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The L1-impulse method as an alternative to the Fourier series

in the power theory of continuous time systems
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Abstract. The Fourier series method is frequently applied to analyze periodical phenomena in electric circuits. Besides its virtues it has
many drawbacks. Fourier series usually have slow convergence and fail for fast changing signals, especially for discontinues ones. Therefore
they are suitable to describe only quasiharmonic phenomena.

For strongly nonsinusoidal signal analysis we propose the L
1-impulse method.

The L
1-impulse method consists in an equivalent notation of a function belonging to L

1 as a sum of exponential functions. Such
exponential functions have rational counterparts with poles in both sides of imaginary axis. With the L

1-impulse functions we can describe
periodical signals, thus we get the homomorfizm between periodical signals and a rational functions sets. This approach is especially adapted
to strongly deformed signals (even discontinues ones) in linear power systems, and thanks to that we can easily calculate optimal signals of
such systems using the loss operator of the circuit. The loss operator is exactly the rational function with central symmetry of poles [1].

In this paper the relation between the L
1-impulse and the Fourier series method was presented.

It was also proved that in the case of strong signal deformation the L
1-impulse method gains advantage.
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1. L1-impulses and periodic signals

The L
1-impulse is an absolutely summable signal

x :

∞∫

−∞

|x(t)|dt < ∞

and its periodic extension is a T -period function

x̃(t) =

∞∑

p=−∞
x(t + pT ), (1)

where p ∈ Z (integers).
Series (1) always converges. It results from the fact that

every L
1-impulse is majorised by an exponential signal:

y(t) = aebt1(−t) + ce−dt1(t), (2)

where a, b, c, d – positive numbers, 1(t) – step function.
Applying the formula (1) to the (2) we get

ỹ(t) =
∞∑

p=−∞
y(t + pT ) = a

∞∑

p=−∞
eb(t+pT ) 1(−t − pT )

+c

∞∑

p=−∞
e−d(t+pT )1(t + pT )

= aebt

( ∞∑

p=1

e−bpT

)
+ ce−dt

( ∞∑

p=0

e−dpT

)

=
ae−bT

1 − e−bT
ebt +

c

1 − e−dT
e−dt,

(3)

for t ∈ [0, T ).

The inner product of the L
1-impulses is defined as follows

(x, y) =

∞∫

−∞

x(t)y(t)dt (4)

and the linear operator H

Hx(t) =

∞∫

−∞

h(t, t′)x(t′)dt′ (5)

maps the L
∞ in itself only if [2]:

∧
t∈R

h(t, •) ∈ L1,

where L
∞ – space of bounded signals, R – real numbers.

The special case of the (5) operator is the convolution
operator

h ∗ x(t) =

∞∫

−∞

h(t − t′)x(t′)dt′, (6)

which maps L
∞ into L

1 only if impulse function

h ∈ L
1.

It results that the sequence of two convolution operators
act as L

∞ into L
∞ mapping, which means at the same time

that
h1 ∗ h2 ∈ L

1 for h1 ∈ L
1, h2 ∈ L

1. (7)

Thus the convolution of the L
1 impulses produce also the

L
1 impulse.
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The H∗ operator is the adjoint operator for linear operator
H , which meets the condition

(Hx, y) = (x, H∗y), (8)

for any x, y belonging to the L
1 impulses.

It is easy to prove that the kernel h∗(t, t′) of the adjoint
operator (5) meets the equation

h∗(t, t′) = h(t′, t). (9)

Thus, for the convolution operator (6) we have

h∗(t) = h(−t). (10)

The Fourier transform of any signal is given by the for-
mula

Y (s) = y(s) =

∞∫

−∞

y(t)e−stdt. (11)

The convolution operator is then written as follows

[Hx]−(s) = H(s)X(s)

and the adjoint operator performs according to the formu-
la [1]:

H(s) =

∞∫

−∞

h(t)e−stdt →
∞∫

−∞

h(−t)e−stdt

=

∞∫

−∞

h(t)e−s(−t)d(−t)

=

∞∫

−∞

h(t)e−(−s)tdt = H(−s).

(12)

Thus the adjointing formula has form

H∗(s) = H(−s). (13)

In the case of convolution operators, the adjoint operators
(10) and (13) can be treated as adjoint signals.

The self adjoint linear operator R has a form

R =
1

2
(H + H∗) (14)

and is called the loss operator of the H operator. This name
derives from the fact that if H denotes the immitance operator
then R determines the energy delivered to the two terminal
receiver. This energy is given by the quadratic form [2] and
[3]:

(Hx, x) = (Rx, x). (15)

Fig. 1. The two terminal receiver which is supplied with energy by
pair of the L

1 impulse signals

According to the Parsevall’s formula, the energy supplied
to the receiver can be calculated as an inner product

(u, i) =

∞∫

∞

u(t)i(t)dt =
1

2πj

∫

↑

↑

U(s)I(−s)ds

=
1

2πj

∫

↑

↑

U(−s)I(s)ds.

(16)

In the case of current input the formula becomes the
quadratic form

(u, i) =
1

2πj

∫

↑

↑

Z(s)I(s)I(−s)ds

=
1

2πj

∫

↑

↑

R(s)I(s)I(−s)ds,

(17)

where (see Fig. 1)

R(s) =
1

2
[Z(s) + Z(−s)], (18)

is the loss operator of the two terminal network, and:
Z(s) – stands for impedance operator of convolution type,
↑
↑ – symbolize the path along imaginary axis toward its in-
creasing values.

Ultimately, in the formula (17) we have the integral of an
energy function

F (s) = R(s)I(s)I(−s), (19)

witch is self adjoint function

F (−s) = F (s). (20)

The integration formula (17) has special application when
F (s) is rational or quasi rational function. In that case it is
convenient to apply the Jordan’s lemma, according which we
change the imaginary axis integral into the curvlinear integral
along the simple closed curve (arc + imaginary axis) on left
or right half plane

Fig. 2. The substitution of axis integral for the simple closed curve
integral when (̺ → ∞)

This substitution, according to the Jordan’s lemma, is pos-
sible when the arc integral with ̺ → ∞ on ‘(‘ – left or ‘)‘ –
right half plain converges to zero

[∫

(
W

)

R(s)I(s)I(−s)ds

]

̺→∞

→ 0. (21)

Actually it is enough to meets the condition (21) on only
one contour because of central symmetry of F (s) function
(20).
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Thus the inner product can be calculated only with contour
integral

(u, i) =
1

2πj
R(s)I(s)I(−s)ds

=
(−1)

2πj
R(s)I(s)I(−s)ds,

(22)

where: – left arc (with ̺ → ∞) + imaginary axis contour
integral, – right arc (with ̺ → ∞) + imaginary axis contour
integral .

To calculate (22) we use simply the Cauchy residue
method.

The Jordan lemma can also be applied to calculate the in-
verse Laplace transform on the both sides of the time axis. In
that way we can calculate Ri voltage signal (‘active voltage’)
in t domain occurring in (15) or (17).

Ri(t) =






−1

2πj
R(s)I(s)estds for t < 0

1

2πj
R(s)I(s)estds for t > 0

. (23)

We should notice that in (23) the poles of the integrated
function are placed on both half planes. Because of that we
get the signals in the L

1 impulse form. The poles and zeros
of R(s) has quadratic symmetry on complex plane and I(s)
can also have poles on both sides of complex plane.

2. The rational functions and the exponential

functions factorization of L1-impulses

(isomorphism)

The very important issue will be discussed in this chapter –
the isomorphism between the rational function set of complex
variable and the exponential L

1 impulse set of positive and
negative time domain. Thanks to that we can create a special
operational calculus in the L

1 impulse class and also in its
periodical extensions.

The following relation defines the isomorphism between
right-hand (casual) exponential L

1 impulse and the partial
fraction of complex variable

eσt1(t) ↔ 1

s − σ
for Reσ < 0. (24)

The formula describing similar isomorphism, for left-hand
(noncasual) L

1 impulse has form

eσt1(−t) =
[
e(−σ)t1(t)

]∗
↔
[

1

s − σ

]∗

=
(−1)

s − σ
for Reσ > 0.

(25)

Thus
1

s − σ
=

{
e

σt1(t) Reσ < 0

(−1)eσt1(−t) Reσ > 0
. (26)

For proper casual rational function with single pole the fac-
torization is given by

H(s) = −
∑

σ∈P+

a+(σ)

s − σ
+
∑

σ∈P−

a−(σ)

s − σ
(27)

where:
P+ – poles of H(s) on the right half-plain,
P− – poles of H(s) on the left half-plai a+(σ), a−(σ) –
residues in pole σ,
a+(σ) = − [H(s)(s − σ)]s→σ σ ∈ P+

a−(σ) = [H(s)(s − σ)]s→σ σ ∈ P−.

We assume that the function H(s) has not essential sin-
gularities on imaginary axis, because otherwise it cannot be
assigned to any L

1 impulse.
From (26) and (27) results the existence of the isomor-

phism between proper rational function set of complex vari-
able and the exponential L

1 impulse set of positive and neg-
ative time domain:

H(s) =
∑

σ∈P+

a+(σ)eσt1(−t) +
∑

σ∈P−

a−(σ)eσt1(t) ∈ L
1.

(28)

The T – periodic extension of L
1 impulses we get using

geometric series:

eσt1(−t)
∣∣
Reσ>0

→
∞∑

p=−∞
eσ(t+pT )1(−t − pT )

→
∞∑

p=1

eσ(t−pT ) =
e−σT

1 − e−σT
eσt =

eσ(t−T )

1 − e−σT
,

(29)

eσt1(t)
∣∣
Reσ<0

→
∞∑

p=−∞
eσ(t+pT )1(t + pT )

→
∞∑

p=0

eσ(t+pT ) =
eσt

1 − eσT
,

(30)

where t ∈ [0, T ).
It then results the homomorphism of rational function set

and T -periodic functions (extension of the L
1 impulse func-

tion):

H(s) →
∑

σ∈P+

a+(σ)
eσ(t−T )

1 − e−σT
+
∑

σ∈P−

a−(σ)
eσt

1 − eσT
,

(31)
where t ∈ [0, T ).

It is also easy to write the general form in the case of
multi-pole H(s) function. The multiple differentiation of the
isomorphism (26) with respect to σ parameter gives:

1

(s − σ)g
↔






t
g−1

(g − 1)!
e

σt1(t) Reσ < 0

(−1)
t
g−1

(g − 1)!
eσt1(−t) Reσ > 0

. (32)

Doing the same with homomorphism (29)–(30) we get

1

(s − σ)g
→

1

(g − 1)!

d
g−1

dσg−1

(
eσt

1 − eσT

)
Reσ < 0

(−1)

(g − 1)!

d
g−1

dσg−1

(
eσ(t−T )

1 − e−σT

)
Reσ > 0

,

(33)
where t ∈ [0, T ).
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The formula (33) describes the homomorphism between
g-order partial fraction and T -periodic extension of the L

1

impulse function.

3. The L1-impulses method versus Fourier series

method

The formula (1) maps the L
1 impulse set into T -periodic sig-

nal (PT ) set and defines Poisson operator (PO):

POx(t) =

∞∑

p=−∞
x(t + pT ). (34)

When acting with PO- operator on convolution operator
we get:

PO(h ∗ x)(t) =
∞∑

p=−∞

∞∫

−∞

h(t + pT − τ)x(τ)dτ

=

∞∫

−∞

[ ∞∑

p=−∞
h(t − τ + pT )

]
x(τ)dτ

∞∑

p=−∞

∞∫

−∞

h(t − τ)x(τ + pT )dτ

=

∞∫

−∞

h(t − τ)

[ ∞∑

p=−∞
x(τ + pT )

]
dτ

thus

PO(h ∗ x) = (PO h) ∗ x = h ∗ (PO x) ∈ PT (35)

for h ∈ L1 and x ∈ L1.
Now we introduce the new term segment

⊓
x ∈ L1

⊓
x(t) =





PO x(t) t ∈ [0, T )

0 t /∈ [0, T )
, (36)

where x ∈ L1 and it is obvious that

POx = PO
⊓
x (37)

thus we get another version of (35)

PO(h ∗ x) = (h ∗ PO
⊓
x) = (PO h) ∗ ⊓

x . (38)

The formula (38) stands for the cyclic convolution defined
as

(PO h) ∗ ⊓
x(t) = h̃ ⊛

⊓
x(t) =

T∫

0

h(t ⊖ τ)x(τ)dτ, (39)

where

h̃(t) = (PO h)(t) =

∞∑

p=−∞
h(τ + pT )

the ⊖ operation stands for subtraction modulo T i.e.

t ⊖ τ =

{
t − τ t − τ in[0, T )

t − τ + T t − τ /∈ [0, T )
.

The explanation of formulas (35) and (38) is shown in
Fig. 3 as the input/output block diagrams

Fig. 3. The explanation of how signals of L
1 and P

T class passes
through the circuit of convolution type

From now the L
1- impulses method and Fourier series

method drift away. As to prove this one have to analyze the
system with feedback delay element stimulated with a signal
segment (Fig. 4).

Fig. 4. The system with feedback element generating the casual and
periodical signal

On the output we get casual periodic signal:

y(t) =
∞∑

q=0

⊓
x(t − qT ), (40)

which transform is given by

Y (s) =
1

1 − e−sT

⊓
X(s), (41)

where
⊓
x stands for transform of the periodic signal segment

⊓
X(s) =

T∫

0

⊓
x(t)e−stdt =

T∫

0

PO x(t)e−stdt. (42)

The only pole set of function (38) is the countable- infinite
set:

1 − e−sT = 0 → e−sT = 1 →

lnT
√

1 =:

{
j2π

T
n; n ∈ {0,±1,±2, ..., }

}
.

(43)

The distribution of poles of (41) leads to the Fourier series

y(t) =

{
s − σ

1 − e−sT

⊓
X(s)

}
eσt

s→∈lnT
√

1

=
1

T

∑

s∈lnT
√

1

⊓
X(s)est,

(44)

for t ∈ [0, T ) :
⊓
x(t) = y(t), thus the pair of transforms (42)

and (44) makes the forward and inverse Fourier transform
in discrete frequency domain. It agrees with Fourier series
theorem.
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The generalization of (42) and (44) on circuits with the
transmittance H(s) has form (see Fig. 5)

y(t) =
1

T

∑

s∈lnT
√

1

H(s)
⊓
X(s)est

where
⊓
X(s) =

T∫

0

⊓
x(t)e−stdt.

(45)

Fig. 5. The periodic system with the transmittance H(s)

It results from the multiplicative propriety of Fourier
transform (3.9) over cyclic convolution:

T∫

0




T∫

0

h(t ⊖ t′)x(t′)dt′



 e−stdt

=

T∫

0




T∫

0

h(t ⊖ t′)e−stdt


x(t′)dt′

=

T∫

0

T∫

0

h(t)x(t′)e−s(t⊕t′)dt dt′

=




T∫

0

h(t)e−stdt






T∫

0

x(t)e−stdt


 ,

where s ∈ lnT
√

1.
The performing diagram of L

1 - impulse method and its
T -periodic extensions (PT ) in time and s domain is shown in
Fig. 6.

Fig. 6. The block diagram illustrating performance of the L
1 - im-

pulse method and its T -periodic extensions (PT ) with the relation
to the Fourier transform

In the above diagram the blocs F , F−1 terms the L
1 – iso-

morphism between Fourier transform (27)–(28) with rational
functions

∑

σ inP+

a+(σ)eσt1(−t) +
∑

σ∈P−

a−(σ)eσt1(t)

⇄
F
F−1 −

∑

σ∈P+

a+(σ)

s − σ
+
∑

σ∈P−

a−(σ)

s − σ,

(46)

for t ∈ [0, T ):

H(s)X(s)
F

−1

T→
∑

σ∈P+

a+(σ)
eσ(t−T )

1 − e−σT

+
∑

σ∈P−

a−(σ)
eσt

1 − eσT
,

(47)

where:
F−1

T denotes P
T – Fourier homomorphism (31)

a+(σ) = −residue(H(s)X(s)) = −[H(s)X(s)(s − σ)]s→σ

a−(σ) = residue(H(s)X(s)).
From the Fig. 6 and formulas (41, 42) results that the L

1 –
impulse method acts on poles of both side of imaginary axis,
when Fourier series method acts only on imaginary axis (on
infinite set poles equal )

Fig. 7. Distribution of poles a) the L
1-impulse method, b) the Fourier

series method

Example. The use of the L
1-impulse method will be now

shown. As an example we take the source with finite duration
L

1-impulse and the inner impedance operator as an RC branch
(Fig. 8). The source voltage square wave has 1V maximum
value and τ duration.

Fig. 8. Equivalent circuit of the power source and its voltage segment
waveform

In Fig. 9 the T-periodic L
1-impulse of source voltage with

duration τ < T is shown, achieved using the Poisson’s for-
mula:

ẽ(t) =

∞∑

p=−∞

⊓
e(t + pT ).
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Fig. 9. Periodic L
1-impulse of the source voltage

Fore the above circuit:

Z(s) =
1

2

(4 + s)

1 + s
;

⊓
E(s) =

1

2
(1 − e−sτ ).

The non periodic current segment (i.e. an output for the
voltage segment) is given by the formula

⊓
l (s) =

⊓
E(s)

Z(s)
=

2(−e−sτ + 1)(1 + s)

s(4 + s)
→

⊓
i(t) =






1

2
+

3

2
e−4t 0 < t < τ

3

2
(1 − e4τ )e−4t τ ≤ t

Fig. 10. L
1-impulse of the current segment

According to diagram in Fig. 6 we can directly calculate
the periodic current:

ĩ(t) =

=






1

2
+

3

2

(
1 +

e4τ − 1

1 − e4T

)
(e−4t) 0 < t and t < τ

3

2

e4τ − 1

1 − e4T
(e−4t)e4T τ < t and t < T

.

Fig. 11. Periodic L
1-impulse of current

The periodic voltage and current transforms have forms

Ẽ(s) =
1

s
(1 − e−sτ )

1

1 − e−sT

Ĩ(s) =
Ẽ(s)

Z(s)
=

1(−e−sτ + 1)(1 + s)

s(4 + 2)(1 − e−sT )
.

From the Fourier inverse transform we get

ĩ(t) =
1

2

35∑

n=0

res
s=j 2π

T
·n

(
Ĩ(s) · est − Ĩ(−s) · e−st

)
.

Fig. 12. Periodic source current achieved by the inverse Fourier trans-
form

When we compare the periodic currents achieved using
these two methods i.e. Fourier transform and Poisson formula
of L

1-impulse, we can see the difference (see Fig. 13).

Fig. 13. Periodic source current achieved using two different methods

4. Conclusions

Presented here the L
1-impulse method with its T -periodic

extension is undoubtedly an alternative to the Fourier trans-
form method. It distinguishes from the Fourier transform
and resembles the classical operational calculus method. This
method uses rational functions, partial factorizations, finite
exponential distribution and curvelinear integrals of a com-
plex variables. Similarly, as it is in operational calculus the
L

1-impulse method uses isomorphism between the set of com-
plex variable and exponential functions from L

1 and next by
the use of the Poisson formula makes the periodic extension
of signals (which is also described by the finite combination
of exponential functions). Then the L

1-impulse method is also
suitable to describe the periodic steady states.

As opposed to the Fourier series method which uses the
poles from imaginary axis the L

1-impulse method uses poles
distributed on both sides of a complex plain out of imagi-
nary axis. This situation suits the optimization problems be-
cause the operator function of losses always has symmetrical
(quadratic) distribution of poles [1]. In the time domain it re-
sults the L

1-impulse time signals on both sides of time axis.
Thanks to its features the Fourier series method is suit-

able to analyze quasiharmonic signals and fails when describ-
ing fast changing signals (the Gibbs phenomenon). The L

1-
impulse method can deal even with discontinues signals and
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effectively solve the optimization problems. It can be used
also to design filters used in the power electronics.

REFERENCES

[1] M. Siwczyński, “The optimization methods in power theory
of electrical networks”, Monograph: Electrical Engineering

Series 183, (2008), (in Polish).

[2] M. Siwczyński, Power Engineering Circuit Theory, Mineral
and Energy Economy Research Institute PAS, Kraków, 2003,
(in Polish).

[3] M. Siwczyński and M. Jaraczewski, “Electric circuit analysis
by means of optimization criteria. Part one – simple circuits”,
Bull. Pol. Ac.: Tech. 52 (4), 359–367 (2004).

Bull. Pol. Ac.: Tech. 57(1) 2009 85


