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Abstract. This paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures.

According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to ‘as good as new’ with probability

p and leaving it at state ‘as bad as old’ with probability q. Imperfect repairs are performed following failures occurring between consecutive

preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the

average durations of the preventive and corrective maintenance actions as well as their respective efficiency extents, a mathematical model

is developed in order to study the evolution of the system stationary availability and determine the optimal PM period which maximizes

it. The modeling of the imperfection of the corrective maintenance actions requires the knowledge of the quasi-renewal function. A new

expression approximating this function is proposed for systems whose times to first failure follow a Gamma distribution. Numerical results

are obtained and discussed.
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1. Introduction

In the current context of an increasingly wild competition, the

constraints of time, quality and cost imposed on the industri-

al companies put them in front of the obligation to ensure

a maximum availability of their production equipment at the

lowest cost. Under these conditions, the implementation of

preventive maintenance strategies proves to be inevitable.

A maintenance strategy is defined as a decision rule which

establishes the sequence of actions to be undertaken according

to the state of the system. With each maintenance action one

associates, a cost, a duration and a certain quality or efficien-

cy. The performance of a strategy is then generally evaluated

in terms of the average total cost on a given horizon or in

terms of the system stationary availability. Other performance

criteria are proposed in the literature.

A great number of publications propose several mainte-

nance policies, implying different types of preventive and cor-

rective actions, such as inspections, replacements by new or

used identical equipment, overhauls or repair to the as good as

new state, the minimal repair which consists in bringing the

system back to the same operating state as just before failure

(as bad as old state), etc.

Basic maintenance strategies have been proposed in [1].

A great number of publications on the subject followed with

maintenance policies based on complex mathematical models

using the renewal theory and many other stochastic processes.

There are several reviews of the literature on the subject sum-

marizing the various models and gathering them in different

classes. Among these reviews, we find those in [2–3].

Various maintenance models consider that maintenance

actions are perfectly executed. Actually, the effectiveness of

maintenance actions is generally between the two extreme

limits (‘as good as new’ and ‘as bad as old’), what is gener-

ally called imperfect maintenance. Several models of imper-

fect maintenance were proposed in the literature. They can be

classified in two categories: models based on an arithmetic

reduction of the age of the system [4–5], and models of re-

duction of the intensity function [6–7].

With regard to the reduction of age, the improvement of

the state of the system, following a maintenance action, is

equivalent to an arithmetic reduction of its age. For the mod-

els of reduction of the intensity of failures, the improvement

of the state of the system, following a maintenance action, is

equivalent to a reduction of its failure rate of a quantity pro-

portional to its value right before maintenance. A literature

review on imperfect maintenance can be found in [8–9].

In this paper, we consider a general industrial framework

where preventive and corrective maintenance actions are im-

perfect. In fact, we do not always find the best qualified tech-

nicians nor the most suitable tools or spare parts to carry out

maintenance actions. We consider in this context a periodic

preventive maintenance strategy applied to a single-unit sys-

tem prone to random failures. A similar maintenance policy

has been studied by Wang and Pham [8] considering cost op-

timization in a context of maintenance actions with negligible

durations. Here, we model and optimize the system stationary

availability for this maintenance policy taking into account

the durations of maintenance actions. Moreover, due to the
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computation complexity of the quasi-renewal function used

in the mathematical model, we propose a new expression of

this function for systems whose times to first failure follow

a Gamma distribution.

In next section we define the strategy and establish the ex-

pression of the system stationary availability. We also prove

that there always exists an optimal preventive maintenance

period, T ∗, maximizing the system stationary availability for

any given set of parameters regarding the maintenance ac-

tions duration and the system failure distribution. The system

asymptotic average availability calls upon the quasi-renewal

function whose analytical expression is very difficult, even

impossible, to obtain in a closed form. In Sec. 3 we derive

a new expression of the quasi-renewal function in the partic-

ular case of a Gamma distribution and we discuss the related

numerical calculations. A numerical example is presented in

Sec. 4. The obtained results will be presented and discussed.

The paper is concluded in Sec. 6.

2. Strategy definition and mathematical model

We consider a randomly failing system with a known continu-

ous lifetime probability distribution. An imperfect preventive

maintenance action is periodically performed (every T time

units). It follows a (p, q) rule, which means that it restores

the system to the ‘as good as new’ state with probability p
and it keeps it in the ‘as bad as old’ state with probability q
(q = 1 − p). If the system fails between successive preven-

tive maintenance actions, it undergoes an imperfect repair ac-

tion after which the system failure inter-arrival time reduces

to a fraction of its immediate previous one (all successive

lifetimes being independent). Lifetimes follow a decreasing

quasi-renewal process with parameter a [8, 10].

The preventive and corrective maintenance actions have

respectively constant average durations Tp and Tc during

which the system is unavailable.

We develop, in what follows, the expression of the system

stationary availability under these conditions. This expression

will allow finding the optimal period T ∗ for undertaking a pre-

ventive maintenance so as to maximize the system stationary

availability. We will first recall the definition of the quasi-

renewal process.

2.1. Definition of the quasi renewal process. Wang and

Pham [8, 10] define the quasi-renewal process as follows:

observe the sequence of non-negative random variables

{T1, T2, ..., Tn} (Fig. 1), the counting process {N(t), t > 0}
is said to be a quasi-renewal process with parameter a and

the first inter-arrival time T1, if T1 = Z1; T2 = a Z2;

T3 = a2 Z3;. . . ; Tn = an−1 Zn, where the Zi are independent

and identically distributed and a > 0 is a constant.

Since we consider imperfect repair throughout the paper,

the constant ‘a′ will be taken between 0 and 1 (0 < a < 1). It

is considered as a characteristic of the corrective maintenance

actions efficiency. When a = 1, this process corresponds to

the ordinary renewal process [1] with perfect repairs.

Fig. 1. The quasi-renewal process model

2.2. The system stationary availability model. Figure 2 il-

lustrates the proposed maintenance policy as defined in the

beginning of this section.

Fig. 2. The proposed maintenance strategy

The preventive maintenance period T is the decision vari-

able. Let SA(T ) stand for the system stationary availability.

Let’s consider D(T ) as the average duration of a renewal

cycle (period between successive perfect preventive mainte-

nance actions), and I(T ) as the average period during which

the system is unavailable (submitted to maintenance actions)

during a renewal cycle.

Based on the classical renewal reward theory [1], the sys-

tem stationary availability, SA(T ), can be expressed as follows:

SA(T ) = 1 −
I(T )

D(T )
, (1)

with

D(T ) =

∞
∑

i=1

p q(i−1)i (T + Tp), (2)

I(T ) =

∞
∑

i=1

p q(i−1) (i Tp + Tc Q(iT )), (3)

where Q(T ) stands for the average number of system restarts

following failure during period T . It is called the quasi-

renewal function.

Considering FTi
(.) as the probability distribution of the

system times to the ith failure Ti (i = 1, 2, . . . , n), [8, 10]

expressed the quasi-renewal function as follows:
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Q(t) =

∞
∑

n=1

n

Υ
i=1

FTi
(t) , (4)

where
n

Υ
i=1

FTi
(t) represents the convolution product of the

inter-arrival times distributions FTi
(.); (i = 1, 2, . . . , n); and

FTi
(t) = FT1

(

1

ai−1
t

)

.

Hence, the quasi-renewal function can be determined

knowing the system time to first failure distribution and the

parameter a. Statistical estimation of parameter a is discussed

in [9].

Combining Eqs. 1 to 3, we have:

1 − SA(T ) =

∞
∑

i=1

p q(i−1) (i Tp + Tc Q(iT ))

∞
∑

i=1

p q(i−1)i (T + Tp)
.

Considering that:

∞
∑

i=1

q(i−1)i =

(

1

1 − q

)2

=
1

p2
,

we have

1 − SA(T ) =

Tp + p2 Tc

∞
∑

i=1

q(i−1) Q(iT )

(T + Tp)
.

Hence, for any given set of known parameters Tp, Tc, a,

and FT1 , the system stationary availability model is as follows:

SA(T ) = 1 −

Tp + p2Tc

(

Q(T ) +
∞
∑

i=2

q(i−1)Q(iT )

)

(T + Tp)
. (5)

Theorem.

The considered maintenance policy admits, for any given

set of input parameters, FT1 , a, Tp and Tc, a finite optimal

period T ∗ of preventive maintenance which maximizes the

system stationary availability.

Proof.

- - - - -

Note that SA(T ) is a continuous function for 0 < T < ∞
since Q(T ) is continuous given that it is assumed that the

system time to first failure distribution FT1 is continuous

It is easy to see that:

SA(0) = 0.

On the other hand, we show in the appendix that:

lim
T→∞

SA(T ) = 0.

Consequently, we can conclude that there exists a finite

period T ∗ which maximizes SA(T ) for any given set of para-

meters: FT1 , a, Tp and Tc.

- - - - -

Curve 1 in Fig. 3 shows the general behaviour of the sys-

tem stationary availability according to the preventive mainte-

nance period T . Curves 2 and 3, in the same figure, show both

possible behaviours of the system stationary availability in the

case of perfect corrective and preventive maintenance actions

(the block replacement policy [1]). It is interesting to notice

that if an infinite optimal solution (no preventive maintenance

– curve 2) is possible in the case of perfect maintenance, it

can not be envisaged in an imperfect maintenance situation.

Fig. 3. General behaviours of system stationary availability function

SA(T) in the situation of perfect maintenance (curves 2 and 3) and

imperfect maintenance (curve 1)

Most of imperfect maintenance policies based on the

quasi-renewal process, including the one considered in this

paper, are modelled using the quasi-renewal function Q(.). It

is not possible to obtain this function expressed by Eq. (4)

in closed form. One approximation in the case of the Nor-

mal distribution is given in [8] and [13] provides numeri-

cal approximations of the quasi-renewal function in the cases

of exponential and Gamma distributions. These approxima-

tions are very difficult to obtain, they require the inversion

of a truncated infinite sum in the Laplace transform space.

In next section, we develop a new expression approximating

the quasi-renewal function in the particular case of systems

whose time to first failure follows a Gamma distribution.

3. Approximation of the quasi-renewal function

in the case of a gamma distribution

We develop in what follows a new expression which approx-

imates the quasi-renewal function for systems whose time to

first failure follows a Gamma distribution with shape parame-

ter α and scale parameter β.

fT1(t) =
1

βα Γ(α)
tα−1 exp

(

−
t

β

)

, (6)

with Γ(α) =
∞
∫

0

xα−1e−xdx.

The quasi-renewal function associated with this system is

given by:

Q(t) =

∞
∑

n=1

n Pr [N(t) = n], (7)

where N(t) is a random variable representing the number of

system restarts following failure during a time interval [0, t].

Given that Sn =
n
∑

i=1

Ti = Z1 + a Z2 + a2Z3 + ... + an−1Zn

(see Fig. 1), we have:

Pr [N(t) = n] = Pr [Sn+1 > t] − Pr [Sn > t] .
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Let GSn
(t) be the probability distribution function asso-

ciated to the random variable Sn. Hence,

Pr [N(t) = n] =
[

1 − GSn+1(t)
]

− [1 − GSn
(t)]

Pr [N(t) = n] = GSn
(t) − GSn+1(t).

(8)

Let’s find an approximation of GSn
(t).

In the general case, [8] showed that:

fTi(t) =
1

ai−1
fT1

(

t

ai−1

)

for i = 1, 2, . . . , n.

Thus, if the system times to first failure T1 follow

a Gamma distribution: Gamma(α, β), it is clear that the

times Ti to the ith failure follow a Gamma distribution:

Gamma(α, β ai−1).
Given that the Zi(i = 1, 2, ..., n) are independent, Sn is

the sum of n independent Ti(i = 1, 2, ..., n), which means

the sum of n independent random variables respectively dis-

tributed according to the Gamma law: Gamma(α, β ai−1).
The distribution of this sum of random variables, each

one distributed according to a Gamma law, can be validly

approached by a Gamma distribution [11–12].

Let GSn
(Φ, Ψ) be this distribution function of Sn: a Gam-

ma distribution with shape parameter Φ and scale parame-

ter Ψ.

We use in what follows the two first moments of

GSn
(Φ, Ψ) to determine its two parameters Φ et Ψ.

The first moment:

E [Sn] = E [T1 + T2 + T3 + ... + Tn]

= E [Z1] + a E [Z2] + a2E [Z3] + ... + an−1E [Zn] ,

with E[Zi] = α β for i = 1, 2, ..., n and 0 < a < 1

E[Sn] = α β + a α β + ... + an−1α β =
1 − an

1 − a
α β.

Then we consider the variance:

V ar [Sn] = V ar [T1 + T2 + T3 + ... + Tn]

= V ar
[

Z1 + a Z2 + a2Z3 + ... + an−1Zn

]

.

The Zi(i = 1, 2, ..., n) being independent, we can write:

V ar[Sn] = V ar[Z1] + a2 V ar[Z2] + ... + a
2(n−1)

V ar[Zn],

with V ar[Zi] = α β2 for i = 1, 2, ..., n and 0 < a < 1

V ar[Sn] = α β2 + ... + a2(n−1)α β2 =
1 − a2n

1 − a2
α β2.

Given, by definition of the Gamma distribution, that

E[Sn] = Ψ Φ and V ar[Sn] = Ψ2 Φ, we obtain by identi-

fication :














Ψ Φ =
1 − an

1 − a
α β

Ψ2 Φ =
1 − a2n

1 − a2
α β2

.

Solving this system leads to the following result:

Φ =
1 − an

1 − a

1 + a

1 + an
α

and

Ψ =
1 + an

1 + a
β.

The probability distribution associated with Sn is then

a Gamma distribution defined as follows:

GSn
(Φ, Ψ); 0 < a < 1. (9)

Hence, returning to equations (7) and (8), the quasi-

renewal function in case the first times to failure follow

a Gamma distribution can be expressed as follows:

Q(t) =

∞
∑

n=1

n
[

GSn
(t) − GSn+1(t)

]

=

∞
∑

n=1

GSn
(t), (10)

with GSn
(t) being the Gamma distribution given by Eq. (9).

It can easily be shown that for the case of a perfect renew-

al process (a = 1) [1] with systems whose times to failure

follow a Gamma distribution G(α, β), the renewal function is

given by:

M(t) =

∞
∑

n=1

Gamma(n α, β). (11)

The formulation of the quasi-renewal function as a sum

of distribution functions (Eq. 10), does not raise any special

programming or computation problem. This in opposition to

the formulation proposed by Rehmert [13] which requires an

inversion of a truncated infinite sum in the Laplace transform

space which is very difficult and sometimes impossible to

perform.

3.1. Numerical calculation of the quasi-renewal function.

For systems whose times to first failure are distributed ac-

cording to Gamma distributions, the quasi-renewal function

(Eq. 10) is an infinite sum of probability distribution func-

tions. Each term of the sum represents the probability to have

n imperfect repairs (quasi-renewals) in a time interval [0, t].
The computer programming of this quasi-renewal function re-

quires truncating the sum at a certain level n = c.

Q(t) =

c
∑

n=1

GSn
(t). (12)

The choice of the value of c depends on the working hori-

zon of interest t.

For illustration purpose, let us consider the case where the

first time to failure follows a Gamma distribution with shape

parameter α = 3 and scale parameterβ = 3, with a corrective

maintenance action efficiency factor a = 0.9. Figure 4 shows

the curves of the first three terms (distribution functions) of

Eq. (12) as well as the curve of the sum of these three func-

tions in case c = 3. Figure 5 illustrates the same thing for

c = 5.

Notice that truncating the sum (Eq. 12) at c = 3 allows de-

termining the quasi-renewal function for time periods t lower

or equal than approximately tc = 32 time units. In case one

would like to evaluate the quasi-renewal function for longer

periods, truncation at higher values of c will be needed.
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Fig. 4. The terms of the quasi-renewal function and their sum for

c = 3 (Eq. 12)

Fig. 5. The terms of the quasi-renewal function and their sum for

c = 5 (Eq. 12)

Indeed, as shown below in Fig. 5, truncation at c = 5, al-

lows evaluating the quasi-renewal function over a larger time

interval: [0, 46] time units.

4. Numerical example

For illustration purpose of the considered maintenance policy,

let’s consider a randomly failing system whose time to first

failure follows a Gamma distribution with shape parameter

α = 3 and scale parameter β = 3.

The following average durations are considered:

– Average duration of the corrective maintenance actions:

Tc = 0.35 time unit;

– Average duration of the preventive maintenance actions:

Tp = 0.15 time unit.

The corrective maintenance actions are characterized by

a constant efficiency factor a = 0.6

For different values p of the probability to have perfect

preventive maintenance actions, Table 1 shows the optimal

preventive maintenance periods T ∗ which maximize the sys-

tem availability SA(T ). As it should be expected, preventive

maintenance actions have to be performed more frequently

(T ∗ decreases) as their efficiency extent decreases.

Table 1

Optimal policies for different preventive maintenance efficiency extents

p T ∗ SA∗(T )

1 5.59 0.9545

0.8 4 0.9413

0.6 2.95 0.9239

0.4 2.1 0.8973

0.2 1.4 0.8550

Figure 6 shows the evolution of the system stationary

availability SA(T ) for different values of p considering a trun-

cation in the quasi-renewal function at c = 50 (Eq. 12).

Fig. 6. Evolution of the system stationary availability SA(T ) with

different preventive maintenance factors p

Notice that as preventive maintenance actions get more ef-

ficient (increasing p), the optimal values of T ∗ get larger (PM

actions should be performed less frequently). Moreover, effi-

cient PM actions allow more flexibility when implementing

the optimal policy in practice. Indeed, as it is clearly shown

by the availability curves, a given deviation from the optimal

solution (in terms of PM period T ) yields significantly less

availability loss as PM actions get more efficient.

Considering the same input parameters, Fig. 7 shows that

for a given efficiency degree p of preventive maintenance, as

the corrective maintenance actions become more and more

efficient (increasing a), the optimal preventive maintenance

period T ∗ becomes larger and the corresponding system avail-

ability SA(T ∗) increases. It is also interesting to notice that

beyond a certain level of the repair efficiency factor a, the

optimal availability variations tend to stabilize. This allows

concluding that it is possible to tolerate a certain degree of
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ineffectiveness of the corrective actions without having a no-

table availability loss. This flexibility increases as preventive

maintenance gets more efficient (increasing p). This figure

clearly shows how preventive and corrective maintenance effi-

ciency extents affect simultaneously the system optimal avail-

ability.

Fig. 7. T ∗ and SA(T ∗) evolution according to the repairs efficiency

factor, with Tc = 0.35 and Tp = 0.15

For the same system and for p = 0.7, Fig. 8 displays op-

timal strategies in terms of the repair efficiency factor a for

different ratios Tc/Tp. We notice that for any given repair ef-

ficiency degree a, as the ratio Tc/Tp increases, the optimal

period of preventive maintenance T ∗ and the corresponding

optimal stationary availability decrease.

Finally, Fig. 9 shows the evolution of the optimal policy

according to the shape parameter α of the Gamma distribu-

tion associated with the first times to failure of the system. We

notice essentially that for all the considered systems, the op-

timal availability level increases as the repairs are considered

more and more efficient. This is accomplished until reaching

a relative stability from a certain repair efficiency factor level

(approximately equal to 0.6 for α = 5 for example). Here

again, the following important conclusion can be drawn: for

several systems with different failure rates, the degree of the

repair efficiency stops affecting significantly the optimal avail-

ability from a certain threshold which increases as the system

is less reliable (lower shape parameter).

Fig. 8. T ∗ and SA(T ∗) evolution according to the corrective repair

efficiency factor, for various ratios Tc/Tp and a fixed preventive

maintenance factor p = 0.7

Fig. 9. T ∗ and SA(T ∗) evolution according to the preventive action

efficiency factor, for different Gamma distribution shape parameters

with fixed preventive efficiency factor p = 0.7
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5. Conclusions

In this work, we studied a preventive maintenance policy for

randomly failing systems evolving in a context where preven-

tive and corrective maintenance actions are imperfect. The

imperfection of repair actions has been modelled by a de-

creasing quasi-renewal process based on a deterministic re-

pair efficiency factor a. Preventive maintenance actions follow

a (p, q) rule. We modelled the system stationary availability

and studied its evolution under the proposed maintenance pol-

icy. We considered the general case and the particular situa-

tions of systems whose times to first failure follow a Gamma

distribution. We derived for such systems a new expression to

approximate and easily compute the quasi-renewal function.

This study showed that for any given situation regarding

the system, the repair and preventive maintenance efficiency

extents, and the downtime durations for preventive and correc-

tive maintenance, there is necessarily a finite optimal period

T ∗ of preventive maintenance which maximizes the system

stationary availability.

Obtained numerical results corresponding to a set of par-

ticular cases, illustrated how preventive and corrective main-

tenance efficiency extents affect simultaneously the system

optimal availability. It allowed concluding that as preventive

maintenance gets more efficient, it is possible to tolerate a cer-

tain degree of ineffectiveness of the corrective actions without

having an important availability loss. The knowledge of the

interval of tolerance of the repair inefficiency degree not caus-

ing significant availability loss represents an important source

of flexibility for the maintenance management.

Finally, the obtained results also showed that for several

systems with different failure rates, the degree of the repair

efficiency stops affecting significantly the optimal availability

from a certain threshold level which increases as the system

is less reliable.

Several extensions of this work considering more complex

imperfect maintenance policies are currently under considera-

tion. Also, the quasi-renewal function being a key quantity for

a great number of imperfect maintenance models based on the

quasi-renewal process, we are working on the development of

a general numerical algorithm which allows the computation

of the quasi-renewal function for any given distribution of

systems time to first failure.

Appendix

Proof of lim
T→∞

SA(T ) = 0

lim
T→∞

SA(T ) = lim
T→∞

1 −

Tp + p2 Tc

∞
∑

i=1

q(i−1) Q(iT )

(T + Tp)
,

lim
T→∞

SA(T ) = 1 − Tc p2

[

∞
∑

i=1

q(i−1) lim
T→∞

Q(iT )

(T + Tp)

]

lim
T→∞

Q(iT )

(T + Tp)
= lim

T→∞

Q(iT )

T
.

(A1)

Hence, from Eq. (A1) above:

lim
T→∞

SA(T ) = 1 − Tc p2

[

∞
∑

i=1

q(i−1) lim
T→∞

Q(iT )

T

]

,

lim
T→∞

SA(T ) = 1 − Tc p2

[

∞
∑

i=1

q(i−1)i lim
T→∞

Q(iT )

iT

]

.

(A2)

The expression
Q(T )

T
represents the average number of

restarts per time unit in the time interval [0, T ]. We can also

consider this term as the inverse of the average period be-

tween successive restarts over the same interval [0, T ]. Thus,

according to the quasi-renewal process, defined in Subsec. 2.1,

and considering Fig. 2:

– Ti: the system time to the ith failure following a given

probability distribution,

– Yi: a random variable defined as the sum of Ti and Tc.

We have:

lim
T→∞

Q(T )

T
= lim

n→∞









1
n
∑

i=1

Yi

/

n









= lim
n→∞









n
n
∑

i=1

(Ti + Tc)









,

lim
T→∞

Q(T )

T
= lim

n→∞









n
n
∑

i=1

Ti + n Tc









,

lim
T→∞

Q(T )

T
= lim

n→∞









n
n
∑

i=1

ai−1Zi + n Tc









.

Note that
n
∑

i=1

ai−1Zi is finite because lim
n→∞

an−1Zn = 0 for

0 < a < 1. Hence,

lim
T→∞

Q(T )

T
=

1

Tc

.

Let’s define ξ = iT ; when T → ∞, ξ → ∞; consequently:

lim
ξ→∞

Q(ξ)

ξ
=

1

Tc

.

Going back to Eq. (A2), we obtain:

lim
T→∞

SA(T ) = 1 − Tc p2

[

∞
∑

i=1

q(i−1)i
1

Tc

]

.

Given that
∞
∑

i=1

q(i−1)i =

(

1

1 − q

)2

=
1

p2
,

we have:

lim
T→∞

SA(T ) = 1 − Tc p2 1

p2Tc

= 0,

for 0 < a < 1.
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Hence, it is proved that:

lim
T→∞

SA(T ) = 0.
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