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Abstract: The aim of the paper is the comparison of the least squares prediction presented
by Heiskanen and Moritz (1967) in the classical handbook “Physical Geodesy” with the
geostatistical method of simple kriging as well as in case of Gaussian random fields their
equivalence to conditional expectation. The paper contains also short notes on the extension
of simple kriging to ordinary kriging by dropping the assumption of known mean value
of a random field as well as some necessary information on random fields, covariance
function and semivariogram function. The semivariogram is emphasized in the paper, for
two reasons. Firstly, the semivariogram describes broader class of phenomena, and for the
second order stationary processes it is equivalent to the covariance function. Secondly, the
analysis of different kinds of phenomena in terms of covariance is more common. Thus, it
is worth introducing another function describing spatial continuity and variability.

For the ease of presentation all the considerations were limited to the Euclidean space
(thus, for limited areas) although with some extra effort they can be extended to manifolds
like sphere, ellipsoid, etc.

Keywords: least squares prediction, kriging, semivariogram, covariance function,
random field

1. Introduction

Least squares prediction formula presented by Heiskanen and Moritz (1967) rooted in
Wiener – Kolmogorov prediction theory (stochastic processes) was originally applied
to prediction of gravity anomalies, but like with all spatial (also temporal) prediction
methods, in their general case, they can be used to any random field (of course ful-
filling some stationarity conditions). The same holds with kriging methods, originally
developed for mining purposes, but with passing time they were bravely applied in
many different fields.

As it will be shown in the paper, least squares prediction and geostatistical method
of simple kriging are equivalent; going further, in case of Gaussian random fields, both
are nothing but conditional expectation, and thus the best prediction.
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The extensive overview and evolution of methods that contributed to the optimal
spatial prediction can be found in literature (e.g. Cressie, 1990).

Original notation used by Heiskanen and Moritz (1967) was preserved with excep-
tion that all uncomfortable summation formulae have been changed into compact matrix
form.

2. Brief on Random Fields

The extensive treatment of random fields’ theory (also random functions, spatial sto-
chastic processes) can be found in literature (e.g. Adler, 1981; VanMarcke, 1988;
Christakos, 1992; Stein, 1999) and also in (Lauritzen, 1973) and (Krarup, 1969) who
introduced second order stationary random functions and concepts of functional analy-
sis with the use of Hilbert spaces, on the ground of physical geodesy. The presentation
here is limited only to what is necessary to enable statistical inference on partial
realization of random field, like it usually is the case in Earth sciences as well as
construction of optimal predictors in the sense of minimum mean square error.

A random field is a set of random variables parameterised by some set D ⊂ <n(in
case <1 one obtains stochastic processes, e.g. time series). The simplest form in
which a random field can be introduced is as follows (Cressie, 1993; Schabenberger
and Gotway, 2005): {

Z(s) : s ∈ D ⊂ <n} (1)

where Z(s) – random field; s – spatial coordinates; D – spatial domain; <n – n-dimen-
sional Euclidean space.

The feasibility of statistical inference on single and partial realization of a random
field as well as construction of optimal predictors is based on a notion of some form
of stationarity. Assumptions of stationarity allow to treat the values at different places
as though they are different realizations of the property (Webster and Olivier, 2007).

A random field is called second order stationary if the following assumptions hold:

∀s∈D E [Z (s)] = µ

∀s1,s2∈D Cov [Z (s1) ,Z (s2)] = E
{[
Z (s1) − µ] [Z (s2) − µ]} = C (s1 − s2)

(2)

where E – the expected value operator; Cov – covariance operator; h = s2 – s1 is
the separation vector between Z(s1) and Z(s2). The covariance function (2) can be
expressed as follows:

Cov [Z (s1) ,Z (s2)] = Cov [Z (s1) ,Z (s1 + h)] = C (h) =

= E
{[
Z (s1) − µ] [

Z (s1 + h) − µ]} = E [Z (s1)Z (s1 + h)] − µ2 (3)

or, when the expected value of a random field is constant and equal to zero, i.e.

∀s∈D µ = E [Z (s)] = 0 (4)
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then

Cov [Z (s1) ,Z (s2)] = Cov [Z (s1) ,Z (s1 + h)] = C (h) = E [Z (s1)Z (s1 + h)] (5)

From the above, one can notice, that the mean value of a second order stationary
random field is constant over the entire domain D, and furthermore, the covariance
function does not depend on absolute locations s1 and s2, but on the separation vector
h. The existence of the covariance function implies the existence of finite variance
C(0) = Cov[Z(s),Z(s+h)] = V[Z(s)] for h = 0.

For the processes for which the above does not hold, i.e. neither covariance function
nor variance exist, another hypothesis is introduced – the intrinsic hypothesis, and a
random field is then called intrinsic stationary if the following assumptions hold:

∀s∈D E [Z (s)] = µ or E [Z (s1) − Z (s2)] = 0
∀s1,s2∈D V [Z (s1) − Z (s2)] = 2γ (s1 − s2)

(6)

where V – variance operator; γ – semivariogram; 2γ – variogram.
Expressing (6) by means of expected value operator one gets

2γ (h) = V [Z (s1) − Z (s2)] = V [Z (s1) − Z (s1 + h)] =

= E
{
[Z (s1 + h) − Z (s1)]2

}
− {E [Z (s1 + h) − Z (s1)]}2 =

= E
{
[Z (s1 + h) − Z (s1)]2

} (7)

If additionally the covariance function C (s1 − s2) = C (h) or semivariogram (va-
riogram) γ (s1 − s2) = γ (h) depend only on separation distance between s1 and s2, i.e.
h = ||s1 – s2|| then random field is called isotropic and both functions are denoted C(h)
and γ(h), respectively.

3. The covariance function and the semivariogram

As it was shown in the previous section, there are two fundamental functions (the
generalized covariance function for intrinsic random functions of order k (e.g. Mathe-
ron, 1973; Kitanidis, 1997; Chiles and Delfiner, 1999) is not considered here) which
describe the behaviour of spatial process, i.e. covariance function and semivariogram.

The semivariogram as a structure function of intrinsically stationary random field
describes a broader class of phenomena (covariance may not exist). Besides, semiva-
riogram is superior to covariance function because it does not require mean value of
a random field to be known; it simply filters it, and therefore, it became the preferred
function of geostatisticians. There is, however, a limitation in using semivariogram –
not all linear combinations of random variables are authorized (the note on admissible
linear combinations). In the case of an Intrinsic Random Function – IRF, without a
covariance, only linear combinations with the sum of coefficients equal to zero can be
used (Matheron, 1971).
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In case of second order stationary spatial processes there is equivalence between
covariance function and semivariogram which can be derived as follows:

V [Z (s + h) − Z (s)] = V [Z (s)] + V [Z (s + h)] − 2Cov [Z (s) ,Z (s + h)] =

= 2V [Z (s)] − 2Cov [Z (s) ,Z (s + h)] =

= 2 [C (0) − C (h)] = 2γ (h)
(8)

and thus
γ (h) = C (0) − C (h) (9)

The semivariogram is a measure of dissimilarity between pairs of observations
Z(s+h) and Z(s) (as opposed to covariance function which describes similarity). As a
function, semivariogram provides information on spatial continuity and variability of a
random function. The inference on the shape of semivariogram is based on empirical
semivariogram and a priori knowledge of the behaviour of a phenomenon. Three
characteristic parameters of semivariogram for second order stationary processes, i.e.
the so called nugget effect co, partial sill c, and range of influence a (radius of au-
tocorrelation) are shown in Figure 1. The sum of nugget effect and partial sill, i.e.
co + c is called sill.

Fig. 1. The relation between the covariance function C(h) and semivariogram γ(h)
for second order stationary random fields

The most important issue whilst modelling the semivariogram is its behaviour near
the point of origin which is strongly related to spatial continuity and regularity of a
random field. Semivariogram approaching the origin may be: 1) quadratic (parabolic),
what indicates a continuous and highly regular process or may be associated with
the presence of a drift (trend); 2) linear, that indicates also continuous process but
less regular than the previous one; or 3) discontinuous at the origin, which reveals
highly irregular process at short distances (Armstrong, 1998; Journel and Huijbregts,
2003). The charts in Figure 2 illustrate the exemplary shape of 1D random field being
characterized by different covariance functions (also semivariograms) with varying
behaviour at short distances.

Both, semivariogram and covariance function have their special properties (Cressie,
1993; Matheron, 1971; Schabenberger and Gotway, 2005):
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Covariance function Semivariogram

positive definite function:
λTCλ ≥ 0, for any set of λ1, λ2, ..., λn

even function:
C(h) = C(-h)

Schwarz’s inequality:
C(0) > |C(h)|

V[Z(s)] = Cov[Z(s), Z(s)] = C(0)

conditionally negative definite function:
λTΓλ ≤ 0, for any set of λ1, λ2, ..., λn

even function:
γ(h) = γ(-h)

γ(0) = 0, from definition, V[Z(s) - Z(s)] = 0
in isotropic case when semivariogram
is a function of distance only then

lim
h→∞

γ (h)
h2 = 0

(semivariogram increases slower then h2)

where C – matrix of covariances; Γ – matrix of semivariances; λ – vector of coefficients.
For second order stationary random fields, from Schwarz’s inequality

γ (h) ≤ 2C (0)

thus semivariogram for these processes is necessarily bounded.

Fig. 2. 1-dimensional random fields characterized by different covariance functions:
exponential covariance function a); Gaussian covariance function b); spherical covariance function c)
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Note on admissible linear combinations

Variance of any finite linear combination of random variables Y = λTZ must be non
negative. For second order stationary case (covariance function exists) elementary cal-
culus shows that the variance of Y is a quadratic form with the vector of coefficients λ

V (Y ) = V
(
λTZ

)
= λTCλ ≥ 0 (10)

where C is a covariance matrix of the vector Z. Thus, for the quadratic form (10) to
be non negative for any vector λ, the covariance matrix C must be at least positive
semi-definite (or better strictly positive definite). As it was shown above, in case of
stationary random fields of order two any finite linear combination of random variables
can be used, without any constraints as to the coefficients in λ.

In case of intrinsic but not second order processes (with unbounded semivario-
grams) one can rewrite (10) in terms of semivariogram taking into account (9), thus

V (Y ) = λTCλ = λT (C0 − Γ) λ = λTC0λ − λTΓλ =

= C0λ
TUλ − λTΓλ = C0λ

TuuTλ − λTΓλ
(11)

where U – “unit” matrix (here matrix consisting of all 1s); u – “unit” vector (here
vector consisting of all 1s).

Expression (11) contains the parameter C(0) = C0 (variance of a random field) that
does not exist for intrinsic random fields. It can be eliminated from (11) by restricting
coefficients in λ sum to zero, i.e.

λTu = 0 (12)

and finally
V (Y ) = −λTΓλ ≥ 0 (13)

The above expression indicates that, the semivariogram must be conditionally
negative definite function and the variance of finite linear combination of random
variables can still be expressed in terms of semivariogram only when coefficients in λ
sum to zero.

Concluding, in case of intrinsic random fields there is a trade-off between a broader
class of phenomena and restricted class of linear combinations, i.e. not every single
linear predictor can be derived through semivariogram.

4. Least squares prediction from Heiskanen and Moritz

The remarkable thing is that the only function needed to derive optimum predictors
in the mean square sense is a covariance function (Heiskanen and Moritz, 1967).
In the isotropic case, the covariance function of only one variable, is the function of
the distance between the two points in space. In the derivation of the least squares
prediction formula the original notation (Heiskanen and Moritz, 1967) was preserved;
the only difference is in the compact matrix formulation.
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In (Heiskanen and Moritz, 1967) the observed gravity anomalies are considered
as a realization of zero mean second order stationary random function. If this does not
hold, i.e. the mean gravity anomaly is not zero, one can form a new random function
by subtracting the true (or estimated) mean from the observed values and add it back
at the end of the prediction process.

The calculated gravity anomaly ∆gP at an unobserved point P is represented
through the linear combination of known gravity anomalies. The predictor of ∆gP
is thus

∆g̃P = αT∆g (14)

where ∆g̃P – predictor of gravity anomaly ∆gP at point P; ∆g – vector of observed
gravity anomalies; α – vector of coefficients.

The prediction error is

εP = ∆gP − ∆g̃P = ∆gP − αT∆g (15)

By squaring and taking expected value of (15) we obtain the formula for mean
square error of prediction:

m2
P = E (εP)2 = E

(
∆gP − αT∆g

)2
=

= V (∆gP) + V
(
αT∆g

)
− 2Cov

(
∆gP,α

T∆g
)

= C0 + αTCα − 2αTc
(16)

where C0 = C(0) = V(∆g) is the variance of random function (variance of the gravity
anomalies); C – matrix of covariances between observed gravity anomalies (consisting
of covariances as a function of distance between pairs of points Pi and P j at which
gravity anomalies ∆gi and ∆g j were observed); c – vector of covariances between
observed and unobserved gravity anomalies (consisting of covariances as a function
of distance between pairs of points PP and Pi, i.e. at point being predicted and points
with known (observed) gravity anomalies)

To find the optimum set of coefficients α that minimizes mean square error of
prediction (16), an optimisation problem must be solved

∂m2
P

∂α
= 2Cα − 2c = 0 (17)

from which a system of n equations with n unknowns is obtained

Cα = c → α = C−1c (18)

The solution of (18) gives the optimum, in mean square sense, set of coefficients
α. By inserting α to (14), the best prediction for unknown gravity anomaly is found

∆g̃P = αT∆g = cTC−1∆g (19)

or, in case of a non-zero expected value, i.e. E(∆g) = µ , 0

∆g̃P = µ + αT∆g = µ + cTC−1
(
∆g − µ) (20)
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Thus, the mean square error of prediction (prediction variance) is given by

m2
P = E (εP)2 = C0 + αTCα − 2αTc =

= C0 + cTC−1CC−1c − 2cTC−1c = C0 − cTC−1c = C0 − αTc
(21)

5. Simple kriging

There are two fundamental criteria which constitute the basis for obtaining optimum
predictors (also estimators) in the field of geostatistics, these are unbiasedness and
minimum mean square error of prediction (estimation).

Unbiasedness:

E
[
Ẑ (s0) − Z (s0)

]
= E

[
p (Z, s0) − Z (s0)

]
= 0 (22)

Minimum mean square error of prediction:

E
[
Ẑ (s0) − Z (s0)

]2
= E

[
p (Z, s0) − Z (s0)

]2 → min (23)

Theoretically, the simplest case of geostatistical prediction is simple kriging which
can be introduced as heterogeneously linear predictor (Cressie, 1993; Rao and Touten-
burg, 1999) of the form

Ẑ (s0) = p (Z, s0) = λ0 + λTZ (s) (24)

Assume Z(s) to be second order stationary random field with constant and known
expected value (not necessarily zero), what may be written for observed data as

Z (s) = µ + ε (s) (25)

where ε(s) – vector of errors (random vector with mean 0 and variance-covariance
matrix C); µ – vector of constant and known mean values of a random field; and for
unobserved to be predicted as

Z (s0) = µ + ε (s0) (26)

Predictor (24) is unbiased for the choice of λ0 fulfilling the following condition:

E
[
Ẑ (s0) − Z (s0)

]
= E

[
p (Z, s0) − Z (s0)

]
=

= E
[
λ0 + λTZ (s) − Z (s0)

]
= λ0 + λTµ − µ = 0

λ0 = µ − λTµ (27)

Inserting λ0 from (27) to (24) the simple kriging predictor becomes

Ẑ (s0) = p (Z, s0) = λ0 + λTZ (s) = µ − λTµ + λTZ (s) =

= µ + λT (
Z (s) − µ) = µ + λTε (s)

(28)
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Thus, simple kriging predictor is unbiased regardless of the choice of weights.
But as it was shown in the note on admissible linear combinations it limits the user
to second order stationary processes, i.e. simple kriging predictor cannot in general be
expressed in terms of the semivariogram.

Taking into account (26) and (28), the mean square error of prediction is expressed
as

E
[
p (Z, s0) − Z (s0)

]2
= E

[
µ + λTε (s) − µ − ε (s0)

]2
= E

[
λTε (s) − ε (s0)

]2
=

= V
[
λTε (s)

]
+ V [ε (s0)] − 2Cov

[
λTε (s) , ε (s0)

]
=

= λTCλ + C0 − 2λTc
(29)

Hence, on the basis of (29) the objective function Ψ(λ) to be minimized is

Ψ (λ) = λTCλ + C0 − 2λTc (30)

Taking partial derivatives with respect to the vector of coefficients λ and equating
them to zero, one obtains simple kriging system of n equations with n unknowns

∂Ψ (λ)
∂λ

= 2Cλ − 2c = 0→ Cλ = c → λ = C−1c (31)

The solution of (31) gives the optimum, in the mean square sense, set of kriging
weights λ. By inserting λ to (28), simple kriging predictor is obtained

Ẑ (s0) = p (Z, s0) = µ + cTC−1
[
Z (s) − µ] (32)

as well as simple kriging variance

V (s0) = E
[
p (Z, s0) − Z (s0)

]2
= λTCλ + C0 − 2λTc =

= λTc + C0 − 2λTc = C0 − λTc = C0 − cTCc
(33)

Note on a step further beyond simple kriging

Simple kriging is not as simple as its name states. There is nothing simple in unrealistic
assumption of knowing a priori expected value of a random field (Schabenberger and
Gotway, 2005). Chiles and Delfiner (1999) call it even “a wonderful case of a known
mean”. This can be the case in controlled field trials, with transformed variables or
in “best linear unbiased prediction of residuals from regression fit provided that the
model has been specified correctly” (Schabenberger and Gotway, 2005).

To weaken this assumption one can introduce ordinary kriging predictor which
assumes constant but unknown mean value of a random field and can be expressed as
homogenously linear predictor of the form

Ẑ (s0) = p (Z, s0) = λTZ (s) (34)
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To fulfill a non-bias condition we put

E
[
Ẑ (s0) − Z (s0)

]
= E

[
p (Z, s0) − Z (s0)

]
= E

[
λTZ (s) − Z (s0)

]
=

= λTµ − µ = µ
(
λTu − 1

)
= 0

(35)

Hence, the non-bias condition requires that coefficients in λ sum to one, i.e.

λTu = 1 (36)

Mean square error of prediction for ordinary kriging is given by

E
[
p (Z, s0) − Z (s0)

]2
= E

[
λTZ (s) − Z (s0)

]2
=

= V
[
λTZ (s)

]
+ V [Z (s0)] − 2Cov

[
λTZ (s) ,Z (s0)

]
=

= λTCλ + C0 − 2λTc
(37)

Hence, the objective function to be minimized with the use of Lagrange multiplier can
be expressed as

Ψ (λ, κ) = E
[
p (Z, s0) − Z (s0)

]2 − 2κ
(
λTu − 1

)
=

= λTCλ + C0 − 2λTc − 2κ
(
λTu − 1

)
→ min

(38)

Taking partial derivatives with respect to the vector of coefficients λ and the
Lagrange multiplier κ, and setting them to zero provides the system of n+1 equations
with n+1 unknowns of the form



∂Ψ (λ, κ)
∂λ

= 2Cλ − 2c − 2κu = 0

∂Ψ (λ, κ)
∂κ

= −2
(
λTu − 1

)
= 0

(39)

or, finally 
Cλ − κu = c
λTu = 1

(40)

Ordinary kriging system of equations in matrix formulation is given by


C11 · · · C1n 1
...

. . .
...

...

Cn1 · · · Cnn 1
1 · · · 1 0





λ1
...

λn

−κ


=



c1
...

cn

1



and ordinary kriging variance can be expressed as follows

V (s0) = E
[
p (Z, s0) − Z (s0)

]2
= C0 − λTc + κ (41)

By restricting kriging weights λ to sum to one, ordinary kriging predictor can also
be derived by means of semivariogram function, i.e. for intrinsic stationary processes.
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6. Conditional expectation of normal vector

The well known fact from the theory of multivariate normal distribution states that for
the jointly normally distributed vector Z∈<n ∼N(µ, Σ) partitioned into Z1 ∈ <n1 and
Z2 ∈ <n2 , n = n1 + n2

Z =


Z1

Z2

 ∼ N



µ1

µ2

 ,


Σ11 Σ12

Σ21 Σ22


 (42)

the conditional distribution of Z2 given Z1 is multivariate normal with
Z2|Z1 ∼N(µZ2 |Z1

,ΣZ2 |Z1) (Morrison, 1990; Deutsch, 1969)

µZ2 |Z1
= E (Z2|Z1) = µ2 + Σ12Σ

−1
11

(
Z1 − µ1

)
(43)

and
ΣZ2 |Z1 = V (Z2|Z1) = Σ22 − Σ12Σ

−1
11 Σ12 (44)

where µ1 and µ2 are expected values of random vectors Z1 and Z2, respectively; Σ11 and
Σ22 are covariance matrices for Z1 and Z2; Σ12, Σ21 = ΣT

12 represent crosscovariances
between the elements of the vectors Z1 and Z2.

Here, in comparison to the first part of the paper the authors maintain the traditio-
nal notation from the theory of multivariate normal distribution denoting parameters
as µ, Σ which should not confuse the reader.

Now, we have similar situation as in (42), given second order stationary Gaussian
random field, we want to predict Z(s0) on the basis of observations Z(s), thus random
vector

^

Z(s) can be partitioned in the same way as (42), i.e.

^

Z(s) =


Z (s)
Z (s0)

 ∼ N



µ

µ

 ,


ΣZZ σZZ0

σZ0Z σ2
Z0Z0


 (45)

where µ, µ are vector and scalar of mean values of random field respectively; ΣZZ is
a covariance matrix for Z(s); σZZ0 = σT

Z0Z are vectors of covariances between Z(s0)
and Z(s); and σ2

Z0Z0
is the variance for Z(s0). Applying again results from theory

of multivariate normal distribution, i.e. (43) and (44) to (45) we obtain best linear
prediction (46) which is in fact conditional expectation of Z(s0) given data Z(s)

µZ(s0)|Z(s) = E [Z(s0)|Z (s)] = µ + σZ0ZΣ−1ZZ
[
Z(s) − µ] (46)

σ2
Z(s0)|Z(s) = V [Z(s0)|Z(s)] = σ2

Z0Z0
− σZ0ZΣ−1ZZσZZ0 (47)

Concluding, the formulae (46) and (47) as well as (19), (20), (21) and (32), (33)
are identical, which prove that in case of Gaussian random fields least squares predic-
tion and simple kriging are nothing but conditional expectation, thus, the best linear
unbiased predictors among all linear or non-linear predictors.
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7. Conclusions

It was shown that the two methods; least squares prediction and simple kriging are
equivalent. The striking thing is that they were developed at about the same time, in
the sixties of the last century; also in the field of meteorology Lev Gandin introduced
similar method which he called objective analysis. All the methods grew in different
fields where the need of precise prediction was and still is of great importance. Later
on, the methods evolved. In the field of physical geodesy blossomed as least squares
collocation being an advanced method for prediction heterogeneous data. In geostati-
stics there is cokriging that is similar to collocation method, and variety of non-linear
prediction methods like indicator kriging or disjunctive kriging.

Simple kriging as well as least squares prediction can easily be extended to the
case of constant and unknown mean which is more robust method of prediction in
respect of fluctuation in mean value – this extension in geostatistical parlance is called
ordinary kriging. This kind of improvement broadens the range of phenomena under
study to those which cannot be described by means of covariance function but for
which the semivariogram exists and can be used instead of latter mentioned.

In case of Gaussian random fields, both, least squares prediction formula and
simple kriging are nothing but conditional expectation, thus, the best linear unbiased
predictor among all linear or non-linear predictors.
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Streszczenie

Motywację dla niniejszego artykułu stanowił rozdział „Metody statystyczne w geodezji fizycznej” pocho-
dzący z uznawanej obecnie za klasykę gatunku pozycji „Geodezja fizyczna” (Heiskanen i Moritz, 1967),
jak również zainteresowanie autorów metodami predykcji geostatystycznej. Celem artykułu jest studium
porównawcze predykcji metodą najmniejszych kwadratów w ujęciu Heiskanena i Moritza z metodą kri-
gingu prostego a w przypadku gaussowskich pól losowych ich równoważność z warunkową wartością
oczekiwaną. Artykuł zawiera również rozszerzenie krigingu prostego do krigingu zwyczajnego poprzez
odrzucenie założenia o znajomości wartości oczekiwanej pola losowego oraz podstawowe informacje na
temat pól losowych, funkcji kowariancji i semiwariogramu. W treści artykułu większy nacisk położony
został na funkcję semiwariogramu z dwóch powodów. Po pierwsze, semiwariogram opisuje bogatszą klasę
zjawisk, a dla procesów stacjonarnych rzędu drugiego mamy zależność między funkcją kowariancji a se-
miwariogramem. Po drugie, analiza zjawisk za pomocą funkcji kowariancji jest powszechniejsza, zatem
przedstawienie kolejnej funkcji wydaje się uzasadnione. Dla łatwości prezentacji wszystkie rozważania
zostały ograniczone do przestrzeni euklidesowej (więc dla obszarów o ograniczonej powierzchni) jednakże
z dodatkowym wysiłkiem rozważania mogą zostać uogólnione na przypadek rozmaitości takich jak sfera,
elipsoida i inne.






