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Abstract. The aim of this paper is to study the applicability of micropolar fluid theory to modeling and to calculating tribological squeeze flow 
characteristics depending on the geometrical dimension of the flow field. Based on analytical solutions in the lubrication regime of squeeze 
flow between parallel plates, calculations of the load capacity and time required to squeeze the film are performed and compared – as a function 
of the distance between the plates – for both fluid models: the micropolar model and the Newtonian model. In particular, maximum distance 
between the plates for which the micropolar effects of the fluid become significant will be established. Values of rheological constants of the 
fluids, both those experimentally determined and predicted by means of using equilibrium molecular dynamics, have been used in the calcula-
tions. The same analysis was performed as a function of dimensionless microstructural parameters.
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rotation of molecules (microrotation – the spinning motion of 
molecules independent of the rotation of flow velocity field).

MFT is being widely developed due to its potential use in 
tribology, microdevices, biotribology, and magnetorheology, to 
describe the flows in microchannels [10–12]. For the past twenty 
years, significant progress and results supporting the usefulness of 
MFT to model fluid flow in narrow gaps and passages have been 
developed. Based on the molecular dynamics method, it was con-
firmed that during the Poiseuille flow in very narrow channels, the 
microrotation velocity – not included in the classical continuum 
theory – does in fact exist and those results are sufficiently con-
sistent with the results obtained based on the analytical solution of 
the micropolar fluid flow [13–17]. A new method has been devel-
oped by Hansen et al. [18] for designating the micropolar viscosity 
coefficients for real fluids using equilibrium molecular dynamics 
and values for water have been presented in the same work.

Research on scale effect of MFT applicability to micro-
flows modeling started in 2004. It showed that micropolar fluid 
equations of motion are being reduced to their counterparts 
in the classical continuum medium (Cauchy) theory, i.e. the 
Navier–Stokes equations, when the characteristic linear dimen-
sion of the flow field is sufficiently large [15, 16]. As a result, 
questions concerning the size of the flow field arose as concerns 
the effective use of MFT in solving flow problems. Hagen–
Poiseuille fluid flow in this context was studied in detail [16] 
and a microchannel maximum diameter value, above which the 
effect of micropolarity is negligibly small, was calculated for 
some real fluids, including water and blood, and expressed in 
dimensionless micropolar parameters. Hoffmann et al. (2007) 
compared the resistance force exerted on a sphere moving in 
micropolar fluids: water and blood, and showed that deviations 
are being observed only for small sphere radii.

Lubrication-type analysis for squeezing flow is well estab-
lished, and physical effects such as increased load capacity, 
etc., have been known since the 1970s, quoted e.g. in [3, 4]. 
The increasing number of articles regarding squeeze flow prob-

1.	 Introduction

Squeeze flow between parallel plates is an important area of 
study because of its many industrial and practical applications. 
These include MEMS devices (such as squeeze film damping), 
polymer process industry, automotive components, squeeze 
films in power transmissions and journal bearing.

Since Reynolds in 1886, many researchers have contributed 
their efforts towards solving this problem in different geome-
tries. Squeeze film problems have been solved using the New-
tonian fluid model [1, 2] as well as the micropolar fluid model 
[3–8]. Several investigators have found some advantages of 
the micropolar fluid model over the Newtonian fluid model, 
such as an increased load-carrying capacity and an increased 
approaching time for squeeze films, which has been observed 
experimentally. This happened in two cases: either when small 
amounts of long-chain polymer solutions were added to New-
tonian fluids operating as lubricants or when very thin films 
were squeezed. In such situations, the small height of the gap 
between squeezing plates implies the dominance of the surface 
forces over the volume forces. The surface forces eccentrically 
influence the fluid molecules, causing them to rotate (or spin). 
This effect – which is not possible to model within the frame 
of the classical continuum medium (Cauchy) theory – can be 
observed in particular during the squeeze flow of polyatomic 
molecule liquids (bioliquids, polar liquids), liquids with ad-
ditives or particles (nanofluids) as well as in the case of flow 
through a very narrow channel.

Micropolar fluid theory (MFT), derived by Eringen within 
the framework of extended continua is based on the assumption 
of a continuous medium but also takes into account the micro-
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lems was the motivation behind undertaking the study presented 
herein. The goal of this paper is to answer the question of what 
the limiting value of the   gap height between squeezing plates 
is, below which the micropolar effects of the fluid flow are 
visible and cannot be neglected, i.e. MFT should be applied.

To answer this question, quantitative evaluation is per-
formed of the influence of coupled stresses in a micropolar fluid 
on the squeezing fluid flow characteristics as a function of the 
distance between the plates. On the basis of classic results of 
analytical solutions for squeeze flow problems, when the con-
sidered system is within the lubrication regime, load supporting 
capacity and squeeze time are both evaluated. To assess the 
“micropolar effects”, the ratio between the load capacity of the 
micropolar and Newtonian fluids as a function of the distance, 
h, was introduced. The comparison was obtained using available 
data for the physical parameters of individual fluids considered 
in [15, 16] it was showed showed that the discrepancies are 
visible only for very small values of the gap.

Results obtained in the paper give new insight into practical 
MFT application and contribute to effective squeeze flow mi-
cropolar fluid modeling:
2)	they demonstrate that the impact of micropolar properties 

of the fluid on tribological squeeze flow characteristics is 
limited only to certain “maximum” distance hmax between 
squeezed plates,

3)	they show that the distance hmax reflects the inner structure 
of the fluid and can be defined by micropolar fluid viscosi-
ty coefficients, which describe fluid rheological properties,

4)	they indicate that the calculations of the squeeze film char-
acteristics for both the micropolar fluid and the Newtonian 
fluid models are the same for distances greater than hmax,

5)	they allow for calculation of distance values hmax for mi-
cropolar fluids; for several fluid considered in the paper, 
including inter alia water, the hmax value is given.
The paper is organized as follows. In Section 2, the micro-

polar fluid model is presented. In Section 3, flow problems are 
described, and the results are presented in Section 4. The study’s 
conclusions are presented in Section 5.

2.	 Micropolar field equation

2.1. Constitutive equations. The most important feature of MFT 
is the utilization of two tensors, the non-symmetric stress tensor 
T, and the couple stress tensor C. The constitutive equations 
for a micropolar fluid [9], where the stress tensor T = {Tij} is 
a non-symmetric tensor and the couple stress tensor C = {Cij}, 
are as follows:

	Tij = (–p + λVk, k)δij + μ(Vi, j + Vj, i) + κ(Vj, i ¡ εijkωk)� (1)

	 Cij = αωk, k δij + βωi, j + γωj, i� (2)

where the symbols denote: p – pressure, ω – the microrota-
tion field with ω = (ω1, ω2, ω3), V – the velocity field with 
V = (V1, V2, V3), λ, μ and κ – coefficients of bulk, shear and 
vortex (or rotational) viscosities, respectively, α, β and γ – coef-

ficients of spin gradient viscosities, εijk – the Levi-Civita tensor, 
and δik – the Kronecker delta function.

The viscosity coefficients satisfy the following inequalities 
[9]:

κ > 0.3λ + κ + 2μ > 0.2μ + κ > 0
3α + 2γ > 0, –γ < b < γ, γ > 0

An alternative form to (1) is the following:

	
Tij = (–p + λVk, k)δij + (μ + κ/2)(Vi, j + Vj, i) +
Tij + κ(Vj, i ¡ Vi, j) ¡ κεijkωk

� (3)

and the symmetric part of the stress tensor T expression in (3) is:

	 Tij
[S] = (–p + λVk, k)δij + (μ + κ/2)(Vi, j + Vj, i).� (4)

This form is the same as the definition of the stress tensor 
in classical hydrodynamics, where μN = μ + κ/2 denotes the 
dynamic Newtonian viscosity coefficient.

2.2. Flow equations. In the most general form [9, 19], the mi-
cropolar field equations for an incompressible fluid representing 
conservation laws are the following:
conservation of mass:

	 divV = 0� (5)

conservation of linear momentum

	 ρ dV
dt

 = ρf ¡ gradp ¡ (μ + κ)rotrotV + κ rotω� (6)

conservation of angular momentum

	
ρI dω

dt
 = (α + β + γ)graddivω ¡ γ rotrotω +

ρI  + κ rotV ¡ 2κω + ρg
� (7)

where: ρ is the density, f is the body force per unit mass 
with f = ( f1, f2, f3), g is the body torque per unit mass with 
g = (g1, g2, g3), and I is the microinertia coefficient.

The boundary conditions for the velocity field are the same 
as in the classic case with no slip conditions. For the microro-
tation, the Dirichlet boundary condition (ω = 0) or the dynamic 
boundary condition is often used (see [19–21]). The last one, 
in the form of ω = α 0.5 rot V, 0 < α < 1, will be used in this 
paper.

2.3. Dimensionless parameters. In addition to the usual di-
mensionless numbers encountered in classical hydrodynamics, 
the micropolar fluid flow is characterized by two dimensionless 
numbers, N and L

	 N =  κ
2μN + κ ,  L =  Lc

l ,  l =  γ
4μN

.� (8)

The dimensionless parameter N characterizes a coupling 
between the coefficients of rotational viscosity, κ, and shear 
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viscosity, μ, i.e. 0 ∙ N ∙ 1 [9]. The L parameter characterizes 
an interaction of flow geometry and the fluid properties, where 
Lc denotes the characteristic linear dimension of the flow field 
and the l parameter has a dimension of length and characterizes 
the relative length of the fluid microstructure. In general terms, 
the larger the molecules, the larger the value of the parameter 
l [22, 23] and elsewhere).

For a given fluid, the value of the N parameter is constant, 
but the L parameter depends explicitly on the geometry of the 
flow Lc since l is a constant for a given fluid.

3.	 Problem formulation

We studied the quasi-stationary two-dimensional Stokes flow of 
an incompressible micropolar fluid between two closely spaced 
parallel circular plates (Fig. 1). The upper plate moves with 
velocity VA towards the stationary lower plate.

In the cylindrical coordinate system (r, θ, z), we denoted the 
components of the velocity vector by V = (Vr(r, z), 0, Vz(r, z)), 
microrotation ω = (0, ω(r, z), 0), and pressure p(r, z). The 
lower plate was located at z = 0 and the upper plate at z = h, 
with the plate diameter being equal to 2a. The translational ve-
locity of the plate is VA = (0, 0, –U). We restricted our attention 
to fluid flow in the gap between the plates, with the vector of 
the mass moment g = 0, mass force f = 0, and the gap height 
h defined as the distance between the parallel plates being suf-
ficiently small, i.e. h/a << 1, and Vz << Vr. This permitted us 
to make considerable simplifications of the fluid flow equation 
(6), which was transformed to a form (derived in [4]) which, 
together with the continuity equation, reads as follows:

	

ρ
∂p
∂r

 = 
1

2
(2μN + κ)

∂2Vr

∂z2  + κ
∂ω
∂z

ργ
∂2ω
∂z2  ¡ 2κω ¡ κ

∂Vr

∂z
 = 0

∂p
∂z

 = 0

1

r
∂

∂r
(rVr) + 

∂

∂z
Vz = 0









.� (9)

The boundary conditions imposed onto the velocity and 
microrotation vectors on the plates have the following form:

Vr = 0,   Vz = –U   for   z = h� (10)

Vr = 0,   Vz = 0   for   z = 0� (11)

ω =  1
2

α0 rotV   for   z = h

ω =  1
2

α0 rotV   for   z = 0
� (12)

where a0 is a non-negative constant, 0 ∙ α0 ∙ 1.

	 p = p0   for   r = a.� (13)

The solution of the micropolar fluid flow equations (9) sub-
ject to the corresponding boundary conditions (10–13) has been 
obtained by Kucaba-Pietal and Migoun [24]. In this paper, the 
calculation of the squeezing flow characteristics is based on 
the explicit analytical formulas for load carrying capacity Wm 
and the squeeze film time T, which were determined therein. 
The formula for load supporting capacity Wm reads as follows:

	 Wm = 
0

a

∫2πr(p ¡ p0)dr = 
πUa4μN

8M1
� (14)

where

	
M1 =  1

6
h3 +  cosh(mh)

κ
m2 YμN +

M1 + (–sinh(mh) + mh) κ
m2 XμN + h2ZμN .

� (15)

The functions X, Y and Z, and the parameter m, which all 
appear in the above expressions, are defined as follows:

Y = 
–Z(1 + 2α0)

α0κ + 1
� (16)

X = (cosh(mh) ¡ 1)–1

X =  – 1 + 2α0
α0κ + 1

Zsinh(mh) ¡  mh
κ

2Z +  h2

2μN

� (17)

Z = 
– h

2μN
 +  –1 + coth mh

2
mh
κ  + α h

2μN
2 ¡ coth mh

2 mh

α –κcoth mh
2

1 + α0
α0κ + 1  + sinh(mh) ¡ 2 mh

κ

 +

w + –
h

2μN
–1 + coth mh

2
mh
κ  + α h

2μN
2 ¡ coth mh

2 mh

– 2α0 + 1
α0κ + 1 (cosh(mh) + 1)  +  κ

μN
coth mh

2

� (18)

m =  4μNκ
(2μN + κ)γ

.� (19)

Fig. 1. Squeeze film configuration
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 (14) 
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For the case where a Newtonian fluid is squeezed between 
the plates, load supporting capacity WN is reduced to:

	 WN = 
3πμNUa4

2h3
.� (20)

The formula for the time Tm taken in reducing the height ho 
to a prescribed film thickness h, obtained in the reference [24], 
reads as follows:

	 Tm = 
3πμN a4

4W

1

6 h0

h

∫
dh

M1
.� (21)

The relevant formula for the time TN to reduce the height ho 
of a Newtonian fluid squeezed between the plates is

	 TN = 
3πμNUa4

4W

1

h2
 ¡ 

1

h0
2

.� (22)

In the paper referred to herein, the above formulas have 
been expressed in terms of the dimensionless parameters L and 
N as well.

4.	 Results and discussion

4.1. Data used for squeeze film characteristics calculation. 
Values of experimentally determined micropolar fluid constants 
for water and the fluids used in defectoscopy [25, 26], and 
values predicted for water [18] based on molecular dynamic 
simulations are used in this work. In [25, 26], a method to ex-
perimentally determine the parameters characterizing the micro-
structure of a liquid is proposed. Formulae for the calculation of 
micropolar viscosity coefficients from the micropolar parame-
ters are given, and the values of the micropolar parameters for 
water and exemplifying fluids used in defectoscopy are listed. 
For the calculation of simple flows, for instance the Hagen–Po-
iseuille flow, the values of the fluid micropolar parameters are 
sufficient to make accurate predictions. For other, non-simple 
flows, values of the viscosity coefficients are explicitly needed. 
To perform the calculations, we assume that αo = 0.2. For water 
and the three fluids, P1, P2 and P3, as denoted in [25], the co-
efficients were calculated and are listed in Table 1.

Table 1 
Values of micropolar viscosity coefficients for real fluids derived 

from experimental data and from MD simulations

Fluid/viscosity 
coefficients

μ 
10−3Pa s

κ 
10−3Pa s

γ 
10−21kg m s−1

P1 2.933 4.824 2.878

P2 0.985 1.935 2.607

P3 0.636 1.568 1.002

water (1) 0.668 0.214 4.475

water (2) [18] 0.92 +/–0.09 0.17+/–0.03 3.0

In the last row of Table 1, the values for water at 16°C are 
listed, which were evaluated by Hansen et al. [18] using equilib-
rium molecular dynamics. Determination of the viscosity coeffi-
cients of a liquid based on molecular dynamics is a new and highly 
promising method. However, the results are strongly dependent on 
the molecular model of water [27]. Variations in the data derived 
on the basis of different methodologies are small, but we can still 
observe discrepancies in the values. On the other hand, we should 
keep in mind that the results of experimental measurements of the 
micropolar parameters are also subject to errors.

For this reason, the calculations of the squeezing water char-
acteristics were performed twice. All calculations obtained for 
water using data from [18] are marked in the paper as water(2), 
while the results derived from experimental data are marked 
as water(1).

4.2. Load carrying capacity. The load comparison parameter 
s(h), which is dependent on the gap height h, is defined with 
the following ratio:

	 s(h) = Wm(h)/WN(h).� (23)

The percentage difference of the load calculations, per-
formed using micropolar fluid dynamics (denoted as Wm(h)) 
and classical hydrodynamics (denoted as WN(h)), is given as 
ds(h) = Wm(h) ¡ WN(h)/WN(h) *100% and shown in Fig. 2. The 
difference is observable only for very small values of the film 
height. For h = 10–6 [m], the differences in the results for fluids 
are as follows: 1.2% for P1, 2.3% for P2, 1.5% for P3, and 
4% for water(1) as well as 0.3% for water(2). The differences 
increase with the decrease in film height.

Results from Fig. 2 show that for every fluid beginning from 
a certain gap height, the load capacity calculated using the mi-
cropolar fluid model is larger than the one calculated with the 
classical Newtonian model of the fluid. More importantly, it 

Fig. 2. Percentage difference ds(h) = Wm(h) ¡ WN(h)/WN(h) *100% in 
the case of fluids: P1, P2, P3 and water for various film heights h [m]
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       calculation 

 Values of experimentally determined micropolar fluid 
constants for water and the fluids used in defectoscopy 
[25, 26] and values predicted for water [18] based on 
molecular dynamic simulations are used in this work. In 
[25, 26], a method to experimentally determine the 
parameters characterizing the microstructure of a liquid is 
proposed. Formulae for the calculation of micropolar 
viscosity coefficients from the micropolar parameters are 
given and the values of the micropolar parameters for 
water and exemplifying fluids used in defectoscopy are 
listed. For the calculation of simple flows, for instance 
the Hagen - Poiseuille flow, the values of the fluid 
micropolar parameters are sufficient to make accurate 
predictions. For other, non-simple flows, values of the 
viscosity coefficients are explicitly needed. To perform 
the calculations, we assume that o=0.2. For water and 
the three fluids, P1, P2, and P3 as denoted in [25], the 
coefficients were calculated and are listed in Table 1. 
 In the last row of Table 1, the values for water at 16oC 
are listed which were evaluated by Hansen et al. [18] 
using equilibrium molecular dynamics. Determination of 
the viscosity coefficients of a liquid based on molecular 
dynamics is a new and highly promising method. 
However, the results are strongly dependent on the 
molecular model of water [27]. Variations in the data 
derived on the basis of different methodologies are small, 
but we can observe discrepancies in the values. It is noted 
that the results of experimental measurements of the 
micropolar parameters are also subject to errors. 
 
 

Table 1. Values for the micropolar viscosity coefficients for real fluids 
derived from experimental data and from MD simulations. 

Fluid/viscosity 
coefficients 

 
10−3Pa s

 
10−3Pa s

 

10−21kg m s−1
P1  2.933 4.824 2.878 
P2 0.985 1.935 2.607 
P3 0.636 1.568 1.002 

water (1) 0.668 0.214 4.475 
water(2) 

[18] 
0.92+/-0.09 0.17+/-0.03 3.0 

 
 For this reason, the calculations of the squeezing 
water characteristics were performed twice. All 
calculations obtained for water using data from [18] are 
marked in the paper as water(2), while the results derived 
from experimental data are marked as water(1). 

4.2. Load carrying capacity 

 The load comparison parameter s(h), which is 
dependent on the gap height h, is defined with the 
following ratio: 

s(h) = Wm(h) /WN(h)  (23) 

 The percentage difference of the load calculations 
performed using the micropolar fluid dynamics (denoted 
as Wm(h) ) and the classical hydrodynamics (denoted as 
WN(h)) is given as ds(h) = Wm(h)- WN(h) /WN(h) *100% 
and is shown in Figure 2. The difference is observable 
only for very small values of the film height. For  
h = 10-6[m], the differences in the results for fluids are 
equal: 1.2% for P1, 2.3% for P2, for 1.5% for P3, and for 
water, 4% water(1) and 0.3% water(2). The differences 
increase with the decrease in the film height. 
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Fig. 2. Percentage difference ds(h) = Wm(h) - WN(h)  /WN(h)*100% in 
the case of fluids: P1, P2, P3, and water for various film heights h [m]. 

 Results from Figure 2 show that for every fluid 
beginning from a certain gap height, the load capacity 
calculated using the micropolar fluid model is larger than 
the one calculated with the classical Newtonian model of 
the fluid. More importantly, it can be observed that every 
fluid has its “own” value of the limiting gap height,  
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can be observed that every fluid has its “own” value of the 
limiting gap height, starting from which the load comparison 
parameter, s(h), begins to increase. The above suggests that the 
value depends on rheological properties of the fluid – values of 
the micropolar viscosity coefficients.

Let us now examine the effect observed in detail in terms 
of the microstructural parameters L and N. For the fluids under 
consideration, the values of parameters N and l (8) were ob-
tained using data from Table 1 and are listed in Table 2. Rele-
vant formulas for load capacities Wm and WN , expressed by L 
and N, which were previously derived in [24], were used for 
calculations of s(L, N).

Table 2 
Dimensionless parameter values l and N for fluids P1, P2, P3  

and water

P1 P2 P3 water(1) water(2)
L 0.036 0.062 0.041 0.099 0.0866
N 0.558 0.577 0.589 0.689 0.367

Figure 3 illustrates the dependence of the load comparison 
parameter s(L, N) on L with Lc = h in (8). It can be observed 
that the s(L, N) value is strongly affected by parameters N and 
L, and s(L, N) increases when L decreases starting from the 
value of L = 10000, which is common for all of the fluids 
under consideration.

These results indicate that for the parameter value L < 10000 
(i.e. h < 104l), the micropolar effects in the fluid increase the 
load capacity calculations, and should be performed using the 
micropolar fluid model. The micropolar effect is negligible 
above this value; therefore, it is worthwhile to carry out load 
calculations based on classical hydromechanics, which is con-
siderably simpler than the micropolar fluid theory.

From data presented in Table 3, which summarizes some of 
the results of the calculations performed, we can observe that 
when L = 10000, the value of s is always less than 1.004, and 
when L = 1000, the value of s is smaller than 1.04. This means 
that the percentage difference in the calculation results obtained 
based on both fluid models does not exceed the value of 0.4% 
for L = 10000 and 4% for L = 1000.

Table 3 
Load comparison parameter s(L, N) for various values of L  

in the case of fluids P1, P2, P3 and water

P1 P2 P3 water(1) water(2)

L = 10000 1.003 1.003 1.004 1.004 1.002

L = 1000 1.033 1.035 1.035 1.042 1.021

L = 100 1.27 1.296 1.308 1.417 1.126

Using the values of l from Table 2, we are now able to 
calculate the particular limiting value of the gap height h for 
a given fluid, starting from which the difference between the 
load-bearing capacity calculations performed on the basis of 
both fluid models is less than the desired accuracy, i.e. 0.4%. 
For each of the fluids under consideration, the h value in [m] 
is equal to: 3.6 10‒6 for P1, 6.2 10‒6 for P2, 4.1 10‒6 for P3, 
and 9.9 10‒6 (water(1)) and 8.6 10‒6 (water(2)) for water. The 
results obtained using the dimensionless parameter values from 
Table 2 match the estimates presented in Figs. 3 and 4.

To study the effects of parameter N on s(L, N) for a wide 
range of N values, calculations were performed for “artificial” 
fluids characterized by different values of parameter N, and the 
results are presented in Fig. 4.

We can see that an increase in the value of parameter N 
(with constant L) results in an increase in the value of s(L, N). 

Fig. 3. Dependence of the load comparison parameter s(L, N) on L 
for fluids P1(N = 0.558), P2(N = 0.577), P3(N = 0.589), and water(1) 

(N = 0.689) and water(2) (N = 0.367)
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starting from which the load comparison parameter, s(h), 
begins to increase. The above suggests that the value 
depends on rheological properties of the fluid – values of 
the micropolar viscosity coefficients.  
 Let us now examine in detail the observed effect in 
terms of the microstructural parameters L and N. For the 
considered fluids, the values of the parameters N and l (8) 
were obtained using data from Table 1 and are listed in 
Table 2. Relevant formulas for load capacities, Wm and 
WN, expressed by L and N which were previously derived 
in the [24] were used for calculations of s(L,N). 

Table 2. Nondimensional parameter values l and N for the fluids  
P1, P2, P3, and water 

 P1 P2 P3 water(1) water(2) 
L 0.036 0.062 0.041 0.099 0.0866 
N 0.558 0.577 0.589 0.689 0.367 

 
 Figure 3. illustrates the dependence of the load 
comparison parameter s(L,N) on L with Lc=h in (8). It can 
be observed that the s(L,N) value is strongly affected by 
the parameters N and L, and s(L,N) increases when L 
decreases starting from the value L=10000 which is 
common for all of the considered fluids. 
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Fig. 3. Dependence of the load comparison parameter s(L,N) on L for 

fluids P1(N=0.558), P2(N=0.577), P3(N=0.589), and water(1)  
(N=0.689), and water(2) (N=0.367) 

 These results indicate that for the parameter value 
L<10000 (i.e., h<104l), the micropolar effects in the fluid 
increase the load capacity calculations, and should be 
performed using the micropolar fluid model. The 
micropolar effect is negligible above this value; therefore, 
it is worthwhile to carry out load calculations based on 
the classical hydromechanics, which is considerably 
simpler than the micropolar fluid theory. 
 From data presented in Table 3, which summarises 
some of the results of the performed calculations, we can 
observe that when L=10000 the value of s is always less 
than 1.004, and when L=1000 the value of s is smaller 
than 1.04. This means that the percentage difference in 
the calculation results obtained based on both fluid 
models does not exceed the value of 0.4% for L=10000 
and 4% for L= 1000.  

Table 3. Load comparison parameter s(L,N ) for various values of L  
in the case of fluids P1, P2, P3, and water 

 P1 P2 P3 water(1) water(2) 
L=10000 1.003 1.003 1.004 1.004 1.002 
L=1000 1.033 1.035 1.035 1.042 1.021 
L=100 1.27 1.296 1.308 1.417 1.126 

 
 Using the values of l from Table 2, we are now able to 
calculate the particular limiting value of the gap height, h, 
for a given fluid, starting from which the difference 
between the load-bearing capacity calculations performed 
on the basis of both fluid models is less than the desired 
accuracy, say 0.4%. For each of the fluids under 
consideration, the h value in [m] is equal to: 3.6 10-6 for 
P1, 6.2 10-6 for P2, 4.1 10-6 for P3, and 9.9 10-6 (water(1)) 
and 8.6 10-6 (water(2)) for water. The results obtained 
using the dimensionless parameter values from Table 2 
match the estimates presented in Figures 3 and 4. 
 To study the effects of the parameter N on s(L,N) for a 
wide range of N values, calculations were performed for 
“artificial” fluids specified by various values of the 
parameter N, and the results are depicted in Fig. 4.  
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Fig. 4. Dependence of the load comparison parameter s(L,N)  

of L for some “artificial” fluids characterized by various  
values of N 

 We can see that an increase in the value of the 
parameter N (with constant L) results in an increase in the 
value of s(L,N). For instance, for L=0.01 the load bearing 
capacity is more than five times larger for a fluid 
characterised by the parameter N = 0.9 than for a fluid 
characterised by the parameter N = 0.1. Moreover,  
a decrease in the value of parameter L increases the  
load comparison parameter s(L,N) value starting from 
L<10000. These results allow the prediction the value of 
h between approaching plates for each fluid inside of  
a gap, if only their L and N parameters values are known 
in the same way as it was performed above for real fluids. 

4.3. Squeeze film time 

 The time required for reducing the initial film 
thickness Tm(h) from ho to h was calculated with the 
micropolar model of the fluid in the gap using equation 
(21), and compared to the corresponding reducing time  
 

Lo
ad

 c
om

pa
ris

on
 p

ar
am

et
er

 (L
, N

)

Dimensionless parameter L

Fig. 4. Dependence of load comparison parameter s(L, N) on L for 
some “artificial” fluids characterized by different values of N
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starting from which the load comparison parameter, s(h), 
begins to increase. The above suggests that the value 
depends on rheological properties of the fluid – values of 
the micropolar viscosity coefficients.  
 Let us now examine in detail the observed effect in 
terms of the microstructural parameters L and N. For the 
considered fluids, the values of the parameters N and l (8) 
were obtained using data from Table 1 and are listed in 
Table 2. Relevant formulas for load capacities, Wm and 
WN, expressed by L and N which were previously derived 
in the [24] were used for calculations of s(L,N). 

Table 2. Nondimensional parameter values l and N for the fluids  
P1, P2, P3, and water 

 P1 P2 P3 water(1) water(2) 
L 0.036 0.062 0.041 0.099 0.0866 
N 0.558 0.577 0.589 0.689 0.367 

 
 Figure 3. illustrates the dependence of the load 
comparison parameter s(L,N) on L with Lc=h in (8). It can 
be observed that the s(L,N) value is strongly affected by 
the parameters N and L, and s(L,N) increases when L 
decreases starting from the value L=10000 which is 
common for all of the considered fluids. 
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Fig. 3. Dependence of the load comparison parameter s(L,N) on L for 

fluids P1(N=0.558), P2(N=0.577), P3(N=0.589), and water(1)  
(N=0.689), and water(2) (N=0.367) 

 These results indicate that for the parameter value 
L<10000 (i.e., h<104l), the micropolar effects in the fluid 
increase the load capacity calculations, and should be 
performed using the micropolar fluid model. The 
micropolar effect is negligible above this value; therefore, 
it is worthwhile to carry out load calculations based on 
the classical hydromechanics, which is considerably 
simpler than the micropolar fluid theory. 
 From data presented in Table 3, which summarises 
some of the results of the performed calculations, we can 
observe that when L=10000 the value of s is always less 
than 1.004, and when L=1000 the value of s is smaller 
than 1.04. This means that the percentage difference in 
the calculation results obtained based on both fluid 
models does not exceed the value of 0.4% for L=10000 
and 4% for L= 1000.  

Table 3. Load comparison parameter s(L,N ) for various values of L  
in the case of fluids P1, P2, P3, and water 

 P1 P2 P3 water(1) water(2) 
L=10000 1.003 1.003 1.004 1.004 1.002 
L=1000 1.033 1.035 1.035 1.042 1.021 
L=100 1.27 1.296 1.308 1.417 1.126 

 
 Using the values of l from Table 2, we are now able to 
calculate the particular limiting value of the gap height, h, 
for a given fluid, starting from which the difference 
between the load-bearing capacity calculations performed 
on the basis of both fluid models is less than the desired 
accuracy, say 0.4%. For each of the fluids under 
consideration, the h value in [m] is equal to: 3.6 10-6 for 
P1, 6.2 10-6 for P2, 4.1 10-6 for P3, and 9.9 10-6 (water(1)) 
and 8.6 10-6 (water(2)) for water. The results obtained 
using the dimensionless parameter values from Table 2 
match the estimates presented in Figures 3 and 4. 
 To study the effects of the parameter N on s(L,N) for a 
wide range of N values, calculations were performed for 
“artificial” fluids specified by various values of the 
parameter N, and the results are depicted in Fig. 4.  
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Fig. 4. Dependence of the load comparison parameter s(L,N)  

of L for some “artificial” fluids characterized by various  
values of N 

 We can see that an increase in the value of the 
parameter N (with constant L) results in an increase in the 
value of s(L,N). For instance, for L=0.01 the load bearing 
capacity is more than five times larger for a fluid 
characterised by the parameter N = 0.9 than for a fluid 
characterised by the parameter N = 0.1. Moreover,  
a decrease in the value of parameter L increases the  
load comparison parameter s(L,N) value starting from 
L<10000. These results allow the prediction the value of 
h between approaching plates for each fluid inside of  
a gap, if only their L and N parameters values are known 
in the same way as it was performed above for real fluids. 

4.3. Squeeze film time 

 The time required for reducing the initial film 
thickness Tm(h) from ho to h was calculated with the 
micropolar model of the fluid in the gap using equation 
(21), and compared to the corresponding reducing time  
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slightly lower than the load comparison parameter s(h). The 
results of the calculations of the squeeze film time comparison 
parameter T(L, N), dependent on parameters L and N, are de-
picted in Fig. 6.

To illustrate the dependence on a wider scale of N, data for 
P1, water(1) and two artificial fluids characterized by values 
N = 0.25 and N = 0.9 are presented in Fig. 6. When analyzing 
the results, it can be concluded that the T(L, N) value is strongly 
affected by parameters N and L. For L > 10000 (i.e. h < 104l), 
the value of T(L, N) = 1, otherwise T(L, N) > 1.

An increase in the value of parameter N (with constant L) 
results in an increase in the value of T. For instance, the squeeze 
film time is almost five times greater for fluids characterized 
by N = 0.9 than for fluids with N = 0.25.

5.	 Conclusions

In this paper, an analysis of the impact of scale on MFT mod-
eling for squeezing flow was performed. According to the re-
sults obtained, the following conclusions can be formulated.

●	 The maximum distance between plates, h, for which the 
fluid film micropolar effect enhances the values of load 
carrying capacity and lengthens the approaching time of 
the parallel plates can be defined by the fluid micropolar 
constants as hmax = 104(γ/(4μ + 2κ))1/2, or expressed by 
micropolar dimensionless parameters (defined in equa-
tion (8)) as Lmax = 10 000.

●	 For distances greater than h > hmax, the calculations of 
the squeeze film characteristics between flat parallel 
plates for both the micropolar fluid and the Newtonian 
fluid models are the same (i.e. discrepancies in values 
are lower than 1%),

For instance, for L = 0.01, the load bearing capacity is more 
than five times larger for a fluid characterized by parameter 
N = 0.9 than for a fluid characterized by parameter N = 0.1. 
Moreover, a decrease in the value of parameter L increases 
the load comparison parameter s(L, N) value, starting from 
L < 10000. These results allow for predicting the value of h 
between approaching plates for each fluid inside of a gap, if 
only their L and N parameters values are known, in the same 
way as it was performed above for real fluids.

4.3. Squeeze film time. The time required for reducing the 
initial film thickness Tm(h) from ho to h was calculated with the 
micropolar model of the fluid in the gap using equation (21), 
and compared to the corresponding reducing time TN(h) calcu-
lated with the Newtonian fluid model, according to equation 
(22). The value of ho was assumed to be ho = 10–3 [m]. The 
squeeze film time comparison parameter T(h) is defined as the 
following ratio:

	 T(h) = Tm(h)/TN(h).� (24)

The percentage difference is given as dt(h) = (Tmh ¡ TN(h))/
TN(h)*100% and is depicted versus h in Fig. 5. The results 
show that the decreasing values of the gap height increase the 
squeezing time as compared to the Newtonian case, starting 
from the limiting film height, the value of which is character-
istic for each fluid. The difference dt increases with the de-
crease in the film height and for h = 10–6 [m] their values are 
as follows: 0.79% for P1, 1.52% for P2, 0.97% for P3, and 
2.47% (water(1)) and 0.12% (water(2)) for water. When the 
film height is smaller, i.e. h = 10–7 [m], the dt differences in-
crease to: 7.8% for P1, 14.65% for P2, 9.68% for P3, and 27.8% 
(water(1)) and 1.2% (water(2)) for water.

We can observe that for a fixed value of h for a given fluid, 
the value of the squeeze time comparison parameter T(h) is 

Fig. 5. Percentage difference dt(h) as a function of film height h in the 
case of fluids P1, P2, P3 and water
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TN(h) calculated with the Newtonian fluid model, 
according to equation (22). The value of ho was assumed 
to be ho=10-3 [m]. The squeeze film time comparison 
parameter, T(h), is defined as the following ratio: 

T(h) = Tm(h)/TN(h) (24) 

 The percentage difference is given as dt(h) =  
= (Tmh – TN(h))/TN(h)*100% and versus h is depicted in 
Fig. 5. The results show that the decreasing values of the 
gap height increases the squeezing time compared to the 
Newtonian case, starting from the limiting film height, 
the value of which is characteristic for each fluid. The 
difference, dt, increases with the decrease in the film 
height and for h=10-6 [m] their values are as follows: 
0.79% for P1, 1.52% for P2, 0.97% for P3, and 2.47% 
(water(1)) and 0.12% (water(2)) for water. When the film 
height is smaller, i.e., h=10-7 [m], the dt differences 
increase to: 7.8% for P1, 14.65% for P2, 9.68 % for P3, 
and 27.8% (water(1)) and 1.2% (water(2)) for water. 
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Fig. 5. Percentage difference, dt(h), as a function of film height, h,  

in the case of the fluids P1, P2, P3, and water  
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Fig. 6. Squeeze time comparison parameter, T(L,N), as  

a function of L for the fluids P1(N=0.55), water(1) (N=0.89), and two 
artificial fluids with values of the parameter N=0.25 and N=0.9 

 We can observe that for a fixed value of h for a given 
fluid, the value of the squeeze time comparison para- 
meter, T(h), is slightly lower than the load comparison 

parameter, s(h). The results of the calculations of the 
squeeze film time comparison parameter, T(L,N), depen- 
dent on the parameters L and N are depicted in Fig. 6. 
 To illustrate the dependence on wider scale of N, data 
for P1, water(1), and two artificial fluids characterized by 
values N=0.25 and N=0.9 are presented in Figure 6. 
When analysing the results it can be concluded that the 
T(L,N) value is strongly affected by the parameters N and 
L. For L >10000 (i.e., h>104l), the value of T(L,N) = 1, 
otherwise T(L,N) >1.  
 An increase in the value of the parameter N (with 
constant L) results in an increase in the value of T. For 
instance, the squeeze film time is almost five times 
greater for fluids characterised by N=0.9 than for fluids 
with N=0.25.  

5. Conclusions 
 In the presented paper, an analysis of the scale impact 
on MFT modelling for squeezing flow was performed. 
According to the obtained results, the following con- 
clusions can be formulated. 

 The maximal distance between plates, h, for which 
the fluid film micropolar effect enhances the values 
of the load carrying capacity and lengthens the 
approaching time of the parallel plates can be 
defined by the fluid micropolar constants as 
hmax=104 ( or expressed by the micro- 
polar dimensionless parameters (defined in equa- 
tion (8)) as Lmax=10000.  

 For distances greater than h > hmax, the calculations 
of the squeeze film characteristics between flat 
parallel plates for both the micropolar fluid and the 
Newtonian fluid models are the same (i.e 
discrepancies in values are lower than 1%), 

 Only when L<10000 does the load carrying 
capacity and the squeeze film approximation time 
calculated basing on MFT become greater 
compared to the classical case, i.e., using the 
Newtonian fluid model. 

 For Hagen-Poisuille flow characteristics, the above 
inequality counterpart has the form: L < 1000 [15], 
i.e., the maximal geometrical dimension of the 
flow field for which the fluid micropolar effects are 
negligible is ten times lower for squeeze flow than 
its counterpart for Hagen-Poisuillea flow.  

 The above analysis gives an answer to the funda- 
mental question, that appeared during microflows 
research, why the results obtained using of the 
classical hydrodynamics equations, with regard to 
the flows of the same real fluid, are in agreement 
with the experiment on one occasion and disagree 
with it on another one. For distances lower than 
hmax micropolar fluid model is most suitable, for 
distances larger than hmax, it pays off to carry on the 
calculations on the basis of the classical dynamics, 
Navier-Stokes equations, which are simpler than 
those of micropolar fluid flow. 

 
 
 
 

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 d
t [

%
]

Film heights h [m]

Fig. 6. Squeeze time comparison parameter T(L, N) as a function of L 
for fluids P1(N = 0.55), water(1)(N = 0.89) and two artificial fluids 

with values of parameter N = 0.25 and N = 0.9

6 

TN(h) calculated with the Newtonian fluid model, 
according to equation (22). The value of ho was assumed 
to be ho=10-3 [m]. The squeeze film time comparison 
parameter, T(h), is defined as the following ratio: 

T(h) = Tm(h)/TN(h) (24) 

 The percentage difference is given as dt(h) =  
= (Tmh – TN(h))/TN(h)*100% and versus h is depicted in 
Fig. 5. The results show that the decreasing values of the 
gap height increases the squeezing time compared to the 
Newtonian case, starting from the limiting film height, 
the value of which is characteristic for each fluid. The 
difference, dt, increases with the decrease in the film 
height and for h=10-6 [m] their values are as follows: 
0.79% for P1, 1.52% for P2, 0.97% for P3, and 2.47% 
(water(1)) and 0.12% (water(2)) for water. When the film 
height is smaller, i.e., h=10-7 [m], the dt differences 
increase to: 7.8% for P1, 14.65% for P2, 9.68 % for P3, 
and 27.8% (water(1)) and 1.2% (water(2)) for water. 
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 We can observe that for a fixed value of h for a given 
fluid, the value of the squeeze time comparison para- 
meter, T(h), is slightly lower than the load comparison 

parameter, s(h). The results of the calculations of the 
squeeze film time comparison parameter, T(L,N), depen- 
dent on the parameters L and N are depicted in Fig. 6. 
 To illustrate the dependence on wider scale of N, data 
for P1, water(1), and two artificial fluids characterized by 
values N=0.25 and N=0.9 are presented in Figure 6. 
When analysing the results it can be concluded that the 
T(L,N) value is strongly affected by the parameters N and 
L. For L >10000 (i.e., h>104l), the value of T(L,N) = 1, 
otherwise T(L,N) >1.  
 An increase in the value of the parameter N (with 
constant L) results in an increase in the value of T. For 
instance, the squeeze film time is almost five times 
greater for fluids characterised by N=0.9 than for fluids 
with N=0.25.  

5. Conclusions 
 In the presented paper, an analysis of the scale impact 
on MFT modelling for squeezing flow was performed. 
According to the obtained results, the following con- 
clusions can be formulated. 

 The maximal distance between plates, h, for which 
the fluid film micropolar effect enhances the values 
of the load carrying capacity and lengthens the 
approaching time of the parallel plates can be 
defined by the fluid micropolar constants as 
hmax=104 ( or expressed by the micro- 
polar dimensionless parameters (defined in equa- 
tion (8)) as Lmax=10000.  

 For distances greater than h > hmax, the calculations 
of the squeeze film characteristics between flat 
parallel plates for both the micropolar fluid and the 
Newtonian fluid models are the same (i.e 
discrepancies in values are lower than 1%), 

 Only when L<10000 does the load carrying 
capacity and the squeeze film approximation time 
calculated basing on MFT become greater 
compared to the classical case, i.e., using the 
Newtonian fluid model. 

 For Hagen-Poisuille flow characteristics, the above 
inequality counterpart has the form: L < 1000 [15], 
i.e., the maximal geometrical dimension of the 
flow field for which the fluid micropolar effects are 
negligible is ten times lower for squeeze flow than 
its counterpart for Hagen-Poisuillea flow.  

 The above analysis gives an answer to the funda- 
mental question, that appeared during microflows 
research, why the results obtained using of the 
classical hydrodynamics equations, with regard to 
the flows of the same real fluid, are in agreement 
with the experiment on one occasion and disagree 
with it on another one. For distances lower than 
hmax micropolar fluid model is most suitable, for 
distances larger than hmax, it pays off to carry on the 
calculations on the basis of the classical dynamics, 
Navier-Stokes equations, which are simpler than 
those of micropolar fluid flow. 
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●	 Only for L < 10000 the load carrying capacity and the 
squeeze film approximation time calculated based on 
MFT are greater, as compared to the classical case, i.e. 
using the Newtonian fluid model.

●	 For Hagen–Poiseuille flow characteristics, the above in-
equality counterpart has the following form: L < 10000 
[15], i.e. the maximum geometrical dimension of the flow 
field for which the fluid micropolar effects are negligible 
is ten times lower for squeeze flow than its counterpart 
for the Hagen–Poiseuille flow.

●	 The above analysis gives an answer to the fundamental 
question, which appeared during microflows research, of 
why the results obtained using of classical hydrodynamics 
equations, with regard to the flows of the same real fluid, 
are in agreement with the experiment on one occasion 
and disagree with it on another one. For distances lower 
than hmax, the micropolar fluid model is most suitable, for 
distances larger than hmax, it is more effective to carry on 
the calculations on the basis of classical dynamics, i.e. 
Navier–Stokes equations, which are simpler than those 
of micropolar fluid flow.
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