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Accepted: 31 March 2017 One of the main tasks in the planning of production processes is to satisfy the needs of
the customers in terms of quantity, quality and time. The issue of the timely execution of
production orders is becoming increasingly important. Based on the conducted studies it
can be concluded that the size of the delay depends on the adopted scheduling of orders.
This paper focuses on the problem of implementing a scheduling of production orders that
will allow to avoid delays, and in the event such a scheduling is not possible, for minimizing
the sum of delays of all the orders. A new algorithm has been proposed that allows to
determine of the optimal sequence of production orders with the minimum sum of delays.
The considerations have been limited to the issue of a two-machine system in which the
orders are carried out in a flow.
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Introduction

The basic paradigm of modern production meth-
ods is the desire to fulfill customers’ requirements
[1, 2]. In the age of universal competition and glob-
alization, enterprises are forced to implement inno-
vative methods for managing and controlling the
production process. One of the most innovative pro-
duction process management concepts is lean man-
agement [3]. This concept is based on the rigorous
elimination of all forms of waste associated with ex-
cessive production, excessive inventory, unnecessary
transport and unnecessary time of the orders await-
ing processing. One of the ways of eliminating unnec-
essary downtime is to introduce orders for production
in an optimal sequence. The criteria for optimization
most often include the maximum lead time of all the
production orders, the sum of delays of the orders
and the sum of costs associated with the delays [1, 4].

The problem of determining the optimal sequence
of production orders has been the subject of many

scientific studies [4–7]. The total execution time of
all orders is the most common criterion adopted for
the determination of the optimal sequence of execu-
tion of production orders. This approach allows all
orders to be quickly executed but does not consider
the required order execution deadlines, and therefore
is not able to minimize the delays caused by missed
delivery deadlines. In order to achieve success in to-
day’s consumer market an enterprise is forced to im-
plement a strategy prioritizing customer satisfaction,
and therefore the need to meet the set delivery dead-
lines.

This article presents a new algorithm that al-
lows the optimal sequence of production orders to be
determined in a two-machine system, based on the
minimum sum of delays. The developed algorithm
utilizes the methodology of branch and bounds, and
takes into account the slack time (permissible order
delay not leading to delay costs) following process-
ing on the first machine. The proposed algorithm
is a certain extension of the algorithm that allows
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to determine of the optimal scheduling of orders in
a single-machine system, presented in detail in pa-
per [1].
The rest of the paper is organized as follows. Sec-

tion 2 is a detailed presentation of scheduling pro-
duction orders in a two-machine system. Section 3
describes the algorithm for determining the sequence
of production orders with a minimum sum of delays
in a two-machine system. In order to provide a bet-
ter illustration of the proposed methods, examples
along with graphical trees of solutions are included
in Sec. 4. The paper ends with a summary, which
includes the most important conclusions from the
carried out works and indicates the issues that the
authors plan to address in the course of further re-
search.

The problem of scheduling production

orders processed on two machines

The issue of scheduling production orders has
been illustrated using the example of a two-machine
manufacturing system implementing unit production
and small series production.
The production system consists of an input stor-

age, two machines (M1, M2) and an output storage.
The system implements a set of n production orders.
It is assumed that all orders are available in the in-
put storage at the start of production (T1 = 0) and
may be performed in any sequence. The technologi-
cal process is carried out in a flow. The execution of
each order zj , j = 1, . . ., n requires the performance
of two operations. First operation O1,j is performed
on machine M1 and then operation O2,j is carried
out on machine M2. Each operation Oi,j , i = 1, 2,
j = 1, . . ., n, has an assigned processing time required
for its execution – ti,j . The required processing time
ti,j results from the technological process carried out;
it is positive and clearly defined.
Only one operation may be performed on each

machine at any given time. The operations are non-
preemptive which means that the commenced oper-
ation cannot be interrupted. After the completion
of operation on machine M2 the order is transferred

to the output storage. The output storage capacity
allows to store all the executed orders. It was also
assumed that the execution of individual orders re-
quires the proper retooling of the machines. The ma-
chine retooling time does not depend on the sequence
of the orders introduced to production and has been
included in the processing time of the individual or-
ders. Furthermore, there are no interruptions in the
operation of the machine and in the delivery of orders
for production. A diagram of the considered produc-
tion system is shown in Fig. 1.

Each order has an assigned required completion
deadline – ttj .

The problem of scheduling production orders in
a two-machine system has been defined as follows:

It is necessary to use such a sequence of introduc-
tion of orders for production Ui (scheduling of or-
ders) that will allow to achieve the minimum sum
of delays of all the production orders.

In order to determine the delay of the individual
orders the concept of order, delivery date deviation
has been introduced. The delivery date deviation was
defined as the difference between the actual order
execution date – tr j – and the required completion
deadline – ttj (∆Tdj = trj − ttj).

If the delivery date deviation of order zj is greater
than zero (∆Tdj > 0), then the order delay is
equal to the order delivery date deviation. If the
delivery date deviation is negative or equal to ze-
ro (∆Tdj ≤ 0), then the order has been executed
before the required deadline. In this case the order
execution delay is equal to zero. The purpose of the
scheduling process is to find such a scheduling that
the sum of delays of all the orders is minimal. The
objective function used in the process of determining
the optimal scheduling is expressed by formula (1)

Fc =

n∑

j=1

max{0, trj − ttj}, (1)

where Fc – the objective function used in the prob-
lem of scheduling of production orders, tr j – the ac-
tual execution time of order zj , ttj – the required
completion deadline of order zj.

Fig. 1. Diagram of a two-machine production system.
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The problem of scheduling production orders de-
fined in such a way is strongly NP-hard. The to-
tal number of all possible sequences depends on the
number of production orders and equals n!. There-
fore, finding the optimal solutions with a complete
review may not be appropriate in this case, as the
computational complexity does not allow to obtain
results in an acceptable time (already at 15 produc-
tion orders the search space is more than 1012 per-
mutations).
Evolutionary algorithms, swarm algorithms, sim-

ulated annealing algorithms or various types of
heuristic rules are often suggested for resolving such
problems [8]. These methods allow us to obtain so-
lutions quickly, but their common weakness is the
inability to obtain the optimal solution. They also
do not allow us to estimate how far the obtained so-
lution is from the optimal solution. Because of that
investigations are being carried out to find a method
that would allow to identify the optimal sequence of
orders for a given objective function [8–11].
Johnson’s algorithm is often used in order to solve

two-machine problems. It allows us to find the short-
est paths between every pair of vertices in graphs and
can be used to find a scheduling with which the total
duration of all orders will be minimal (the F2||Cmax

problem). Unfortunately, this algorithm cannot be
used to find the scheduling which allows to mini-
mize of the sum of delays of the production orders.
In the defined two-machine flow system, the produc-
tion does not run smoothly (uninterrupted). In a sit-
uation where following the processing on machine
M1 an order should be forwarded to processing on
machine M2, but machine M2 is busy, the order is
blocked on machine M1 until machine M2 is free. In
this situation the ‘wait-time’ of the order on machine
M1 until the completion of processing of another or-
der on machineM2 extends the execution of individ-
ual production orders. The frequency of occurrence
of ‘wait-time’ of the production orders on machine
M1 depends on the adopted scheduling of the pro-
duction orders and impacts their execution time.

Method for determining the sequence

of production orders

with a minimum sum of delays

In this point a method is proposed that allows
to determine the sequence of production orders en-
abling us to minimize the sum of delays. This method
is a certain modification of the method for the single-
machine problem, presented in paper [1] and it con-
sists of two stages. In the first stage the base se-
quence is determined, i.e. a sequence for which the

maximum lack of slack time for a single order is not
greater than in all the other sequences. In the second
stage the sequences of orders providing the minimum
sum of delays are determined.
It is assumed that for a given list of orders z1, z2,

. . . , zn the following information is available:
• t1(i) – the processing time for order zi on machine

M1,
• t2(i) – the processing time for order zi on machine

M2,
• tt(i) – the required deadline for order zi.
The determination of the base sequence begins

with the determination of the sum of the processing
times of all orders received on machineM1. This sum
is denoted by S1:

S1 =
n∑

i=1

t1(i). (2)

For each order included on the list, the lack of
slack time is determined in the event it is performed
as the last one. If order zi is executed as the last one
on machine M1, then the lack of slack time for this
order after processing on machine M2 will be:

p(i) = S1 + t2(i) − tt(i). (3)

If p(i) ≥ 0, then the delay in the execution of or-
der zi will amount to at least p(i), if it is carried out
as the last one.
The determination of solutions with a minimum

sum of delays has the form of a tree.

Stage I:
At the beginning, in the first block (the root of

the tree), the value p(i) is determined for each order
according to formula (2). Any of the orders for which
p(i) is the smallest is selected and placed at the end
of the queue (the selected order is marked as zj).
Then the time that needed to carry out the rest of
the orders on machine M1 is determined (excluding
the selected order zj); this equals

S′

1
:= S1 − t1(j). (4)

The sum of the lack of slack time (for the time
being, only taking into account the last order in the
queue) is Sbr = max {p(j); 0}.
Then, in block 2 (the successor of block 1 in the

tree of solutions), what has been done in the root
of the tree is performed, but excluding the order
that has already been put at the end of the queue.
However, in order to determine p(i), S′

1
(p(i) =

S′

1 + t2(i) − tt(i)) it now taken into account. The
order selected in block 2 is designated as zk and is
inserted into the queue as the second to last. The
time required for processing the remaining orders is
updated S′

1
:= S′

1
− t1(k) and the sum of the lack of

slack time Sbr := Sbr + max {p(k); 0}.
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Then what has been done in block 2 is repeat-
ed (ignoring the orders already inserted as the last
and second to last in the queue) until block of n is
reached (leaf in the tree), from which the order is in-
serted to the front of the queue. In this way the base
branch in the tree is obtained (with the established
sequence of all orders). The sum of the lack of slack
time for the entire branch is designated as Sbrk.
For the established sequence in the base branch

we determine the sum of the delays of all orders
Sop following processing on machine M2. Of course
Sop ≥ Sbrk. If Sop = 0, then the received sequence is
optimal due to the sum of delays.

Stage II:
If in a sequence determined in the base branch

the sum Sop > 0, then this sequence will not nec-
essarily give the minimum sum of delays. We then
check from block n − 1 to block 1, whether the se-
lection of the next order, in terms of the minimum
value p(i), would cause the Sbr to exceed the sum
of delays Sop of the base solution. If that is the
case, another branch is not expanded. If not (i.e,
Sbr + max {p(ik); 0} ≤ Sop), the selected order zik is
entered into the next block in the appropriate place
in the queue, etc.
If the next leaf in the tree is reached (with an

established sequence of all orders), then the sum of
the lack of slack time Sbrk for this sequence is no
higher than the sum of delays Sop for the base solu-
tion. Therefore, the sum of delays for this sequence

is determined. If it is lower than Sop from the base
solutions, then the Sop is updated and checking the
subsequent branches is continued until they can be
developed (until Sop is not be exceeded by Sbr). Fi-
nally, the optimal solutions are in the leaves with the
minimum Sop value.

Caution:

The established sequence of all orders is denoted
as (zi1, zi2, . . . , zik, . . . , zin). If some block with an
already established sequence of n − k orders shows
p(i) ≤ 0 for all the other orders, then the sum of the
lack of slack time Sbrk for the entire branch will be
the same as the sum of the lack of slack time Sbrk in
that block. Therefore, the sequence of the remaining
orders on the first k positions is not important due
to Sbrk.

Examples

Four examples have been presented in order to
better illustrate the proposed method. Data for Ex-
ample 1 are shown in Table 1.

It should be noted that the shortest time of
processing orders on machineM1 is not shorter than
the longest time of processing on M2. In such case,
for every sequence any order whose processing on
machine M1 has been completed can be immediate-
ly processed on machine M2 (see Figs. 2 and 3). As
a consequence for every sequence Sop = Sbrk.

Table 1
Data for Example 1.

Order Processing time on M1

t1 [min]
Processing time on M2

t2 [min]
Required deadline

tt [min]

z1 5 4 10

z2 6 3 14

z3 7 2 11

Fig. 2. Gantt chart for sequence U1 in Example 1.

Fig. 3. Gantt chart for sequence U2 in Example 1.
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The obtained results are summarized in Table 2.
Sequences for the base solution (U1) and optimal so-
lution (U2) were given. It should be noted that the
interruptions in work on machine M2 do not have
any effect on the sum of the delay times.
Figure 4 shows the tree of solutions for Exam-

ple 1. In the upper left corner, the block number
according to the designation sequence is given un-
der (Bi). The crossed out order zi indicates that
the inclusion of this order to the given item would
cause the minimum sum of delays to be exceeded, i.e.
Sbr + max{p(i); 0} ≥ Sop.

In Example 2 parameters t2 and tt are changed
for orders z3 in relation to Example 1 (see Table 3).
In this example the shortest time of processing orders
on machine M1 is also not shorter than the longest
time of processing on M2.
The obtained results are summarized in Ta-

ble 4. The sequence established in the base solu-
tion is also the optimal solution. It should be not-
ed that the sequence in the base solution is not
in compliance with the increasing completion dead-
lines.

Table 2
Summary of the designated sequences selected for Example 1.

Identification Sequence Sbrk Sop Comments

U1 (blok B3) (z1, z3, z2) 0 + 3 + 7 = 10 0 + 3 + 7 = 10 base solution

U2 (blok B5) (z1, z2, z3) 0 + 0 + 9 = 9 0 + 0 + 9 = 9 optimal solution

Fig. 4. Tree of solutions for Example 1.

Table 3
Data for Example 2.

Order Processing time on M1

t1 [min]
Processing time on M2

t2 [min]
Required deadline

tt [min]

z1 5 4 10

z2 6 3 14

z3 7 1 13

Table 4
Summary of the designated sequences selected for Example 2.

Identification Sequence Sbrk Sop Comments

U1 (blok B3) (z1, z2, z3) 0 + 0 + 6 = 6 0 + 0 + 6 = 6 base and optimal solution
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Figure 5 shows the tree of solutions for Exam-
ple 2.

Fig. 5. Tree of solutions for Example 2.

In Example 3 (see Table 5) the times of process-
ing on machine M2 are longer than on M1 for some
orders. For this reason, there are situations in which
orders whose processing on machine M1 has been
completed have to “wait” for the start of processing
on machine M2.

Table 6 shows the results obtained for this exam-
ple. Sequences obtained in all four leaves of the tree
of solutions are presented. The sequences U2, U3 and
U4 have been determined because the sum of the lack
of slack time Sbrk for these sequences did not exceed
the sum of delays Sop from the base solution, which
also turned out to be optimal. It should be noted
that for sequence U1, which is optimal in terms of
the sum of delays, the processing time of all orders is
18 minutes (see Fig. 6), and for sequence U4, which is
much worse in terms of the sum of delays, this time
is 15 minutes. This is the shortest time of process-
ing of all the orders (see Fig. 7). Moreover, the sum
of wait time for the start of processing on machine
M2 for sequence U4 amounted to 1 + 2 = 3 minutes,
and for the optimal sequence U1 it was much longer:
1 + 6 = 7 minutes. As can be seen the Johnson’s al-
gorithm, which allows us to designate the sequence
providing the shortest time of processing of all the
orders (in this example – 15 minutes) is not useful in
terms of the minimization of the sum of the delays.
Figure 8 shows the tree of solutions for Exam-

ple 3.
Finally Example 4 was presented with four or-

ders (see Table 7). In this example there are orders
which have a longer processing time on machine M1

and an order which has a longer processing time on
machine M2.

Table 5
Data for Example 3.

Order Processing time on M1

t1 [min]
Processing time on M2

t2 [min]
Required deadline

tt [min]

z1 1 5 18

z2 4 3 8

z3 2 6 12

Table 6
Summary of the designated sequences for Example 3.

Identification Sequence Sbrk Sop Comments

U1 (blok B3) (z2, z3, z1) 0 + 0 + 0 = 0 0 + 1 + 0 = 1 base and optimal solution

U2 (blok B4) (z3, z2, z1) 0 + 1 + 0 = 1 0 + 3 + 0 = 3

U3 (blok B6) (z2, z1, z3) 0 + 0 + 1 = 1 0 + 0 + 6 = 6

U4 (blok B7) (z1, z2, z3) 0 + 0 + 1 = 1 0 + 1 + 3 = 4

Fig. 6. Gantt chart for sequence U1 in Example 3.
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Fig. 7. Gantt chart for sequence U4 in Example 3.

Fig. 8. Tree of solutions for Example 3.

Table 7
Data for Example 4.

Order Processing time on M1

t1 [min]
Processing time on M2

t2 [min]
Required deadline

tt [min]

z1 10 2 70

z2 5 11 20

z3 20 1 60

z4 15 6 50

Table 8 shows the results obtained for this ex-
ample. Sequences obtained in all three leaves of the
tree of solutions are presented. All three sequences
turned out to be optimal. It should be noted that for
solution U1 the time of processing of all the orders
is 52 minutes (see Fig. 9), and there are no cases of
orders waiting for the start of processing on machine
M2 after the completion of processing on machine

M1. Meanwhile for solution U3 the time of process-
ing of all the orders is 51 minutes (see Fig. 10) and
there is a wait time (1 minute) for order z1 (because
t1(1) = 10 and t2(2) = 11). Despite that, both se-
quences give the minimum sum of delays.
Figure 11 shows the tree of solutions for Exam-

ple 4.
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Table 8
Summary of the determined sequences for Example 4.

Identification Sequence Sbrk Sop Comments

U1 (blok B4) (z2, z4, z3, z1) 0 + 0 + 0 + 0 = 0 0 + 0 + 0 + 0 = 0 base and optimal solution

U2 (blok B7) (z2, z4, z1, z3) 0 + 0 + 0 + 0 = 0 0 + 0 + 0 + 0 = 0 optimal solution

U3 (blok B9) (z2, z1, z4, z3) 0 + 0 + 0 + 0 = 0 0 + 0 + 0 + 0 = 0 optimal solution

Fig. 9. Gantt chart for sequence U1 in Example 4.

Fig. 10. Gantt chart for sequence U3 in Example 4.

Fig. 11. Tree of solutions for Example 4.
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Summary

The problem of determining the minimum sum
of delays in the processing production orders in a
two-machine system is much more complex than in
the case of a single-machine system. In contrast to
single-machine systems, the time of delay of the last
order can be determined only once the scheduling of
all the orders is known. This is due to the occurrence
of cases where orders await the start of machining on
machine M2 following the completion of processing
on machineM1. If for every order the time of process-
ing on machine M1 is greater or equal to the time of
processing of the remaining orders on machine M2,
then there are no cases of orders awaiting the start of
machining on machine M2 following the completion
of processing on machine M1. In such case the sum
of the delay times is equal to the sum of the lacks of
slack time. However, generally the sum of the delay
times can be greater than the sum of the lack of slack
time, precisely because of the possible waiting-time
for the start of machining on the second machine.
Unfortunately Johnson’s algorithm is quite use-

less for the problem of minimization of the sum of
delays. It may happen that the scheduling provid-
ing the shortest processing time of all the orders in
a two-machine system will give the greatest sum of
delays. In addition, the scheduling giving the longest
processing time of all orders gives the smallest sum
of delays.
The algorithm proposed in this paper allows us

to find the optimal solutions from the point of view
of the sum of delay times in a two-machine system,
by utilizing the so-called lack of slack time ratio.
Further work is required in which the authors are

planning to extend the proposed method to the prob-
lem of minimization of the sum of delay costs asso-
ciated with the execution of all the orders.
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