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Abstract 

In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find 

the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated 

by applying the classical Least Squares Method (LSM). As an example, the problem of optimal selection 

for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from 

the D-optimum measurement points for calibration of the differential pressure sensor are compared with those 

from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and 

Equidistant calibration curves is done. 
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1. Introduction 

 
Accurate measurement is the basis of almost all engineering applications, since uncertainty 

inherently exists in the nature of each measuring sensor. The cost of a measuring sensor, on the 
other hand, increases with its accuracy. Therefore, constructing the low-cost accurate 
measurement sensors is one of the main goals for engineers. One way of reducing the cost 

of accuracy is the calibration process. Generally, in order to achieve the best possible accuracy, 
a sensor should be calibrated. Therefore this paper deals with the calibration of a sensor with 

reference standards.   
The calibration method can be explained as follows. The reference standards, whose 

characteristics are a priori known, are applied to a low-cost sensor and outputs of the sensor are 

recorded. This experiment is repeated for a variety of reference standards and the results are 
tabulated [1, 2]. The calibration curves can be evaluated from this table. Interpolation 

techniques are used when this table does not contain the required data. From the practical point 
of view, these curves should be in a polynomial form. The  accuracy of this polynomial  depends 
on the noise-free data which were used to obtain the curves [3]. To reduce the effect of noise, 

excessive numbers of data are used.  However, this requires more experiments that will increase 
the cost even more. Thus, the main question becomes the evaluation of accurate calibration 

curves with a limited number of experimental data. In the existing works [4−7] for calibration 

of measurement sensors the equidistant measurement points are used. On the other hand, though 
it is paradoxical, the application of equidistant measurement points to obtain the best calibration 

curve is erroneous. Therefore, it is required to find the optimal measurement points to determine 
the best calibration curves (the experiment planning problem).  

An approach to design sensor calibration with the aim of reducing the calibration curve 

uncertainty is proposed in [8, 9]. This uncertainty reduction is achieved by minimizing 
the standard deviations of coefficients of either the regression curve or the estimated calibration 

curve. In particular, criteria for the choice of the number of calibration points and their optimum 
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locations are theoretically identified when the response curve is a polynomial and 

the uncertainties of sensor outputs can be neglected. The proposed criterion is not directly 
applicable to non-linear and complex sensors. The tables and figures given in [9] are an aid 
in choosing an experimental plan in terms of the number of calibration points, number 

of repetitions for each calibration point and calibration point location.  
The optimum calibration plan for measurement chain is presented in [10], by suitably 

elaborating the error propagation law suggested by the ISO Guide [11]. This approach has led 
to a different way of designing the calibration with noticeable advantages regarding a traditional 
equally-spaced methodology. The main advantages of the proposed approach include:  

− calibration plans with a reduced number of calibration points;  

− the calibration curve applicable to the whole operating range;  

− a linear rather than complex regression technique always usable. 
A genetic algorithm can be used to perform optimizations for both the computation of the 

optimal input to the sensor and the optimal constant feedback gain [12]. A calibration method, 
which uses a neural network and genetic algorithms together, is presented in [13]. The methods 

based on artificial neural networks and genetic algorithms do not have physical foundations. 
For different data sets, which correspond to the same event, the model gives different solutions. 
Therefore, the model should be continuously trained by using new data. 

Correction of the nonlinearity error of its static characteristic is performed in [14], analysing 
the error sensitivity of the measuring system’s models. The errors of the system are determined 

using the introduced model of real system and the model of ideal measuring system. 
The corrective function is determined as a relation between the input variable of the tested 

system and its chosen parameter. The correction method was presented on an example 
of a phase angle modulator. 

The sensor calibration design problem can be solved using the A-optimality criterion, i.e., 

by minimizing the sum of variances of the calibration coefficients’ estimation errors (trace 
of the dispersion matrix of the estimation errors) [15]. That is, the A-optimality criterion 

attempts to minimize the standard deviations, or − in other words – to increase the accuracy 

of the estimates. However, the A − optimality criterion is strongly dependent on the units and 
is not scale-invariant [16]. This aspect needs to be carefully considered when designing the A-
optimal calibration points.  

The D-optimal experimental designs are constructed in [17] to propose a practical 12-
position calibration procedure of Dynamically Tuned Gyroscope (DTG). It is said that the 

calibration accuracy of the deterministic error of DTG strongly depends on the multi-position 
calibration procedure design. The experiment results show that the compensation accuracy 
of the deterministic error model given by the D-Optimal 12-position calibration procedure is 

better than that given by the traditional 24-position calibration procedure taking half of the 
experiment time. 

The paper [18] presents the usage of D-optimal design to improve the accuracy and 
robustness of solutions of the magnetometer calibration problem. It is shown that the accuracy 
of solutions for this problem strongly depends on the measurements’ distribution. The authors 

propose to select the optimal set of measurement points using the D-optimal design method. 
The solution of the D-optimal design problem in the paper is obtained by using a standard 

Particle Swarm Optimization (PSO) based algorithm.  
The optimal designs and adaptive sequential analysis are applied in [19] to solve the item 

calibration problem. The results indicated that the proposed optimal designs are cost-effective 

and time-efficient. In this study, the design points for various optimal designs (A-optimality, 
D-optimality, E-optimality and random design) are estimated and the accuracy and efficiency 

of item calibration in fully sequential analysis are discussed. Because the same stopping 
criterion was used for these four methods, the authors stated that no significant difference in the 
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estimating parameters existed. However, the sample size used in the optimal designs was 

smaller than that used in the random design.  
Different measures, all based on the dispersion matrix of the calibration coefficients’ 

estimation errors, can be chosen as the criteria to design the optimal measurement points. In this 

study the D-optimality criterion is chosen as the optimality criterion to determine the optimal 
measurement points for calibration of measuring sensors. This criterion is the overall measure 

in terms of the volume of the estimation error ellipsoid, which is proportional to the determinant 
of dispersion matrix of estimation errors. Therefore, the measurement points determined using 
the D-optimality criterion minimize the determinant of dispersion matrix. In this case 

the optimum is invariant to scaling of the system states. Determination of the optimal 
measurement points for calibration of a differential pressure sensor for different numbers 

of calibration points is presented below.  
 

2. Statement of sensor calibration design problem  

 

From  practical considerations the calibration curve is given in a polynomial form as follows:   

                 
2

0 1 2
...

m

i i i m i
y a a p a p a p= + + + + ,                                         (1) 

where: yi  is the output of  low-cost transducer and pi are the values of the reference standard; 

0 1
, ,...,

m
a a a are the calibration curve coefficients. The measurement contains random noise 

in Gaussian form: 

                                          
2

   0 1 2
...

m

i i i i i m i i
z y a a p a p a pδ δ= + = + + + + + ,                      (2) 

here: 
i
z  is the measurement result; 

i
δ  is the measurement error with  zero mean and 2

σ  

variance. Let the calibration curve coefficients be denoted as [ ]0 1
, ,..., .

T

m
a a aθ =ɶ  

The coefficients in these polynomials were evaluated in [20] by the least  squares method. 

The expressions used to make the evaluation had the form:     

                                                              
1
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T T

X X X zθ
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=
ɶ ɶ ɶ ɶ ɶ ,                                                 (3a) 

                                                               1 2ˆ( ) ( )
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ɶ ɶ ɶ ,                                                 (3b) 

where [ ]1 2
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T

n
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is the matrix of  known  coordinates (here, 
1 2
, ,...,

n
p p p  are the values that are obtained from 

the reference standard instrument), )ˆ(
~
θD is the dispersion matrix of the calibration coefficients’ 

estimation errors. 

The problem can be stated as follows: Find such values of 
1 2
, ,...,

n
p p p  that the calibration 

curve coefficients’ values 
0 1
, ,...,

m
a a a  are optimum with respect to the D-optimality criterion. 
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Let us take a look at the physical significance of D-optimality criterion. If the columns 

of dispersion matrix are independent, the determinant of the matrix will have a maximum value 
subject to the given constraints in terms of the postulated model. On the other hand, 
if parameters are correlated, the determinant will be smaller; in the worst case, the linear 

dependency of two parameters results in the zero determinant, indicating that the two 
parameters cannot be estimated independently. Thus, the D-optimality minimizes the 

redundancy and leads to better identifiable parameters [16]. Furthermore, differently from the 
A-optimality criterion, the D-optimality criterion is invariant to scaling of the system states.  
For these reasons the  D-optimality  criterion is used  in this study as the optimality one, i.e.:  

                                                           [ ]1 2min det( )
i

T

p
X X σ

−ɶ ɶ                                                   (5) 

is sought. The values of  
1 2
, ,...,

n
p p p  found by solving the above equations should be in the 

range  of 
max

0 p−  (
max
p is the maximum value that  is obtained from the reference standard 

instrument).  Otherwise the solution is invalid. 
  

3. D-optimal sensor calibration design  

Let the objective function written as in [21] be:  

                                                ( ) ( ){ }1 2 1 2
, ,..., det , ,...,

n n
f p p p D p p p=

ɶ .                                (6) 

As explained above the problem is a constrained optimization problem. The objective 

function is a multivariable, nonlinear, continuous and has a derivative in the considered interval.   

Assume that the minimum of ( )1 2
, ,...,

n
f p p p  exists for the following values 

of 
1 2
, ,..., :

n
p p p  

* * * *

1 2
, ,...,

T

n
p p p p =   . 

In order that  
*

p   is the minimum of  (6), the following conditions should be met [22]:  

                                                                   
*

( ) 0f p∇ = ,                                                           (7) 

                                                         
2 *
( )f p∇  is semi-positive ,                                              (8) 

where: ∇ denotes the gradient. 

The extremum condition (7) can be written in the following form:  

                                                  
( ){ }1 2

det , ,...,
0,

n

i

D p p p

p

 ∂   =
∂

ɶ

   1,i n= .                                (9) 

From (9) n algebraic equations in n unknowns there is obtained:  

                                                      ( )1 2
, ,..., 0,

i n
Q p p p =      1,i n=  ,                                      (10) 

where n denotes  the number of  calibration points.  

For derivation of (10) in the  case of  2m = ( the degree of calibration polynomial) 

the dispersion matrix of estimations errors (3b) is expanded. After multiplication and finding 

the inverse of the matrix, we obtain:  

                                             D
~
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where 
11 12 33
, ,...,a a a  are  the algebraic  minors of  XX
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is the determinant of  XX
T ~~

  matrix. 

After appropriate mathematical transformations, the determinant of dispersion matrix D
~

can 
be found. Having taken the corresponding derivatives one has a system of n algebraic equations 
in n variables. To find all the possible solutions of the system one can apply numerical methods 

for searching. It can be simply accomplished by a computer. 

The sign of 
2 *
( )f p∇  is determined in order to determine whether the found values 

correspond to a local minimum or a local maximum. Furthermore, those values which make 

( ){ }1 2
det , ,...,

n
D p p pɶ minimal, should be in the range of 

max
0 p− . The set of solutions which 

satisfy the above conditions can be used to calculate the calibration curve coefficients given 

in (1). This polynomial approximates the calibration curves between the low-cost sensor and 
reference standards in the best way (with respect to the selection criterion). 

 

 

4. Computational results of D-optimal design 

 

The computational results of the D-optimal sensor calibration design for the cases of  m = 2 

and n = 3, n = 4, n = 5 are given in Tables 1, 2 and 3, respectively. In the calculations, 
the following data and initial conditions are used: 

− Calculation of the optimum measurement points is performed for a differential Sapphir-
22DD pressure sensor (‘‘Teplokontrol”, Kazan, Russia). The range of this sensor is 

0 1600
i
p≤ ≤ [bar]. The  output  sensor  signal  is  an electrical  signal  in  the  unit  of  [mV].  

The differential  pressure  sensor uncertainty is  subjected  to  the normal  distribution  with  

zero  mean  and  the standard uncertainty 2,6σ = [bar] [20].  

− The calibration curve of  the  examined  sensor is described  by  the 2nd order polynomial 
as  follows: 

                                                              2

0 1 2i i i
y a a p a p= + + .                                               (13) 

The equation for measurements is written in the form: 

                                                     2

0 1 2i i i i
z a a p a p δ= + + + ,    ni ,1= .                                    (14)  

The optimum measurement points for calibration of the sensor are evaluated using (10). The 
method is used to obtain the optimum polynomial coefficients by employing the D-optimality 
criteria. The calculation is performed for the cases: n = 3, n = 4 and n = 5. The closed-form 

algebraic equations (10) are calculated to solve the equation given in (5). The software program 

MATHEMATICA is used to find the optimum values of *

i
p ( )1,i i n≠ ≠ . The optimum 

calibration points for the cases of  n = 3, n = 4 and n = 5are tabulated in Table 1, Table 2 and 

Table 3, respectively.  
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Table 1. The D-optimum and equidistant calibration points for n = 3. 

Calibration points 

Pressure values, [bar]  

1
p  

2
p  3

p  

D-optimum points 0 800 1600 

Equidistant points 0 800 1600 

 

Table 2. The D-optimum and equidistant calibration points for n = 4. 

Calibration points 

Pressure values, [bar] 

1
p  

2
p  3

p  
4

p  

D-optimum points 0 228,5 848 1600 

Equidistant points 0 533 1066 1600 

 
Table 3. The D-optimum and equidistant calibration points for n = 5. 

Calibration points 

Pressure values, [bar] 

1
p  

2
p  3

p  
4

p  5
p  

D-optimum points 0 256 800 1344 1600 

Equidistant points 0 400 800 1200 1600 

 

5. Experimental verification of obtained results 
 

The obtained values of D-optimum measurement points for calibration of the differential 
pressure sensor for the case of  n = 4 are verified by actual experiments. In the experiments 

the measurements are taken with the differential Sapphir-22DD pressure sensor. The calibration 
of the differential pressure sensor is made with the help of the pressure standard (the piston 
gage set) [23]. The piston gage set reproduces the pressure signals at the corresponding 

optimum and equidistant calibration points. The calibration experiment results are presented 
in Table 4. 
 
Table 4. The calibration experiment results corresponding to the D-optimum and equidistant  calibration points. 

Calibration 
points 

D-optimum points, 

[ ],

i
p bar  

[ ],

i
z mV  Equid. points, 

[ ],

i
p bar

 

[ ],

i
z mV

 

1 0 0.0051 0 0.0051 

2 228,5 1395,3912 533 4097,8896 

3 848 7908,3186 1066 11149,5862 

4 1600 21172.8851 1600 21172.8851 

 

The estimates of coefficients 
10
ˆ,ˆ aa  and 

2
â  found by the estimation algorithm (3a) and their  

errors’ variances  determined by the (3b) are presented  in Table 5. 
      

Table 5.  The calibration coefficients’ estimates and variances of the estimation errors. 

Using 
sensor 
calibr. 
design 
method 

0
â

[ ]mV  

1
â

[ ]/mV bar  

2
â

2
/mV bar  
 

0
â

D   

( )
2

mV 
 

 

1̂
a

D  

( )
2

/mV bar 
 

 

2
â

D  

( )
2

2
/mV bar 

  
 

D-opt. −0,0251 4.9198 0.0052 2,3568 0.0085 5,1176×10−6 

Equid. −0.1826 4.9206 0.0052 2,6315 0.0079 4,7453×10−6 
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After determining the calibration coefficients 
10
ˆ,ˆ aa   and  

2
â , the  polynomial: 

                                                          2

0 1 2
ˆ ˆ ˆ

i i i
y a a p a p= + +                                                        (15)  

can be used as the calibration curve of differential pressure sensor. The calibration curve 
obtained in this way and corresponding to the D-optimum calibration points is shown in Fig. 1. 

 

 

Fig. 1. The calibration curve (D-optimum calibration points are used). 

      

In real conditions, after obtaining each measurement of zi, in the microprocessor 
of differential  pressure  sensor the inverse problem is solved, i.e., the roots of (15) are found: 

                                               
2

02
2
11

)2,1(
ˆ2

)ˆ(ˆ4ˆˆ
ˆ

a

zaaaa
p

i

i

−−±−
=                                         (16) 

and  the root 
i

p
1
ˆ  is assumed to be the estimation of measured pressure. The second root 

2
ˆ

i

p is 

negative or considerably different from the measurement zi.  

In the experiments the piston gages reproduce the pressure signals of ( 1,17)
i
p i = [bar] in the 

measurement interval of 16000 ≤≤
i

p  [bar] with the step of 100 [bar] and the output signals 

for the differential pressure sensor zi are registered. The experiment results are presented 
in [15].  

 

5.1. Comparison of absolute and relative calibration errors 

 

Using the calibration experiment results presented in [15], zi, 17,1=i  and the equations 

of appropriate calibration curves, the values of 
i
p̂ =

i
p
1
ˆ , 17,1=i  are calculated using (16). Then 

the appropriate values of absolute 
i

abs
∆  and relative error 

i
rel

δ errors are determined by means 

of the known expressions: 

                                                  ˆ
i

abs i i
p p∆ = − ; 100%

i

i

abs

rel

i
p

δ
∆

= .                                        (17) 

Since the true value cannot be determined, in the expressions (17) either a value obtained by 

the perfect measurement or a conventional true value may be used [11]. In this case, the pressure 
reproduced by the piston gage set is assumed to be the perfect measurement result. Therefore, 
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in (17) the values of the reference standard (the pressures reproduced by the piston gage set) pi 

are assumed to be the true ones. The calibration values 
i
p̂  obtained in this way and the values 

of absolute and relative calibration errors corresponding to the D-optimum and equidistant 

calibration intervals are presented in Table A1 in Appendix A, whereas the plots that show 

the relations ( )
i

abs i
f p∆ =  and ( )

i
rel i

f pδ =  are shown in Fig. 2 and Fig. 3, respectively.  

As seen from the presented results, the absolute values of calibration errors corresponding 
to the D-optimum calibration points are considerably smaller than in the case of equidistant 
calibration points. The experiment results show that the theoretical results obtained here are 

correct.  
Comparison of the calibration errors corresponding to the D-optimal (Table A1, Appendix 

A) and A-optimal [15] calibration curves, show that, at most of the experimental input points, 
the calibration curve obtained with the D-optimal design method gives the best results. 

 

 
 

Fig. 2. The absolute calibration errors: 1 − calibration is performed  by using the optimum  calibration points;  

2 − calibration is performed by using the equidistant calibration points. 

 
 

 

Fig. 3. The relative calibration errors: 1 − calibration is performed by using the optimum calibration points;  

2 − calibration is performed by using  the equidistant calibration points. 
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5.2. Comparison of root-mean-square errors  

 

     The Root-Mean-Square (RMS) errors of calibration curves can be determined using 
the expression: 

                                                     ( )
2

1

1
ˆ ,

N

i i

i

RMS p p
N

=

= −∑                                                     (18) 

where N is the number of experiments. 

The RMS errors of calibration curves obtained by the D-optimal, A-optimal and Equidistant 

design methods are presented in Table 6. 
 

Table 6. The RMS errors of calibration curves obtained by the D-optimal, 

A-optimal and Equidistant design methods. 

Using sensor calibration design method RMS, [bar] 

D-optimal 0.2608 

A-optimal 0.2780 

Equidistant 0.2944 

 
As seen from Table 6, the D-optimal and A-optimal design methods give better results than 

the Equidistant design method. The RMS error of calibration curve obtained by the D-optimal 
design method is smaller than  the errors obtained by the A-optimal and Equidistant design 
methods. 

 

5.3. Uncertainty of calibration using reference standards 

 

When a set of several repeated readings (statistics) has been taken (for the Type A estimate 

of uncertainty), the mean 
i

abs
∆  and the estimated standard deviation S  can be calculated for the 

set. From those, the estimated standard uncertainty u of the mean is calculated using [24, 25]: 

                                                                             
S

u

n

= ,                                                               (19) 

where n is the number of measurements in the set. 
The method for calculating uncertainties of calibrated values from a calibration curve (15) 

requires periodic measurements on the reference standards. In the experiments the piston gage 
set reproduces the pressure standard signals at the corresponding equidistant calibration points 

and the output signals of differential pressure sensor zi  are registered [15].  
In real conditions, each measurement zi  from the differential pressure sensor is corrected 

by the calibration curve (15). The standard deviation of these values should estimate 
the uncertainty associated with the calibrated values. The standard deviation of calibrated 
values is calculated with the formula:  

                                                     
( )

2

1

1

i i

n

abs abs

i
S

n

=

∆ − ∆

=
−

∑
,                                                     (20) 

where  n = 17 is the number of  measurements,   
1

1

i i

n

abs abs

in
=

∆ = ∆∑  is the sample mean of absolute 

calibration errors. 
To determine the random uncertainty of the set, the standard deviation of the mean has to be 

evaluated using (19). The results for different calibration characteristics (D-opt, A-opt and 

Equidistance) are presented in Table 7. 
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Table 7. The uncertainty results of calibration obtained by the D-optimal,  

A-optimal and Equidistant design methods. 
 

Using sensor calibration 
design method 

Mean, [bar] Standard 
Deviation, [bar] 

Standard Deviation 
of the Mean, [bar] 

D-optimal −0.1929 0.1809 0.043876 

A-optimal −0.2159 0.1807 0.043827 

Equidistant −0.2210 0.2004 0.048605 

 
As seen from Table 7, the equidistant calibration curve has a poorer uncertainty 

characteristic than the D-optimal and A-optimal calibration curves. The uncertainties of D-
optimal and A-optimal calibrations are similar.  

 

Appendix A 
 

Table A1. Absolute and relative calibration errors corresponding to the D-optimum  

and equidistant calibration points. 

Input 
Pressure, 

[bar] 

[ ]ˆ ,
i

p bar  

D-opt. points 

[ ]ˆ ,
i

p bar
 

Equid. 
points 

[ ],

abs
bar∆  

D-opt.  
points 

[ ],

abs
bar∆

 
Equid.  
points 

[ ], %
rel

δ  

D-opt.  
points 

[ ], %
rel

δ
 

Equid. 
points 

0 0.0061 0.0381 0.0061 0.0381 
∞  ∞  

100 100.1792 100.1922 0.1792 0.1922 0.1792 0.1922 

200 200.0615 200.0612 0.0614 0.0610 0.0307 0.0305 

300 299.8691 299.8588 −0.1309 −0.1411 −0.0436 −0.0470 

400 399.8712 399.8533 −0.1288 −0.1467 −0.0322 −0.0367 

500 499.8715 499.8476 −0.1285 −0.1524 −0.0257 −0.0305 

600 599.7518 599.7229 −0.2482 −0.2771 −0.0414 −0.0462 

700 699.8729 699.8400 −0.1270 −0.1600 −0.0181 −0.0229 

800 799.8382 799.8019 −0.1617 −0.1981 −0.0202 −0.0248 

900 899.7115 899.6721 −0.2885 −0.3279 −0.0321 −0.0364 

1000 999.6103 999.5683 −0.3897 −0.4316 −0.0390 −0.0432 

1100 1099.5986 1099.5545 −0.4013 −0.4455 −0.0365 −0.0405 

1200 1199.5649 1199.5188 −0.4351 −0.4812 −0.0363 −0.0401 

1300 1299.8544 1299.8065 −0.1456 −0.1935 −0.0112 −0.0149 

1400 1399.8583 1399.8089 −0.1417 −0.1911 −0.0101 −0.0137 

1500 1499.7003 1499.6496 −0.2996 −0.3504 −0.0200 −0.0234 

1600 1599.5004 1599.4484 −0.4996 −0.5516 −0.0312 −0.0345 

 

6. Conclusion 

 

The paper shows that the accuracy of calibration curves of measuring sensors substantially 

depends on the selection of calibration points. A procedure for the optimal selection of sample 
measurement points to find the best calibration curves (with respect to the selection optimality 
criterion) for a measuring sensor is proposed. As an optimality criterion in this study the D-

optimality criterion is used. This criterion is the overall measure in terms of the volume of the 
estimation error ellipsoid, which is proportional to the determinant of dispersion matrix 

of estimation errors. In this case the optimum is invariant to scaling of the system states.  
As an example, the problem of optimal selection of the standard pressure setters (the piston 

gages) during calibration of a differential pressure sensor is solved. Comparison of the absolute 

and relative calibration errors and RMS errors corresponding to the D-optimal, A-optimal 
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and Equidistant calibration curves, shows that the calibration curve obtained with the D-optimal 

design method gives the best results. Moreover, the D-optimal and A-optimal design methods 
give better results than the Equidistant design method.  

The uncertainties of D-optimal and A-optimal calibrations are similar. The equidistant 

calibration curve has a poorer uncertainty characteristic than the D-optimal and A-optimal 
calibration curves. The experiment results correspond to those obtained theoretically, proving 

their correctness. 
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