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Abstract. The paper is devoted to the construction of observers for linear fractional multi—order difference systems with Riemann—Liouville—
and Griinwald—Letnikov—type operators. Basing on the Z-transform method the sufficient condition for the existence of the presented observers
is established. The behaviour of the constructed observer is demonstrated in numerical examples.
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1. Introduction

Recently, there is a large increase in interest of fractional cal-
culus application as well theoretical and practical points of
view, see for example [1-12]. Basic information, ideas and
some applications of fractional calculus can be found for ex-
ample in [5, 13,14]. In the paper we focus on systems with
forward h-difference operators, so we restrict our consideration
to the discrete fractional calculus that was initiated in [15].
This work found its continuation in [8, 16—19]. Recently, nabla
and delta derivatives are defined and generalized to fractional
orders, obtaining two formulations that are discrete versions of
the Grinwald-Letnikov derivatives, see [20]. Modern technical
applications and signals force to discretization of the considered
systems and as the consequence a replacement of derivatives by
differences with small enough steps. The main reason of con-
sidering forward difference operators is that the delta-domain
approach has been promoted as an effective tool for dynamic
system modeling and control. In [21] the authors demonstrate
that the numerical properties of structure detection are improved
by a delta-domain model and such delta-domain models pro-
vide models closely linked to the continuous-time systems.
Additionally, the delta-domain approach allows to address the
question of preservation of the system properties under Euler
discretization scheme.

The important problem in the systems’ theory is the estima-
tion of the unknown state of a system from outputs and inputs.
This problem is known as “observing the state”, hence the name
“observer”. Therefore the estimation of the unknown state is the
task of the observer. In the construction of observers the out-
puts and inputs applied to the systems are used. In the last few
decades state estimators (or observers) have been widely used
in control and signal processing, see for instance [22, 23]. The
problem of the observer synthesis for fractional discrete—time
systems with Griinwald-Letnikov—type operator and the step
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h =1 has been studied in [24, 25]. The aim of the present paper
is to study the construction of the full-order observers for linear
fractional muti—order discrete—time systems with the Riemann—
Liouville- and Griinwald—Letnikov—type difference operators
with the step £ > 0. We restrict the design of the observers for
the systems whose fractional orders are from the interval (0, 1],
because the systems with fractional orders higher than one can
be always transform to systems with orders less than or equal
to one, see for instance [26].

The paper is organized in the following way. Section 2
gathers preliminary notations, facts and definitions needed in
the sequel. In Section 3 the initial value problems for fractional
multi—order systems are presented. The main results of the
paper, namely the construction of the fractional observer, that
estimates the unknown state vector, is presented in Section 5.
Since the fractional order system corresponding to the error
vector should be asymptotically stable in order to guarantee
the estimation of the unknown state of the system by the ob-
server, the condition for asymptotic stability of fractional order
systems is given in Section 4. Additionally, two examples that
illustrate our results are presented. Finally, the conclusions are
drawn.

2. Preliminaries

Let h >0, a € R and (hN),:= {a,a + h,a + 2h, ...}. For
a function x : (hN), — R the forward A-difference operator is
defined as (see [27]) (Apx)(F) := W, where ¢ € (hN), and
(A%)(¢) := x(t). Letk € Npand Ak := A, 0 - 0 A, is k-fold appli-
cation of operator A,. Then (Afx)(r) = h’ka?:O(fl)k’i(lf)x(t + ih).
Let us introduce the family of sequences on Z parameterized
by u > 0 and given by the values: ¢*(g) = ("‘g‘l) = (71)‘1(’4‘)
for ¢ € Ny and ¢,(¢g) = 0 for ¢ < 0.

Definition 1. For a function x : (AN), — R the fractional #-sum
of order o > 0 is given by (,A;°x)(t) := h*(c"?%X)(q), where
t=a+ gh, X(q) :==x (a + qh), ¢ € Ny and “*” denotes a con-
volution operator, i.e. (c"“xx)(q) := ¥1_o(* 3 T4 ")x(s). Ad-
ditionally, we define (,AQx)(7) := x(2).
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For oo = 0 we will write shortly A, “ instead of (A, “. Note
that the fractional 4-sum of order a does not change the domain
of the function and ,A;“x: (hN), — R. Let us recall that the
Z-transform of a sequence {y(g)},en, is a complex function
given by Y(z) := Z[y](z) = X2 »(q)z %, where z € Cis a com-
plex number for which the series ZZOZO v(g)z~7 converges abso-
lutely. Then the inverse Z-transform addresses the reverse
problem, i.e., given a function Y(z) and a region of convergence,
find the signal y(¢) whose Z-transform is ¥(z) and has the spec-
ified region of convergence. The presented Z-transform involves,
by definition, only the values y(g) of the sequence {y(q)}sen,

Note that since ¢®(g) = (fl)q(Z), then for |z| > 1 we have
¥ [c@] (2) = z(—1)q(“>z—qz
q=0 q
) 1 (1)
J— a J—
:2<q >Z_q:(1_z_l)a
g=0 q
and
! [(1 —z*l)“} = (@), )

The operator ,A;,“ is defined as the convolution of two
sequences, namely sequences ¢ and x. Hence by the fact
that the Z-transform of the convolution of two sequences is the
product of the Z-transforms of the separate sequences one gets
the following proposition.

Proposition 1. For 1 = a + gh € (hZ), let us define y(q) :=
= (,A,*x)(?) and X(g) := x(a + gh). Then

—o

Z)=n*(1-2"") "X(2), (3)
where X(z) := Z[x](z).

For i = 1 the equation (3) can be rewritten as 2 A “x](z) =
= (1 -z 1) "X(z), where (,A;“x)(a + q) =: y(q) is treated as
a sequence.

Let s € Ngj, and ¥ : Noj, — R be defined by X(s) := x(sh).
Thens = %), + q, g € Ngand X(¢q) = X(%}, + q) = x(a + gh) and
of course x : Ny — R. Note that by (3) we get

Zy) = W Z17], (4)

where 7(q) := (4, A1“%)(%}, + ¢). Then using (4) one can easily
proof the following lemma, that is also proven in [28] without
using Z-transform method. This lemma gives the transition be-
tween fractional summation operators forany 2 > Oand 7 = 1.

Lemma 1 [27]. Letx : (hN), — R and a > 0. Then (,A; *x)(f) =
= h%(a),A1°%)(Yp), where t € (hN), and X(s) = x(sh).

For simplicity of notation if 4 = 1, then we write: 4;, A" * :=
= a/hAfa.

2.1. Fractional difference operators and relation between
them. Let us recall the definition of the Riemann—Liouville—
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and Griinwald—Letnikov—type A-difference operators and the
forms of images in the Z-transform of the considered difference
operators.

The definition of the Riemann—Liouville—type fractional
h-difference operator can be found, for example, in [29]
(for h = 1) orin [27, 28] (for any & > 0).

Definition 2. Let o € (0, 1]. The Riemann—Liouville-type
fractional A-difference operator ,Aj of order o for a function
x: (hN), — R is defined by (,Afx)(0) := (A,(,A,1~ %)) (),
where ¢ € (hN),.

For the case & = 1 we write: ,A" := ,A{.

Using the properties of Z-transform the following proposi-
tion can be proven.

Proposition 2 [30]. For a € R, a € (0, 1] let us define y(¢):=
= (,Ax)(¢), where t € (hN), and t = a + gh, g € N,. Then

Z(2)=zh* (1 -z 1" X(2) —zh~%x(a),  (5)

where X(z) := Z[x|(z) and X(q) := x(a + gh).

For a = 1 we have Z[y](z) = /4((z — 1) X(z) — zx(0)), that
also agrees with the transform of difference A, of x.

Using Lemma 1 one can proof the transition formula for the
Riemann—Liouville-type fractional A-difference operators be-
tween the cases for any # > 0 and 4 = 1, see for instance [27].
It is worth to stress that in [27] this formula is proven directly
without using the Z-transform, but one can easily show it by
using the Z-transform method.

Lemma 2 [27]. Letx : (hN), — Rand o > 0. Then, (,A,x)(f) =
= I *(a),A"%) (Yp), where ¢ € (hN), and X(s) = x(sh).

The next type of the operator, that is considered, is the Griin-
wald—Letnikov—type fractional s-difference operator, see for
example [3, 4, 14, 31-36] for cases 7 = 1 and also for general
case 1 > 0.

Definition 3. Let a € R. The Griinwald—Letnikov—type A-dif-

ference operator ,A{ of order « for a function x : (hN), — R
is defined by

(sB25) (0 =7 fac@ @Oxt—ah).  ©

For simplicity of the notation, if # = 1, then we write:
A" := Al In [30] the following proposition is proven.

Proposition 3 [30]. For a € R, o € (0, 1] let us define y(q):=
= (,A;x)(t), where ¢ € (hN), and t = a + gh, g € N,. Then

ZhE)=h*(1-2")"X(), )

where X(z) := Z[x|(z) and X(q) := x(a + gh).
Observe that by (7) if X(g) := x(a + gh), g € N, then one
gets (Apx)(a + gh) = h™*(0A"%)(q)-

Bull. Pol. Ac.: Tech. 65(6) 2017
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By comparison of the formulas (5) and (7) one can show
the relation between the Riemann—Liouville— and Griinwald—
Letnikov—type fractional A-difference operator. The following
proposition describes this relation and it has been proven in [30].

Proposition 4 [30]. Let x : (AN), — R. Then (,Afx)(t + h) =
= (,LA7x)(t), for t € (hN),.

It is well known that the Z-transform method can be used
in finding the solutions of difference equations and in the study
of the stability of their equilibrium points.

3. Linear fractional multi-order
difference systems

In this section we consider initial value problems of frac-
tional order systems of multi-order difference equations with
the presented above types of operators. In fact the problem of
solvability of fractional-order systems defined by difference
equations with the Griinwald—Letnikov—type A-difference op-
erator is discussed only, because the Riemann-Liouville-type
h-difference operator can be expressed by the Griinwald—Let-
nikov-type operator, see Proposition 4. Solutions to initial value
problems for control systems with all types of multi—order op-
erators were stated in [37]. Let us consider the following initial
value problem given by

(ag t+ h Zal] i + Zbikuk(t)
k=1 (8a)
i=1, ..,
x1(a)
x(a) = eR". (8b)
xn(a)

where a € R, a; € (0, 1], h > 0, x;: (hN), — R is the state
function, 7 € (hN),, a;;, by €R, i,j=1,..,n, k=1,...,m
n,m € Ny, and u; : (hN), = R, k=1, ..., m is the input func-
tion applied to the system.
Of course, by Proposition 4 system (8a) can be equivalently
written as
(aA7x7) (¢

n

):Zaijxj(t ,i=1,..,n

j=1
where the Riemann—Liouville-type A-difference operator is used
instead of the Griinwald-Letnikov—type A-difference operator.
Now, we restrict our considerations to the systems with the
Griinwald-Letnikov—type difference operator, but for systems
with Riemann—Liouville-type operator one gets the same results.

Using Lemma 2 the system (8a) can be rewritten in the form:

V3 buan()
k=1

_ m
(oAai)_Ci) q+ 1 = h% Z CIUX] +hai 2 bikﬁk(‘]) ©)
k=1

i=1,...,n
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where ¢ € Ny, X; : Ng = R, X;(¢) :=xi(a+gh), i=1,...,n
and #; : Ng — R, u;(q) := u(a + qh), j =1, ..., m. Moreover,

the initial condition (8b) can be rewritten as X(0) = (x,(0), ...,
%,(0)" € R".
Let X(q) = (%1(q), ... X,(q))" € R” and u(q) = (L_ll(Nq), e
( )) € R™ for qc NO Define OA( )X (OA xl, cees OAa"Xn)T.
Then system (9) has the following matrix form
(OZ(“))—C) (g+1) = HAZ(q) + HBu(q), (10)
where g € Ny, H := diag{h™, ..., h"} € R"", 4 = (a;) € R™"
and B = (b;) € R™". By Definition 3 it is easy to see that system

(10) has the unique solution given by the recurrence formula

X(q+1) = HAx(q) + HBu(q) —
q+1 11
> D (i)x(g—i+1), (
i=1
for any g € Ny, where € (i) := diag{c“)(i), ..., c“)(i)},
i=1,...,9 + 1, and consequently we have
x(a+ (q+1)h) = HAx(a+ qh) + HBu(a + gh)
q+1 (12)
— 2%(“) ix(a+(g—i+1)h),
i=1
where x(a + kh) = (xi(a + kh), ..., x,(a + kh))" for k=0, ...,

g+ 1 and u(a + kh) =
k=0,...,q

Now, we show how the solutions of system (8a) look like
in term of fundamental matrices associated to the considered
systems. Let us define y(g):= (0A“/%)(q + 1), where ¢ € Ny and

Ay i=diag{ (1=271) ", ., (1=27) .

Taking into account Proposition 3 and using the properties of
Z-transform one gets the following formula:

(ui(a + kh), ..., u,(a + kh))" for

Zy)(z) = ZH_IA(_Q)X(Z) —zH 'x(0),

where X(z) = (Z[x))(2), ... Z[%,)(z))". Note that " = diag{h™™,
Sh and Ay = Ay = diagi(l—z7')", .., (1—z7")"}.
The solutions of the fractional difference system (8a) with
initial conditions (8b) can be expressed by the fundamental
matrices associated to the considered systems.

(13)

Proposition 5. Let o; € (0, 1], =1, ..., n and @ be the funda-
mental matrix for system (8a) such that x(f) = (I)(’ ;a)x(a) +

a
) t—a
+ 205
value problem (8). Then
Z[0)) = (I — 27 AHA) Ay = (Acy — 2 'HA)™
diag{(1—z") ", ..., (1 =21y ™}, H = diag{h',

)HBu(a -+ ih) is the solution to the initial

where A, =
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Proof. Note that for X(q) = x(a + gh) and i(q) = u(a + qh)
system (8a) can be written in the equivalent matrix form (10).
The idea of the proof is to take the Z-transform of each equation
of system (10) and use formula (13). Then we get the system
of algebraic equations:

ZH A qyX(z) —zH '%(0) = AX(z) + BU (2),

where U(z) = (Zit))(2), ..., Zit,)(z))". Hence one gets

(21 — Aoy HA) X (2) = 2 ()% (0) + Ao HBU (2),
for X(0) = x(a) = [xi(ay) ... x,(a,)]". Then

X(2) = (I—z " AHA) ™ Agyx(a) +

+2 (=2 Aoy HA) ™ Ay HBU(2) =
=Z @] (z)x(a) + Z [®*HBu|(z).
Hence
—1
5(q) = Og)R0)+ 3, g ~ 1~ HB).

Consequently, since an initial condition is arbitrary, we get the
thesis. O

Remark 1. Note that A(,) = A(}a) and

Ay = (=2 Ay HA) Ay

-1

(I—z"AyHA) A

= (Ao == 'HA)

Hence for 4 = 1 the result coincides with Proposition 3 given
in [26].

4. Stability of fractional multi—order systems

In this section we state the asymptotic stability conditions of
fractional multi—order difference systems of the form (8a).

In the proof of Proposition 5 we give the z-domain solution
to the state equations (8a), which are equivalently rewritten in
the matrix form as (10) and we get

1

X@z) = —z""NgyHA)  Agx(a)+
1

A(_q)—HA)" HBU
+ (12 (—a) — ) (Z) (14)

=z (ZA(,O() ) (a)

+(zA(_a) — HA) "' BU(2),
where A,y = diag{(1—z7')", ..., (1= z7')™}, H = diag{h™,

Lk
894

Proposition 6. Let R be the set of all roots of the equation

det (I —z "' Ao HA) =0. (15)

Then the following items are satisfied.

a) Ifall elements from R are strictly inside the unit circle, then
system (8a) is asymptotically stable.

b) If there is z € R such that |z| > 1, then system (8a) is not
stable.

Proof. The proof is similar to those presented in [30]. Here the
proof is based on the formula of Z-transform of function ®@(-)
from Proposition 5, see formula (14). a

Remark 2. In fact, the z-domain solution of (8a), under the
condition xo = 0, is as follows

X(z) = (zA(_q) — HA) " HBU(2).

Observe that the set of the roots of the equation (15) equals the
set of the roots of the following equation

det (zA(_q) —HA) = 0. (16)

Therefore, for ay, ..., a, € (0, 1] if all roots of the equation (16)
are strictly inside the unit circle, then (8a) is asymptotically
stable.

5. Observers

In this section we present the construction of the full-order
observer and formulate the conditions that guarantee the exis-
tence of observers.

Let us consider the following linear control systems (8a)
with the output given by:

y(t) =Cx(t) 4+ Du(t), (17)

where ¢ € (hN),, y: (hN), = R?, C € R”" and D € R”".

Definition 4. The following system

(6AY%) (g + 1) = Fx,(q) + Gu(a + gh) + Ky(a + gh), (18)

is called a (fractional) observer of order (8) = (8, ..., B,) for
system (8a) with output (17) if
lim e(q) = lim (x(a+qh) —x(q)) =0, (19)

g—ree
for any x(a), ¥(0) and u : (hN), — R, where ¥ : Ny — R”,
% =[x, ....%,)", e:=[ey, ..., e,]  : Ny — R" is an error vector
such that e¢; :=X;, — X;, F € R™", G € R"™" and K € R"?.

g—reo

Bull. Pol. Ac.: Tech. 65(6) 2017
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Then ,(¢) estimates the unknown value x;(a + gh) of the
state x and X is called an estimation of x.

Observe that if f;=1,i=1, ..., n, in Definition 4, then
an observer is a classical delta—difference system. Taking
B € (0, 1] one gets observers being fractional systems with
commensurate and incommensurate orders.

Now, let us formulate the condition that guarantees the ex-
istence of the observer. Assume that (8) = (@), i.e. §;= o; for
i=1,...,n

Theorem 7. If there exists matrix K such that all roots of the
equation

det(I—z 'A(q)(HA—KC)) =0, (20)

are strictly inside the unit circle, then the observer for the
system (8a) is as follows:
(0A“%)(q + 1) = (HA — KC)x(q) +

_ _ (21)
+ HBu(q) + Ky(q),

where 3(q) = y(a + gh) and u(q) = u(a + gh).

Proof. Note that (8a) can be rewritten in the equivalent matrix
form (10). By (10) and (21) for the error function e : Ny — R",
one gets

(0A“%) (g + 1) = (%) (g + 1) — (A“x) (g + 1) =
= HAX(q) + HBi(q) — HAx(q) — HBii(q) —
— K(7(q) — Cx(g))
= HA(%(q) — %(q)) — K(¥(g) — Cx(q)).
Since y(q) = y(a + gh) = Cx(a + gh) + Dux(a + gh) = Cx(q) +
+ Dii(g) and e(g) = X(q) — x(g), we have

(OZW)e) (g+1) = (HA—KC)e(q) —KDu(g). (22)

By assumption all roots of the equation (20) are strictly inside the
unit circle, so using Proposition 6 we get the asymptotic stability
of (22). Then lim e(q) = lim (x(g9) — %(g)) = 0 and the system

(21) is the observer for system (8a) with output (17). |

Remark 3. Note that if only all roots of the equation (20) are
strictly inside the unit circle, then the observer (21) estimates
all coordinates of the unknown state x. Hence both x and the
estimate X are from R”. Therefore in order to design the frac-
tional observer for a linear fractional multi-order difference

Bull. Pol. Ac.: Tech. 65(6) 2017

system one has to find a matrix K that satisfies the assumption
of Theorem 7.

Now, let us consider a numerical example that illustrates the
behaviour of the constructed observer.

Example 1. Let us consider the fractional system defined by
(8a) and (17) with a; = 0.2, a, = 0.6, & = 0.5 and matrices:

[0.6

-0.3 b,
,B=|"", c=[1 1] and D = d where by, b,

0 -04 b,
- \02
0 0.2
deR.Then A, = <Z_1) 06 andH:[O'5 0 }
0 (ﬁ) : 0 0.5%

Our task is to find the matrix K = [Z] € R*! such that all roots

of the equation (20) are strictly inside the unit circle.

Taking a = 0.5 and b = —0.1 we get that all roots of equa-
tion (20) (i.e. the complex numbers 0.9799925913e — 1
+0.1070545235i and |0.9799925913¢ — 1 £0.1070545235i| =
= 0.1451362318 computed by Maple) are strictly inside the
unit circle, so the following system

(0A%%%))(g + 1) = 0.5°2- 0.63() — 0.5°2-0.3%,(q) +
+0.5%2- byi(q)+ 0.5(3(q) —
— %) — %2(9))

(6A%5%))(g +1) =—0.5%- 0.4%,(q) + 0.5°° - byia(q) —
—0.1(3(q) — 21(q) — %(9)),

(23)

where ii(q) = u(0.5¢g) and ¥(q) = ¥(0.5¢), ¢ € Ny, is an observer
of the considered systems, i.e. the following equivalent sys-
tems:

(0A03%1)(0.5g) = 0.6x,(0.59) — 0.3x,(0.5¢) +

+ bu(0.59)
(24)
(0A38%,)(0.59) = 0.4x5(0.5¢) + byu(0.59)
¥(0.59) = x1(0.5g) + x,(0.5¢) + du(0.59)
and
(0A92%))(0.5(q + 1) = 0.6x,(0.5¢) — 0.3x,(0.5¢) +
+ bu(0.59)
(25)

(0A55%2)(0.5(q + 1) = 0.4x5(0.5q) + byu(0.59)
¥(0.5¢) = x1(0.59) + x,(0.59) + du(0.5g)

with the Riemann—Liouville-type and with the Griinwald—Let-
nikov—type operators, respectively.
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(a) the graphs of x| and x| = y, for n = 50 steps

2 1
I‘\
05) 15 ’)\
= |
> |
= IS
= \
8 \
< 054 \\
\
\\
0 S T T T 1
10 —=-20 30 40 50
~05 | —==
k steps =
— graph of x; —— estimation y, of state x;

(b) the graphs of x, and X, = y, for n = 50 steps

x, and y, values

30 40 50

k steps

— graph of x, —— estimation y, of state x,

Fig. 1. The solution of the initial value problem for the systems (24) (or equivalently (25)) and (23) in Example 1

The observer (23) estimates the state of the original systems
(24) and (25). Figure 1 shows the behaviour of the observer
(23) with initial conditions %;(0) = 1 and %,(0) = 2 and the be-
haviour of the original systems’s solution with initial conditions
x1(0) = 2 and x,(0) = 4 for u = 0. For the better visualization
the points are connected.

—_—
I
—

(=)
|
|
I
|

20 30 40 50

e; and e, values
/

k steps

— graph of ey —— graph of e,

Fig. 2. The trajectory corresponding to the initial value problem for
the system (22) with the initial error’s conditions e;(0) = 1, e,(0) = 2

Observe that Fig. 1 shows the graphs of the states and their
estimations while Fig. 2 illustrates the behaviour of the error
function, where e; ;= x; — X;, i = 1, 2.

Now, we present the construction of the observer for dis-
crete-time model obtained in [38] for ultracapacitor discrete
time identification. Our goal is to find the estimation of the
unknown state of the given discrete-time model basing on the
knowledge of output and input.
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Example 2. Let us consider the fractional system with the Griin-
wald—Letnikov—type operator defined by (8a) and (17) with
o1 = a,=10.5, h =1 and matrices:

0 1 5|
—0.006333 —0.037401 1]’
C = [0.025055 0.004997] and D = [0.223395].

)" o
0 (ﬁ)O.S

Observe that taking for instance K = ﬁ g] e R?*! all roots of equa-

Then A, = and H = I.

tion (20) are strictly inside the unit circle, so the following system:

(0A%%)) (g + 1) = %:(q)

o - 26
(OA0.5x2) (g + 1) = —0.006333x(q) — o
— 0.037401%,(¢) + u(g),
where ¢ € Ny, is an observer of the following system:
(0A%%5))(g + 1) = 3(q)
(05052?2) (g + 1) = —0.006333x(q) —
— 0.037401x5(q) + u(q) @7

¥(g) = 0.025055x1(g) + 0.004997x,(q) +
+0.223395u(q).

The observer (26) estimates the state of the system (27).
Figure 3 shows the behaviour of the observer (26) with initial

Bull. Pol. Ac.: Tech. 65(6) 2017



W\-\'\‘\’.CZ}.{SU].)ihl'l'li{.llilll.pl P
=

N www.journals.pan.pl

Full-order observers for linear fractional multi-order difference systems

(a) the graphs of x| and x| = y, for n = 50 steps

[
0.035 1
0.030 1
0.025 1

0.020

x; and yy values

k steps

— graph of x; —— estimation y; of state x;

(b) the graphs of x, and X, = y, for n = 50 steps

x, and y, values

k steps

— graph of x, —— estimation y, of state x,

Fig. 3. The solution of the initial value problem for the systems (27) and (26) in Example 2

conditions ¥;(0) = 0.02 and X,(0) = 0.04 and the behaviour of the
original systems’s solution with initial conditions x;(0) = 0.01
and x,(0) = 0.02 for u = 0. Again for the better visualization
the points are connected. The behaviour of the error function
is illustrated by Fig. 1.

e, and e, values

— graph of ¢y —— graph of ¢,

Fig. 4. The trajectory corresponding to the initial value problem
for the system (22) with the initial error’s conditions e;(0) = —0.01,
e,(0)=-0.02

6. Conclusions

In the paper the construction of fractional observers for multi—
order fractional difference systems with orders «; € (0, 1],
i=1,...,nis presented. The condition that guarantees the ex-
istence of the fractional observer is given. The construction of
the presented fractional observer requires to find the gain matrix
K that satisfies the condition that guarantees the asymptotic

Bull. Pol. Ac.: Tech. 65(6) 2017

stability of the fractional multi—order system related with the
error vector. Our future goal will be devoted to formulate and
prove the ultimate analytical stability criteria for the fractional
multi—order systems. Additionally, we will study the existence
of observers for the difference systems with the Caputo—type
operators.
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