂(q)) .
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
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able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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Definition 4. The following system

(0∆⁓(β)xb)(q + 1) = Fxbj(q) + Gu(a + qh) + Ky(a + qh),� (18)

is called a (fractional) observer of order (β) = (β1, …, βn) for 
system (8a) with output (17) if

	

M. Wyrwas

for x(0) = x(a) =
[

x1(a1) . . . xn(an)
]T

. Then

X(z) =
(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.

Remark 1. Note that Λ(α) = Λ−1
(−α)

and
(
I − z−1Λ(α)HA

)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
(−α)

=
(
Λ(−α)− z−1HA

)−1
.

Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

X(z) =
(
I − z−1Λ(α)HA

)−1 Λ(α)x(a)

+
(
zΛ(−α)−HA

)−1 HBU(z)

=z−1 (zΛ(−α)−HA
)−1 x(a)

+
(
zΛ(−α)−HA

)−1 BU(z) ,

(14)

where Λ(α) = diag{
(
1− z−1)−α1

, . . . ,
(
1− z−1)−αn}, H =

diag{hα1, . . . ,hαn}.

PROPOSITION 6. Let R be the set of all roots of the equation

det
(
I − z−1Λ(α)HA

)
= 0 . (15)

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).

Remark 2. In fact, the z-domain solution of (8a), under the
condition x0 = 0, is as follows

X(z) =
(
zΛ(−α)−HA

)−1 HBU(z) .

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det
(
zΛ(−α)−HA

)
= 0 . (16)

Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
(16) are strictly inside the unit circle, then (8a) is asymptoti-
cally stable.

5. Observers
In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the ex-
istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+ qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(

0∆̃(α)e
)
(q+1) =

(
0∆̃(α)x

)
(q+1)−

(
0∆̃(α)x̂

)
(q+1)

=HAx(q)+HBu(q)−HAx̂(q)−HBu(q)
−K(y(q)−Cx̂(q))

=HA(x(q)− x̂(q))−K(y(q)−Cx̂(q)) .

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

,� (19)

for any x(a), xb(0) and u : (h
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα
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∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
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∑
j=0
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(
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j

)
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
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studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
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analog realization of fractional orders integrators, realized as
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definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

n×m and K 2 
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lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].
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order derivatives were introduced in [17, 18]. Numerical and
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tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
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in Sect. 2, the few types of fractional variable order derivatives
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matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
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An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
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Full-order observers for linear fractional multi-order difference systems

Then xbi(q) estimates the unknown value xi(a + qh) of the 
state x and xb is called an estimation of x.

Observe that if βi = 1, i = 1, …, n, in Definition 4, then 
an observer is a classical delta–difference system. Taking 
βi 2 (0, 1] one gets observers being fractional systems with 
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the ex-
istence of the observer. Assume that (β) = (α), i.e. βi = αi for 
i = 1, …, n.

Theorem 7. If there exists matrix K such that all roots of the 
equation

	

M. Wyrwas

for x(0) = x(a) =
[

x1(a1) . . . xn(an)
]T

. Then

X(z) =
(
I− z−1Λ(α)HA

)−1 Λ(α)x(a)

+ z−1 (I − z−1Λ(α)HA
)−1 Λ(α)HBU(z)

=Z [Φ] (z)x(a)+Z [Φ∗HBu](z) .
Hence

x(q) = Φ(q)x(0)+
q−1

∑
i=0

Φ(q−1− i)HBu(i) .

Consequently, since an initial condition is arbitrary, we get the
thesis.

Remark 1. Note that Λ(α) = Λ−1
(−α)

and
(
I − z−1Λ(α)HA

)−1 Λ(α) =
(
I − z−1Λ(α)HA

)−1 Λ−1
(−α)

=
(
Λ(−α)− z−1HA

)−1
.

Hence for h = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi–order systems
In this section we state the asymptotic stability conditions of
fractional multi–order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

X(z) =
(
I − z−1Λ(α)HA

)−1 Λ(α)x(a)

+
(
zΛ(−α)−HA

)−1 HBU(z)

=z−1 (zΛ(−α)−HA
)−1 x(a)

+
(
zΛ(−α)−HA

)−1 BU(z) ,

(14)

where Λ(α) = diag{
(
1− z−1)−α1

, . . . ,
(
1− z−1)−αn}, H =

diag{hα1, . . . ,hαn}.

PROPOSITION 6. Let R be the set of all roots of the equation

det
(
I − z−1Λ(α)HA

)
= 0 . (15)

Then the following items are satisfied.

(a) If all elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function Φ(·)
from Proposition 5, see formula (14).

Remark 2. In fact, the z-domain solution of (8a), under the
condition x0 = 0, is as follows

X(z) =
(
zΛ(−α)−HA

)−1 HBU(z) .

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det
(
zΛ(−α)−HA

)
= 0 . (16)

Therefore, for α1, . . . ,αn ∈ (0,1] if all roots of the equation
(16) are strictly inside the unit circle, then (8a) is asymptoti-
cally stable.

5. Observers
In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the ex-
istence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t)+Du(t) , (17)

where t ∈ (hN)a, y : (hN)a → Rp, C ∈ Rp×n and D ∈ Rp×m.

DEFINITION 4. The following system
(

0∆̃(β )x̂
)
(q+1) = Fx̂ j(q)+Gu(a+qh)+Ky(a+qh) , (18)

is called a (fractional) observer of order (β ) = (β1, . . . ,βn) for
system (8a) with output (17) if

lim
q→∞

e(q) = lim
q→∞

(x(a+qh)− x̂(q)) = 0 , (19)

for any x(a), x̂(0) and u : (hN)a → R, where x̂ : N0 → Rn,

x̂ :=
[
x̂1, . . . , x̂n

]T
, e :=

[
e1, . . . ,en

]T
: N0 → R

n is an
error vector such that ei := xi − x̂i, F ∈ Rn×n, G ∈ Rn×m and
K ∈ Rn×p.

Then x̂i(q) estimates the unknown value xi(a+ qh) of the
state x and x̂ is called an estimation of x.

Observe that if βi = 1, i = 1, . . . ,n, in Definition 4, then
an observer is a classical delta–difference system. Taking
βi ∈ (0,1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the exis-
tence of the observer. Assume that (β ) = (α), i.e. βi = αi for
i = 1, . . . ,n.

THEOREM 7. If there exists matrix K such that all roots of
the equation

det
(
I− z−1Λ(α)(HA−KC)

)
= 0 , (20)

are strictly inside the unit circle, then the observer for the sys-
tem (8a) is as follows:
(

0∆̃(α)x̂
)
(q+1) = (HA−KC)x̂(q)+HBu(q)+Ky(q) , (21)

where y(q) = y(a+qh) and u(q) = u(a+qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : N0 →Rn,
one gets
(

0∆̃(α)e
)
(q+1) =

(
0∆̃(α)x

)
(q+1)−

(
0∆̃(α)x̂

)
(q+1)

=HAx(q)+HBu(q)−HAx̂(q)−HBu(q)
−K(y(q)−Cx̂(q))

=HA(x(q)− x̂(q))−K(y(q)−Cx̂(q)) .

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

,� (20)

are strictly inside the unit circle, then the observer for the 
system (8a) is as follows:

	
(0∆⁓(α)xb)(q + 1) = (HA ¡ KC)xb(q) +
(0∆⁓(α)xb)(q + 1) + HBu–(q) + Ky–(q),

� (21)

where y–(q) = y(a + qh) and u–(q) = u(a + qh).

Proof. Note that (8a) can be rewritten in the equivalent matrix 
form (10). By (10) and (21) for the error function e : 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

0 ! 
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Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

n,  
one gets

(0∆⁓(α)e)(q + 1) = (0∆⁓(α)x–)(q + 1) ¡ (0∆⁓(α)xb)(q + 1) =

(0∆⁓(α)e)(q + 1) = HAx–(q) + HBu–(q) ¡ HAxb(q) ¡ HBu–(q) ¡

(0∆⁓(α)e)(q + 1) = ¡ K(y–(q) ¡ Cxb(q))

(0∆⁓(α)e)(q + 1) = HA(x–(q) ¡ xb(q)) ¡ K(y–(q) ¡ Cxb(q)).

Since y–(q) = y(a + qh) = Cx(a + qh) + Dux(a + qh) = Cx–(q) + 
+ Du–(q) and e(q) = x–(q) ¡ xb(q), we have

	

Full-order observers for fractional difference systems

Since y(q) = y(a+qh)=Cx(a+qh)+Dux(a+qh)=Cx(q)+
Du(q) and e(q) = x(q)− x̂(q), we have

(
0∆̃(α)e

)
(q+1) = (HA−KC)e(q)−KDu(q) . (22)

By assumption all roots of the equation (20) are strictly inside
the unit circle, so using Proposition 6 we get the asymptotic
stability of (22). Then lim

q→∞
e(q) = lim

q→∞
(x(q)− x̂(q)) = 0 and

the system (21) is the observer for system (8a) with output (17).

Remark 3. Note that if only all roots of the equation (20) are
strictly inside the unit circle, then the observer (21) estimates
all coordinates of the unknown state x. Hence both x and the
estimate x̂ are from Rn. Therefore in order to design the frac-
tional observer for a linear fractional multi–order difference
system one has to find a matrix K that satisfies the assumption
of Theorem 7.

Now, let us consider a numerical example that illustrates the
behaviour of the constructed observer.

EXAMPLE 1. Let us consider the fractional system defined
by (8a) and (17) with α1 = 0.2, α2 = 0.6, h = 0.5 and ma-

trices: A =

[
0.6 −0.3
0 −0.4

]
, B =

[
b1

b2

]
, C =

[
1 1

]
and D = d

where b1,b2,d ∈ R. Then Λα =

[( z
z−1

)0.2 0
0

( z
z−1

)0.6

]
and

H =

[
0.50.2 0

0 0.50.6

]
. Our task is to find the matrix K =

[
a
b

]
∈

R2×1 such that all roots of the equation (20) are strictly inside
the unit circle.

Taking a = 0.5 and b = −0.1 we get that all roots of equa-
tion (20) (i.e. the complex numbers 0.9799925913e− 1 ±
0.1070545235i and |0.9799925913e− 1± 0.1070545235i|=
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(

0∆̃0.2x̂1

)
(q+1) =0.50.2 ·0.6x̂1(q)−0.50.2 ·0.3x̂2(q)

+0.50.2 ·b1ū(q)+0.5(y(q)− x̂1(q)− x̂2(q))(
0∆̃0.6x̂1

)
(q+1) =−0.50.6 ·0.4x̂2(q)+0.50.6 ·b2ū(q)

−0.1(y(q)− x̂1(q)− x̂2(q)) ,
(23)

where ū(q) = u(0.5q) and y(q) = y(0.5q), q ∈ N0, is an ob-
server of the considered systems, i.e. the following equivalent
systems:

(
0∆0.2

0.5x1
)
(0.5q) =0.6x1(0.5q)−0.3x2(0.5q)

+b1u(0.5q)
(

0∆0.6
0.5x2

)
(0.5q) =0.4x2(0.5q)+b2u(0.5q)

y(0.5q) =x1(0.5q)+ x2(0.5q)+du(0.5q)

(24)

and(
0∆̃0.2

0.5x1

)
(0.5(q+1)) =0.6x1(0.5q)−0.3x2(0.5q)

+b1u(0.5q)
(

0∆̃0.6
0.5x2

)
(0.5(q+1)) =0.4x2(0.5q)+b2u(0.5q)

y(0.5q) =x1(0.5q)+ x2(0.5q)+du(0.5q)
(25)

with the Riemann–Liouville–type and with the Grünwald–
Letnikov–type operators, respectively.

The observer (23) estimates the state of the original systems
(24) and (25). Fig. 1 shows the behaviour of the observer
(23) with initial conditions x̂1(0) = 1 and x̂2(0) = 2 and the
behaviour of the original systems’s solution with initial condi-
tions x1(0) = 2 and x2(0) = 4 for u ≡ 0. For the better visual-
ization the points are connected.

(a) the graphs of x1 and x̂1 = y1 for n = 50 steps

(b) the graphs of x2 and x̂2 = y2 for n = 50 steps

Fig. 1. The solution of the initial value problem for the systems (24)
(or equivalently (25)) and (23) in Example 1

Observe that Fig. 1 shows the graphs of the states and their
estimations while Fig. 2 illustrates the behaviour of the error
function, where ei := xi − x̂i, i = 1,2.

Now, we present the construction of the observer for
discrete-time model obtained in [38] for ultracapacitor discrete
time identification. Our goal is to find the estimation of the
unknown state of the given discrete-time model basing on the
knowledge of output and input.

EXAMPLE 2. Let us consider the fractional system
with the Grünwald–Letnikov–type operator defined by
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.� (22)

By assumption all roots of the equation (20) are strictly inside the 
unit circle, so using Proposition 6 we get the asymptotic stability 
of (22). Then lim

q!1
e(q) =  lim

q!1
(x–(q) ¡ xb(q)) = 0 and the system 

(21) is the observer for system (8a) with output (17).� □

Remark 3. Note that if only all roots of the equation (20) are 
strictly inside the unit circle, then the observer (21) estimates 
all coordinates of the unknown state x. Hence both x and the 
estimate xb are from 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

n. Therefore in order to design the frac-
tional observer for a linear fractional multi-order difference 

system one has to find a matrix K that satisfies the assumption 
of Theorem 7.

Now, let us consider a numerical example that illustrates the 
behaviour of the constructed observer.

Example 1. Let us consider the fractional system defined by 
(8a) and (17) with α1 = 0.2, α2 = 0.6, h = 0.5 and matrices:

A = 
0.6� –0.3
	 0� –0.4

, B = 
b1

b2
, C = [1 1] and D = d where b1, b2, 

d 2 
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definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
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tial equations were presented, respectively in [19, 20] and [21].
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order
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1
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where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by
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hα(t)
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A ∆αl xl =
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j=0
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(

αl
j

)
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The B-type variable-order derivative and its discrete approxi-

1

. Then Λα = 
( z

z ¡ 1)
0.2	 0

	 0� ( z
z ¡ 1)

0.6  and H =  0.50.2	 0
	 0� 0.50.6

.

Our task is to find the matrix K =  a
b

 2 
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The B-type variable-order derivative and its discrete approxi-

1

2×1 such that all roots 

of the equation (20) are strictly inside the unit circle.

Taking a = 0.5 and b = – 0.1 we get that all roots of equa-
tion (20) (i.e. the complex numbers 0.9799925913e ¡ 1 
§0.1070545235i and j0.9799925913e ¡ 1 §0.1070545235i j =  
= 0.1451362318 computed by Maple) are strictly inside the 
unit circle, so the following system

(0∆⁓0.2xb1)(q + 1) = 0.50.2 ¢ 0.6xb1(q) ¡ 0.50.2 ¢ 0.3xb2(q) +

(0∆⁓0.2)xb1)(q + 1) = + 0.50.2 ¢ b1u–(q) + 0.5(y–(q) ¡
(0∆⁓0.2)xb1)(q + 1) = ¡ xb1(q) ¡ xb2(q))

(0∆⁓0.6xb1)(q + 1) = –0.50.6 ¢ 0.4xb2(q) + 0.50.6 ¢ b2u–(q) ¡
(0∆⁓0.6)xb1)(q + 1) = ¡ 0.1(y–(q) ¡ xb1(q) ¡ xb2(q)),

� (23)

where u–(q) = u(0.5q) and y–(q) = y(0.5q), q 2 
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0, is an observer 
of the considered systems, i.e. the following equivalent sys-
tems:

	

(0∆0.2
0.5

 xb1)(0.5q) = 0.6x1(0.5q) ¡ 0.3x2(0.5q) +

(0∆  xb1)(0.5q) = + b1u(0.5q)

(0∆0.6
0.5

 xb2)(0.5q) = 0.4x2(0.5q) + b2u(0.5q)

y(0.5q) = x1(0.5q) + x2(0.5q) + du(0.5q)

� (24)

and

(0∆⁓ 0.2
0.5

 xb1)(0.5(q + 1)) = 0.6x1(0.5q) ¡ 0.3x2(0.5q) +

(0∆⁓ 0.2
0.5

 xb1)(0.5(q + 1)) = + b1u(0.5q)

(0∆⁓ 0.6
0.5

 xb2)(0.5(q + 1)) = 0.4x2(0.5q) + b2u(0.5q)

y(0.5q) = x1(0.5q) + x2(0.5q) + du(0.5q)

� (25)

with the Riemann–Liouville–type and with the Grünwald–Let-
nikov–type operators, respectively.



896 Bull.  Pol.  Ac.:  Tech.  65(6)  2017

M. Wyrwas

The observer (23) estimates the state of the original systems 
(24) and (25). Figure 1 shows the behaviour of the observer 
(23) with initial conditions xb1(0) = 1 and xb2(0) = 2 and the be-
haviour of the original systems’s solution with initial conditions 
x1(0) = 2 and x2(0) = 4 for u ´ 0. For the better visualization 
the points are connected.

Fig. 2. The trajectory corresponding to the initial value problem for 
the system (22) with the initial error’s conditions e1(0) = 1, e2(0) = 2

k steps

e 1
 a

nd
 e

2 v
al

ue
s

10 20 30 40 50

2

1

0

–1

−− graph of e1  −− graph of e2

Fig. 1. The solution of the initial value problem for the systems (24) (or equivalently (25)) and (23) in Example 1
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Example 2. Let us consider the fractional system with the Grün-
wald–Letnikov–type operator defined by (8a) and (17) with 
α1 = α2 = 0.5, h = 1 and matrices:

A = 
	 0	 1
–0.006333� –0.037401

, B = 
0
1

, 

C = [0.025055 0.004997] and D = [0.223395].

Then Λα = 
( z

z ¡ 1)
0.5	 0

	 0� ( z
z ¡ 1)

0.5  and H =  I . 

Observe that taking for instance K =  30
10

 2 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-

∗e-mail: wmalesza@ee.pw.edu.pl
∗∗e-mail: michal.macias@ee.pw.edu.pl

der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl

l

∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

2×1 all roots of equa-

tion (20) are strictly inside the unit circle, so the following system:

	

(0∆⁓0.5xb1)(q + 1) = xb2(q)

(0∆⁓0.5xb2)(q + 1) = ¡0.006333xb1(q) ¡

(0∆⁓0.5xb2)(q + 1) ¡ 0.037401xb2(q) + u(q),

� (26)

where q 2 
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tial equations were presented, respectively in [19, 20] and [21].
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The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)
xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.

The A -type variable-order derivative and its discrete ap-
proximation is given, respectively, by

A
0 Dα(t)

t x(t) = lim
h→0

1
hα(t)

η

∑
j=0

(−1) j
(

α(t)
j

)
x(t − jh)

where η = ⌊t/h⌋, and

A ∆αl xl =
1

hαl
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∑
j=0

(−1) j
(

αl
j

)
xl− j.

The B-type variable-order derivative and its discrete approxi-

1

0, is an observer of the following system:

	

(0∆⁓0.5xb1)(q + 1) = xb2(q)

(0∆⁓0.5xb2)(q + 1) = ¡0.006333x1(q) ¡

(0∆⁓0.5xb2)(q + 1) ¡ 0.037401x2(q) + u(q)

y(q) = 0.025055x1(q) + 0.004997x2(q) +

y(q) + 0.223395u(q).

�(27)

The observer (26) estimates the state of the system (27). 
Figure 3 shows the behaviour of the observer (26) with initial 

Observe that Fig. 1 shows the graphs of the states and their 
estimations while Fig. 2 illustrates the behaviour of the error 
function, where ei := xi ¡ xbi, i = 1, 2.

Now, we present the construction of the observer for dis-
crete-time model obtained in [38] for ultracapacitor discrete 
time identification. Our goal is to find the estimation of the 
unknown state of the given discrete-time model basing on the 
knowledge of output and input.
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conditions xb1(0) = 0.02 and xb2(0) = 0.04 and the behaviour of the 
original systems’s solution with initial conditions x1(0) = 0.01 
and x2(0) = 0.02 for u ´ 0. Again for the better visualization 
the points are connected. The behaviour of the error function 
is illustrated by Fig. 1.

6.	 Conclusions

In the paper the construction of fractional observers for multi–
order fractional difference systems with orders αi 2 (0, 1], 
i = 1, …, n is presented. The condition that guarantees the ex-
istence of the fractional observer is given. The construction of 
the presented fractional observer requires to find the gain matrix 
K that satisfies the condition that guarantees the asymptotic 

(a) the graphs of x1 and xb1 = y1 for n = 50 steps

−− graph of x1  −− estimation y1 of state x1 −− graph of x2  −− estimation y2 of state x2

Fig. 3. The solution of the initial value problem for the systems (27) and (26) in Example 2

(b) the graphs of x2 and xb2 = y2 for n = 50 steps
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Fig. 4. The trajectory corresponding to the initial value problem 
for the system (22) with the initial error’s conditions e1(0) = –0.01, 
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stability of the fractional multi–order system related with the 
error vector. Our future goal will be devoted to formulate and 
prove the ultimate analytical stability criteria for the fractional 
multi–order systems. Additionally, we will study the existence 
of observers for the difference systems with the Caputo–type 
operators.
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