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Abstract 

Size-dependent dynamic instability of cylindrical nanowires incorporating the effects of Casimir attraction and 

surface energy is presented in this research work. To develop the attractive intermolecular force between the 

nanowire and its substrate, the proximity force approximation (PFA) for small separations, and the Dirichlet

asymptotic approximation for large separations with a cylinder-plate geometry are employed. A nonlinear 

governing equation of motion for free-standing nanowires − based on the Gurtin-Murdoch model − and a strain 

gradient elasticity theory are derived. To overcome the complexity of the nonlinear problem in hand, a Garlerkin-

based projection procedure for construction of a reduced-order model is implemented as a way of discretization 

of the governing differential equation. The effects of length-scale parameter, surface energy and vacuum 

fluctuations on the dynamic instability threshold and adhesion of nanowires are examined. It is demonstrated that 

in the absence of any actuation, a nanowire might behave unstably, due to the Casimir induction force. 

Keywords: free-standing cylindrical nanowire, Casimir force, proximity force approximation, Dirichlet asymptotic 

approximation. 
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1. Introduction 
 

In the last decades, the application of nanowire-based nanostructures is extensively growing 
because of their excellent physical properties such as their small size giving a large surface 

area-to-volume ratio. Due to their exciting properties, nanowires are promising candidates for 
detecting nano-objects with high sensitivity, and also they can be potentially employed in 
several fields, such as measurement systems [1, 2], Micro/Nanoelectromechanical Systems 

(M/NEMS) [3], biological or gas sensing devices [4], flexible electronics and renewable energy 
technologies [5], integrated Shape Memory Alloy (SMA) [6], resonators and actuators [7, 8] and 

multifunctional NEMSs. 
Essentially, when the electronic and mechanical systems were successfully integrated in 

a nanoscale, some new phenomena originally governed by the nanoscale quantum effects have 

become more and more important. As an example, the motion of a nanowire-based structure is 
affected by the small-scale quantum electro-dynamical interactions, such as vacuum 

fluctuations. The van der Waals effect stems from the electrostatic interaction between a pair 
of magnetic poles at an atomic-order distance. The Casimir force stands for the attractive force 
between two flat parallel plates of solids that originates from quantum fluctuations in the ground 

state of the electromagnetic field [9]. 
The effect of vacuum fluctuation forces can be modelled by the Casimir attraction which is 

the dominant phenomenon in any sub-micron separation-based application [10−12]. Using 

experiments, Zou et al. [13] could demonstrate the Casimir effect between two micro-machined 
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silicon components on the same substrate. They achieved this result by integrating a force-

sensing micromechanical beam and an electrostatic actuator on a single chip. Buks and Roukes 
[14] reported an experimental study of surface-surface interactions using micro-machined 
cantilevers fabricated from Au and focused on the extreme manifestation of Casimir interaction 

and the energy associated with this process. 
 The same effect is also numerically examined by Lombardo et al. [15], where the Casimir 

interaction energy is evaluated for configurations involving two perfectly conducting eccentric 
cylinders and a cylinder in front of a plane. The exact equation prescribing the Casimir force is 
analytically derived by Emig et al. [16] for a configuration involving a plate and a cylinder with 

the assumption of an intermediate geometry between the parallel plates and the plate-sphere 
configurations. Bordag et al. [17] published a review of some experimental and theoretical 

developments in the characterization of the Casimir effect in a nanoscale. They demonstrated 
that the Casimir force strongly depends on the shape, size, geometry and topology 
of boundaries. Therefore, many authors worked on computing the Casimir attraction assuming 

different geometries, e.g. parallel plates [18−20], plate-sphere [21], parallel cylinders [22] and 
plate-cylinder [23].  

Also, many papers are concerned on studying the instability characteristics and nonlinear 

analysis of micro/nano-scale structures involving different assumptions and theories, such as 

the nonlocal elasticity theory [24−31], strain gradient theory [32−35], modified strain gradient 
theory [36, 37], strain-inertia gradient elasticity [38], nonlocal strain gradient theory [39] etc. 

It is worth mentioning that any nanoscale device might adhere to its actuating substrate under 
the effect of the Casimir attractive force, if a minimum gap between the flexible nanostructure 

and its substrate is not considered. Besides being one of the most effective ways of turning in 
the instability of freestanding nanostructures, the Casimir force can also induce undesired 
adhesion during the fabrication stages. Therefore, a fundamental understanding of the stability 

behaviour of free-standing nanowires is central to precise designing and mounting of these 
structures. All the previous works have studied the instability analysis of small-sized structures 

having planar or rectangular cross-sections. However, to the best of the authors’ knowledge, no 
prior study considers the Casimir force while incorporating the surface effects with the 

application to dynamic instability characteristics of size-dependent nano-beams with a circular 
cross-section. 

The experiments demonstrate that the surface layer plays an important role in the structural 

behaviour of nanoscale structures which is due to their surface-to-volume ratio [40]. Atoms in 
a free surface of nanostructures experience a local environment different from that met by atoms 

in any other bulk material. Consequently, these atoms have a different energy level than the 
atoms in the bulk pattern. The excess energy of surface atoms is called the surface free energy 
[41]. In the classical continuum mechanics, the effect of surface layer is typically ignored. 

However, for nanoscale devices, because of high surface-to-volume ratios, the influence of the 
surface layer on the overall dynamic behaviour of nanostructure could no longer be neglected. 

Gurtin and Murdoch [42] presented a surface elasticity theory to model the surface layer of a 
solid as a membrane with negligible thickness. In another study by Sedighi [43] the dynamic 
pull-in behaviour of an electrically actuated nano-bridge is studied, which features a rectangular 

cross-section incorporating the surface and intermolecular effects. Using a nonlocal finite 
element model, Eltaher et al. [44] examined the vibration characteristics of nano-beams 

accounting for the surface layer effects. Fu and Zhang [45] examined the pull-in behaviour of an 
electrically actuated nano-beam by incorporating the surface elasticity. They solved the 
complex mathematical problem by the Analog Equation Method (AEM). Their discussion 

considered the effects of surface energies on the static and dynamic responses, pull-in voltage 
and pull-in time. Koochi et al. [46] studied the influence of surface effect on the static instability 

behaviour of a cantilever nano-actuator in the presence of van der Waals force (vdW).  
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In the previous works, Sedighi and Bozorgmehri [47, 48] studied the dynamic behaviour 

of vibrating nanowires based on the non-local and modified couple stress theories. In the current 
paper, we examine the static and dynamic instability threshold of circular cross-section-based 
nano-systems (such as nanowires and nanotubes) by employing the Strain Gradient Elasticity 

Theory (SGET) which has three length-scale parameters to account for the size dependency 
of sub-micron structures. In addition, we use a new Reduced-Order Method (ROM) to capture 

the first three natural frequencies of nanowires. The main purpose of the present study is to 
examine the influence of Casimir attraction on the instability/adhesion characteristics of nano-
bridges while addressing the size-dependency and surface layer effects. To serve this goal, the 

strain gradient elasticity theory together with the Euler-Bernoulli beam model are employed to 
derive a governing equation of nanowires accounting for the vacuum fluctuations and surface 

energy. To solve the nonlinear governing equation of motion, a reduced-order model, based on 
the so-called Galerkin expansion, is presented and performed. Finally, the effects of different 
parameters on the instability behaviour and adhesion time of Casimir-induced free-standing 

nanowires are studied.  
 

2. Mathematical modelling 

 
Figure 1 shows a schematic view and an SEM image of a free-standing doubly-clamped 

nanowire above a flat plate substrate. Influenced by the Casimir attractive force, the flexible 

cylinder can deform towards the fixed ground plane. The nanowire features an initial gap D , 

length L  and radius R . Following, the governing equations of Casimir-induced nanowires are 

derived based on two different approaches: the PFA approach for small separation and the 
Dirichlet mode approach for large separation approximations. 

 
a)                                                                 b)                                                                    c) 

 

Fig. 1. A 3D schematic view (a); a 2D side view (b) and an SEM image of a doubly-clamped  
cylinder-plate based nanowire (c). 

 

 

2.1. Effect of surface stresses  

 

Figure 2 illustrates a doubly-clamped nanowire including a surface layer. Following the 
Gurtin-Murdoch approach [42], it is assumed that the nanowire has an elastic surface with zero 

thickness and specific material characteristics accounting for the surface energy effects.  
 

 
Fig. 2. A 2D schematic representation of a doubly-clamped nanowire. 
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To model the surface energy, the nano-bridge is split into two layers; a surface layer and a 

core (bulk) layer. The modulus of elasticity for the surface layer is represented by 
0

E  

(determined from atomistic calculations). Assuming there is no residual stress in the bulk 
material due to surface tension, the corresponding bulk stress-strain relations of the beam may 
be written as [49]: 

                                                           ,

xx xx zz
E vσ ε σ= +                                                                  (1) 

where ν is the Poisson’s ratio of nano-beam. In the classical continuum mechanics theory, the 

stress component 
zz
σ  is assumed zero. However, the equilibrium will not be satisfied with this 

assumption, if the surface stress is considered. In this case, the stress component 
zz
σ  is 

expressed as follows [50]: 

                                                     ( ) ( )
1

,
2 2

zz zz zz zz zz

z

R
σ σ σ σ σ

+ − + −

= + + −                                                  (2) 

where 
zz
σ

+  and 
zz
σ

−  are stresses at the top and bottom surface fibres, respectively. The stresses 

of the surface layer satisfy the following equilibrium relation [45]: 

                       ( ) ( ) ( ) ( )
2 2 2 2

0 0 0 0 0 0 0 02 2 2 2

1

2 2

.

zz

w w z w w

Rx t x t

σ τ τ ρ ρ τ τ ρ ρ
+ − + − + − + −

∂ ∂ ∂ ∂
= − − − + + − +

∂ ∂ ∂ ∂

          
         

          
          (3) 

Moreover, Gurtin and Murdoch [42] developed the constitutive equations for the surface 
layers: 

                                                     
0 0 0

, ,

xx zx

u w
E

x x
τ τ τ τ

∂ ∂
= + =

∂ ∂
                                                          (4) 

where τxx and τzx

 

are non-zero membrane stresses existing on the contact surfaces of the bulk 
material and surface layers. The following equilibrium relations must be satisfied by stresses 

of the surface layers [50]: 

                                                           
2

0 2
,

i i

iz

u

t

β
τ

σ ρ
β

++

+ +
∂    ∂

= +   
∂ ∂   

                                                          (5a) 

 

                                                            
2

0 2
,

i i

iz

u

t

βτ
σ ρ

β

−−

− −

∂    ∂
= +   

∂ ∂   
                                                         (5b) 

where β = x, y and i = x, y, z, ( )
i i

u u z R
+

= = +  and ( )
i i

u u z R
−

= = − denote a displacement 

of surface layers in the i-direction. 
 
 

2.2. Effect of Casimir attractive force  

 
For the case of conducting by flat parallel plates separated with a gap D, the Casimir energy 

per unit area is expressed as [51]: 

                                                          
2

3
( ) ,

720
pp

hc
E D

D

π

= −                                                                      (6) 

where c  is the light speed and h  is Planck’s constant [17]. It should be noted that this formula 

can be obtained while considering the electromagnetic mode structure between two plates in 
comparison with the free space by assigning a zero-point energy to each electromagnetic mode 
[52]. To predict the Casimir force in the case of a small gap, the Proximity Force Approximation 

(PFA) makes use of (6). The interaction between any other surfaces may be modelled by an 
extension of the PFA approach with the summation of infinitesimal parallel plates [17]. For 

small gaps, the correct zeroth-order approximation for the Casimir energy is given by [13]: 
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2

3
( ) ,

720

PFA

PP

s

hC dS
E E D dS

D

π

= = −∫ ∫∫                                                       (7)      

where S  is one of the two surfaces distanced by a gap. It should be emphasized that the PFA 

cannot be used in the case of large separation or non-smooth surfaces. Therefore, another 
approach should be then employed. A path integral representation [53] is used to properly 

model the Casimir energy for large separations. The electrodynamic Casimir energy of two 
parallel metallic surfaces assuming the Dirichlet mode definition at zero temperature can be 
expressed as [54, 55]: 

                                                             1

0

0

ln( )
2

,
D hc

E Tr MM dq
π

∞

−

∞
= ∫                                                        (8) 

where: 

                                                         
( ) ( ) ( )( )12 0 0 1 2 0

; ; ,M u, u q G s u -s u q′ ′=
   

                                                                                                                                                  (9) 

                                                              
( )

0

0 0
,; 

4

-q x-x'

' e
G x, x q

x-x'π

=

 
where a matrix 

12
M  denotes the geometry of surfaces 1 and 2, 1−

∞
M  is an inverse of matrix 

M  at infinite surface separation, ( )
i
s u  represents a vector referring to the i-th surface 

parameterized by a surface vector u and  G0 is the free space Green function [56].  
Based on the PFA approach (for small separations), the Casimir energy can be obtained as 

[13]:  

                                                       3

5
,

960 2

PFA hcL R
E -

D

π
=

                                                             (10) 

where R  denotes a radius of nanowire and D  is a gap width. Therefore, the Casimir force for 
Small Separation Approximation (SSA) can be obtained by differentiating the energy in respect 

of D  as: 

                                                      ( ) 3

7

1 2

768
cas

E D
.

D

R
f hcL

D
π

∂
=

∂
= −

                                                     (11) 

Otherwise, for the case of cylinder-plate geometry with a large separation gap, i.e. D >> R, 

the approximate expression for the attractive Casimir energy is written as [57]: 

                                                        

1

16 ln( )

D

2
.

hcL
E -

DD

R
π

=

                                                        (12) 
Therefore, the Casimir force for large separation approximation (LSA) can be expressed as: 

                                                    
2

1 1

8 ln( ) 16 ln ( )
cas 3 3

.

hcL hcL
f

D DD D
R R

π π

= +

                                           (13) 
 
 

2.3. Strain Gradient Elasticity Theory (SGET) 
 

It is well-known that size has a strong impact on the mechanical behaviour of micro- and 
nanostructures. For instance, the bending rigidity of silica and polythene beams can increase 
substantially when the breadth of the beam reduces to several tens of nanometres. It should be 

noted that the classical continuum theories fail to predict and interpret the size effect 
phenomena. To address this issue, the size-dependent continuum theories (such as SGET) have 

been developed, which introduce additional material length-scale parameters as well as the 
Lame constants. In the strain gradient theory, the strain energy density with small deformation 
may be expressed as [58]: 
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                                                 ( )1

2

(1) ( 1 ) s s
ij ij i i ij ijijk ijkU p mσ ε γ τ η χ= + + + ,                                           (14) 

where: 

                                                                     ( )
1

,
2

ij i , j j ,iu uε = +                                                          (15) 

                                                                            
,

,

i mm i
γ ε=                                                             (16) 

                     ( ) ( ) ( ) ( )
1 1 1

2 2 2

3 15 15

,

(1)

ijk jk,i ki, j ij,k ij mm,k mk,m jk mm,i mi,m ki mm, j mj,m
η ε ε ε δ ε ε δ ε ε δ ε ε= + + − + − + + +                  (17) 

                                                                    
1

2

s
ij jkl l ,kie u .χ =                                                                (18) 

In the above equations, i
u , i

γ , ( 1 )
ijkη , 

s
ijχ , ijδ and ijke indicate a displacement vector, a 

dilatation gradient vector, a deviatory stretch gradient tensor, a symmetric rotation gradient 

tensor, Kronecker delta and permutation symbols, respectively. Also, ijε , ijσ , 
i

p , ( 1 )
ijkτ

, s
ijm , 

are a strain tensor, Cauchy’s stress and high order stress tensors, respectively, and are expressed 
as [58]:  

                                                   2 ,
1- 2

ij ij mm ij

ν
σ µ ε ε δ

ν

 
= + 

 
                                                      (19) 

                                                                  2

0
2 ,

i i
p lµ γ=                                                                 (20) 

                                                             (1) (1)2
12 ,ijk ijklτ µ η=                                                              (21) 

                                                               2

2
2 l ,

s s
ij ijm µ χ=                                                                   (22) 

where ν and μ are Poisson’s ratio and shear modulus, respectively. Also, l0, l1 and l2 are 
additional material length-scale parameters in the constitutive equations of higher-order 

stresses.  
 

2.4. Governing equation of motion 

 
In this section, the governing equation for size-dependent vibration of Casimir-induced 

nanowires in the presence of surface effects is derived. Based on the Euler-Bernoulli beam 
theory, the displacement field can be expressed as follows: 

                                      ( ) ( ) ( ), , , ,         , .

w
u x z t z x t z w w x t

x

θ
∂

=− =− =
∂

                                    (23) 

The strain of a material point located at a distance z from the top plane for a nano-beam is 

represented as: 

                                                           
2

2
.

xx

u w

z

x x

ε

∂ ∂
= = −
∂ ∂

                                                                 (24) 

Substituting the linear displacement field of (23) into (15) to (22), the total strain energy 
on the basis of SGET for a deformed Euler-Bernoulli beam is given by: 

                   

2 2
2 3

2 2 2 2 2

0 1 2 0 12 3

0

1 8 4
2 2 .

2 15 5

L

SGET

w w
U Al Al Al I l l dx

x x

µ µ µ µ µ

    ∂ ∂    = + + + +          ∂ ∂       
∫            (25) 

In (25), I represents the second moment of inertia of the beam around its y-axis. Based on 

the surface elasticity theory, the strain energy in the surface layer with zero thickness can be 
expressed as [59]: 
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                                             ( ),

0

1
,

2

L

s k k

S

U u dSdxαβ αβ α ατ ε τ= +∫ ∫                                               (26) 

where α, β denote in-plane Cartesian coordinates of the surface and k is an out-plane Cartesian 

coordinate of the surface. Substituting (4) into (26) results in: 
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∫ ∫

∫ ∫

∫ ∫

                         (27) 

Simplifying the surface energy described in (27) yields: 

                                       ( ) ( )
22 2

* *

0 0 0 0 0 0 2

0

1
.

2

L

s

w w
U S E E I dx

x x
τ τ

+ − + −

  ∂ ∂ 
= + + +   

∂ ∂    
∫                           (28) 

In addition, the virtual work Wɶ induced by the axial and Casimir forces incorporating the von-
Kármán type nonlinear strain can be written as [60]: 

                                      
2 2

0

0 0 0

1
.

2 2

L l L

cas

EA w w
W N dx dx f wdx

L x x
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= − + +     ∂ ∂    

∫ ∫ ∫ɶ                                (29) 

The kinetic energies for the bulk material and surface layer are obtained as follows: 

                              

( )( )
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0 0 0

2

*
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0

1 1 1
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∂ ∂ ∂     

∂ 
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       (30) 

The first variation of the strain energy function is obtained as [61, 62]: 

                                                            
0

,

L

b ij ij

A

U dAdxδ σ δε= ∫ ∫                                                           (31) 

where A  is an area of the cross-section of nano-beam.  
Substituting (15) into (22), the variation of the strain energy function can be obtained as: 

                                      ( )
2 2

2 2

0 0

, ,

l l

b xx

A

w w
U z dAdx M x t dx

x x

δ δ
δ σ

 ∂ ∂
= − =  

∂ ∂ 
∫ ∫ ∫                                       (32) 

where ( ),

xx

A

M x t zdAσ= −∫  is a resultant bending moment of the nanowire. Applying the 

Hamilton’s principle results in: 

                                                       [ ]( )
2

1

0.

t

b s

t

T U U W dtδ δ δ δ− + + =∫                                                     (33) 

Subsequently, while assuming some mathematical simplifications, the nonlinear governing 

equation of motion can be written as follows: 
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              (34) 

and the corresponding boundary conditions at the ends of the nano-bridge can be written as 
follows: 

                               ( ) ( ) ( ) ( )0 0, 0 0, 0, 0,
w w

w x x w x L x L
x x

∂ ∂
= = = = = = = =

∂ ∂
                       (35) 

Using the relation of normal stress described in the equation (1), a resultant bending 
moment of nanowire can be expressed as: 
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 (36) 

Therefore, the governing equation of motion for nanowires can be obtained by inserting (27) 
into (25) as follows: 

                           

( ) ( ) ( ) ( )

( ) ( ) ( )( )

4 4 6

2 2 2 2 2

0 1 2 0 14 4 6

4 4 4 4

0 0 0 0 0 0 0 04 2 2 4 2 2

4 2

* * *

0 0 0 0 0 0 0 0 04 2

8 4
2 2

15 5

2 2

w w w
EI Al Al Al I l l

x x x

vI w w vAR w w

R x x t x x t

w w
E E I S A S

x x

µ µ µ µ µ

τ τ ρ ρ τ τ ρ ρ

τ τ ρ ρ ρ

+ − + − + − + −

+ − + − + −

∂ ∂ ∂
+ + + − +

∂ ∂ ∂

∂ ∂ ∂ ∂
− + − + − − − −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ + − + = − + +

∂ ∂

   
   
   

   
   
   

2

2

2 2

0 2

0
2

.

l

cas

w

t

EA w w
N dx f

L x x

∂

∂ ∂
+ + +

∂ ∂





  
        

∫

           (37) 

 

2.5. Normalization of governing equation of motion 

 

In order to describe the governing equation in a non-dimensional  from, the following 

variables are introduced: 
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Thus, the non-dimensional equation of motion for size-dependent nanowires incorporating 

the surface effects and the Casimir force can be written as: 
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for the SSA approximation and: 
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 (39b) 

                              

( ) ( )( )
( )

4 6 4 2

4 6 1 24 6 2 2 2

2
12

22 2

0

3

2

2
(1

1
)

1 1

ln (1 ) 2 ln (1 )

W W W W

W W W
d

W k W Wk

α α κ σ
ξ ξ ξ τ ξ

α ξ κ
γ

ξ ξ τ

∂ ∂ ∂ ∂
− + − =

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ − +

∂ ∂ ∂−

  
 
 +
 − − 

    
∫

     

for the LSA approach. It is worth mentioning that, due to the nanowire deflection ( ),W x t , a 

distance D  assumed in the Casimir force is replaced by D W− . Moreover, in the case of a 

large separation gap, it is assumed that D R D+ ≈ . 

 

3. Solution methodology 

 

3.1. Reduced-order modelling 

 

To simulate the total response of a nanowire, (39a) and (39b) are discretized using a so-
called Galerkin procedure to yield a Reduced-Order Model (ROM). Hence, the deflection of 

nanowire is approximated as: 

                                                          ( ) ( ) ( )
1

, ,

n

i i

i

W x t u t xφ

=

=∑                                                        (40) 

where ( )i
xφ  are normalized linear undamped mode shapes of a perfectly straight clamped 

beam, and ui(t) are non-dimensional modal coordinates. It is worth mentioning here that, 
because of a nonlinear nature of the Casimir attractive force, symmetric (odd) and anti-
symmetric (even) mode shapes are assumed in this work. To obtain the ROM, we substitute the 

equation (40) into (39a) and (39b), multiply by ( )i
xφ , use the orthogonality conditions of the 

mode shapes, and then integrate the outcome from 0 to 1. The results are differential equations 

in terms of the modal coordinates ui(t) that can be integrated and the total response of nanowire 
can be obtained from (40). 

Several issues need to be clarified about the developed ROM. Unlike the case of rectangular 
micro-beams [63], here there is no numerical advantage of multiplying (39a) or (39b) by the 

denominator of Casimir force term, since the mode shape ( )i
xφ

 
will remain embedded in the 

nonlinear terms even after imposing the orthogonality of the mode shapes. To deal with the 
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complicated integral terms due to the nonlinear Casimir attractive force, we evaluated the 

spatial integrals containing the ( )i
xφ

 
terms numerically, using a trapezoidal method, while 

simultaneously integrating the differential equations of the modal coordinates ui(t).  

 
3.2. Static response 

 

To simulate the static response, all time-dependent terms in the governing differential 
equations of nanowire in (39a) and (39b) are set equal to zero. Then, the modal coordinates ui(t) 
are replaced by unknown constant coefficients ai (i = 1,2,…,n). This results in a system 

of nonlinear algebraic equations in terms of coefficients ai. The system is then solved 
numerically using the Newton-Raphson method [64] to obtain the static deflection of nanowire. 

 

3.3. Eigen-value problem 

 
In this work, we propose to examine the variation of fundamental natural frequency of a 

nanowire under the effect of the attractive force. Toward this, we consider the ROM obtained 

in Subsection 3.1, which can be re-written in a matrix form as: 

                                                              ( ) ( ) ,M U U R U=
ɺ                                                          (41) 

where: 

                                                              [ ]1 2 3
, , ,..., ,

n
U u u u u=                                                      (42) 

is a modal vector of amplitudes, ( )M U is a nonlinear matrix representing the coefficients of 

,Uɺ  and ( )R U  is a right-hand side vector representing the forcing, stiffness, and damping 

coefficients. Both ( )M U  and ( )R U  are nonlinear functions of the modal coordinates ui(t). 

Note here that we consider the symmetric and anti-symmetric mode shapes in the ROM to get 

all the possible natural frequencies and mode shapes of the nanowire. 

Next, we split U into a static component
s

X , representing the equilibrium position due to 

the applied Casimir force, and a dynamic component ( )tη  representing the perturbation around 

the equilibrium position, that is: 

                                                                   ( ).
s

U X tη= +                                                        (43) 

Then, substituting (43) into (41), using the Taylor series expansion assuming small η , 

eliminating the quadratic terms, and using the fact that ( ) 0
s

R X = , we obtain the following: 

                                                                ( ) ( ) ,

s s
M X J Xη η=ɺ                                               (44) 

where ( )
s

J X  is a Jacobian matrix calculated at the equilibrium points [65]. 

To calculate the natural frequencies of nanowire for the applied attractive force, we 

substitute the stable static solution,
s

X , into the matrix 
1

M J
−

and then find its corresponding 

eigenvalues. The eigenvalues are calculated by solving the below equation, which gives a 
characteristic algebraic equation for an eigenvalue λ : 

                                                     ( ) ( )( )1
0,

s s
det M X J X Iλ

−

− =                                                 (45)
 

where I  symbolizes an identity matrix. Finally, by taking the square root of each individual 
eigenvalue, we obtain the natural frequencies of the system. 
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4. Results and discussion 

 

This work attempts to examine the influence of vacuum fluctuations and size-dependency 
on the nonlinear dynamic behaviour of freestanding nanowires. In order to endorse the accuracy 

of present ROM simulations, the static deflection of nanowire versus the Casimir force for SSA 
and LSA models are plotted and compared with the results of Farrokhabadi et al. [66] (see 

Fig. 3). One can clearly observe that the results of our modelling are in a good agreement with 
those reported in the literature. 
  
 a)                                                                                        b) 

 
Fig. 3. Variations of the static deflection vs the Casimir force for (a) SSA approximation (k = 5) and (b) LSA 

approximation (k = 100), and for 
4 26 1 2

1, , , , , 0.α σα κ α κ= =  

 
To show the instability behaviour of a nano-fabricated system by varying the Casimir 

parameter, Fig. 4 displays variations of the static deflection and the fundamental frequency 

of nanowire versus the Casimir force parameter γ  for the following system parameters: 

11 2
6;  0;  0.2κα κ= = = . It is worth mentioning that, when the geometry parameter k takes rather 

large values (here k = 100), the LSA approximations should be employed to take the Casimir 
induction force into account. One can observe that any increase in the Casimir induction force 

leads to reduction of the initial gap and natural frequency of nanowire up to the critical point 

(γ = 216) beyond which the nanowire becomes unstable and consequently it collapses onto the 
fixed substrate. Moreover, Fig. 5 indicates the same behaviour when the geometry parameter is 

considered small, in which we have to assume the SSA approximation to account for the 
vacuum fluctuations. It is demonstrated that, for SSA approximation, the nanowire falls to the 

fixed plate at lower values of the Casimir parameter γ.  
In order to examine the influence of geometry ratio k on the predicted critical Casimir value 

of induced nanowires, variations of γ pull-in as functions of the geometry parameter for two 

different models, i.e. LSA and SSA, are displayed in Fig. 6. One can observe that γ pull-in is 
remarkably affected by this parameter. It is shown that the Casimir critical value increases 
continuously with increasing the geometry ratio k. This reveals that, as the initial gap D 
increases and/or the radius of nanowire decreases, the free-standing nanowire diverges to the 

bottom plate at higher values of the Casimir parameter.  
Due to a high surface-to-volume ratio of several nano-fabricated structures, it was 

empirically showed that the surface stress plays a significant role in the static and dynamic 

behaviour of such devices. To show the impact of surface stress σ2 on the instability 
characteristics of Casimir-induced nanowires, variations of the static deflection and the first 
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natural frequency are presented in Figs. 7 and 8 for both LSA and SSA approximations, 

respectively. 
 
   a)                                                                                 b) 

 
Fig. 4. Variations of (a) the static deflection and (b) the natural frequency vs the Casimir force for LSA 

approximation and 
4 2

100, 1, 2k α σ= = = . 

 
     a)                                                                               b) 

 
Fig. 5. Variations of (a) the static deflection and (b) the natural frequency vs the Casimir force for SSA 

approximation and 
4 2

10, 1, 2k α σ= = =  

 
       a)                                                                            b) 

 
Fig. 6. Variations of the critical Casimir value vs the geometry ratio for (a) SSA and (b) LSA 

approximations. 

 
It is illustrated that the critical values of Casimir parameter, predicted by both LSA and 
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one can infer that in the absence of any Casimir attraction, the fundamental frequency 

of nanowire shifts upward by increasing the surface stress values. 
 
 
    a)                                                                                 b) 

 
Fig. 7. Variations of (a) the static deflection and (b) the natural frequency vs the Casimir force for LSA 

approximation and some assigned values of 
2
σ  and 

4
1α = . 

 
    a)                                                                                  b) 

 
Fig. 8. Variations of (a) the static deflection and (b) the natural frequency vs the Casimir force for SSA 

approximation and some assigned values of 
2
σ  and 

4
1α = . 

 

 
As mentioned earlier, it has been validated that the mechanical behaviour of miniature-

sized structures are size-dependent and the classical theories may not predict the instability 
threshold of nano-beams precisely. To this end, the strain gradient elasticity theory (SGET) 
including three material length-scale parameters has been employed to capture the micro-

structure size-dependency. In this paper, the non-dimensional parameter 
4
α  accounts for the 

length-scale parameters. Figs. 9 and 10 depict variations of the initial gap between the nanowire 

and substrate as well as the first natural frequency of induced nanowire as functions of the 

Casimir parameter γ  for three values of parameter
4
α . One can conclude that the instability 

occurs at higher values of Casimir parameter by increasing the size parameter 
4
α . Moreover, 

according to Figs. 9b and 10b, it is clearly shown that the fundamental frequency of nanowire 
increases when the length-scale parameter increases.  
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    a)                                                                                     b) 

 
Fig. 9. Variations of (a) the static deflection and (b) the natural frequency vs the Casimir force for LSA 

approximation and 
2

2σ = . 

 
 

   a)                                                                                   b) 

  
Fig. 10. Variations of (a) the static deflection and (b) the natural frequency vs the Casimir force for SSA 

approximation and 
2

2σ = . 

 
 
    a)                                                                              b) 

 
Fig. 11. Variations of (a) the second and (b) the third natural frequencies  vs the Casimir force for LSA 

approximation and some assigned values of 
2
σ  and 

4
1α = .
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     a)                                                                              b) 

 
Fig. 12. Variations of (a) the second and (b) the third natural frequencies  vs the Casimir force for SSA 

approximation and some assigned values of 
2
σ  and 

4
1α = . 

 
 

            a)                                                                            b) 

 
Fig. 13. Variations of (a) the second and (b) the third natural frequencies vs the Casimir force for LSA 

approximation and 
2

2σ = . 

 
 
           a)                                                                             b) 

 
Fig. 14. Variations of (a) the second and (b) the third natural frequencies vs the Casimir force for SSA 

approximation and 
2

2σ = . 
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Finally, to examine the effect of Casimir attraction force on the higher frequencies 

of nanowires, variations of the second and third natural frequencies for LSA and SSA models 

are shown in Figs. 11 to 14, for some values of surface stress parameter σ2 and size-effect 

parameter α4. As can be seen, the second natural frequency is more sensitive to the variation of 
Casimir parameter in comparison with the third one. In addition, one can infer that the slope of 

the second natural frequency increases with increasing the Casimir force, whereas the slope of 
the third one decreases as the Casimir force increases.  

According to the illustrated results in Figs. 13 and 14, it is concluded that, when the surface 

stress 
2
σ  keeps constant, the second and third natural frequencies are very sensitive to variation 

of the scale parameter α4. Furthermore, Figs. 13b and 14b exhibit that the third natural 
frequency does not show a noticeable change when the surface stress is constant. 

 

5. Conclusions 
 

In this work we have studied the instability characteristics of Casimir-induced nanowires in 
the presence of microstructure size-dependency and surface effects. A non-linear governing 

equation of nanowires for both small and large separation gaps has been developed and the 
static response as well as eigenvalue problems have been presented to examine the mechanical 
behaviour of a considered nano-beam. It is concluded that: 

1. Increasing the geometry ratio k  increases the instability threshold of Casimir-induced 
nanowires for both SSA and LSA models. 

2. Increasing the surface stress parameter from negative to positive values, raises the critical 
Casimir value and the fundamental frequency of nanowires. 

3. The fundamental frequency of nanowires increases with increasing the size-dependency 

parameter and the nanowire collapses onto the fixed substrate at higher values of the Casimir 

parameter. 

4. It has been shown that the second natural frequency is more sensitive to variations of the 

Casimir parameter in comparison with the third one. 
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