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Abstract 

Videoplethysmography is currently recognized as a promising noninvasive heart rate measurement method 

advantageous for ubiquitous monitoring of humans in natural living conditions. Although the method is considered 

for application in several areas including telemedicine, sports and assisted living, its dependence on lighting 

conditions and camera performance is still not investigated enough. In this paper we report on research of various 

image acquisition aspects including the lighting spectrum, frame rate and compression. In the experimental part, 

we recorded five video sequences in various lighting conditions (fluorescent artificial light, dim daylight, infrared 

light, incandescent light bulb) using a programmable frame rate camera and a pulse oximeter as the reference. For 

a video sequence-based heart rate measurement we implemented a pulse detection algorithm based on the power 

spectral density, estimated using Welch's technique. The results showed that lighting conditions and selected video 
camera settings including compression and the sampling frequency influence the heart rate detection accuracy.

The average heart rate error also varies from 0.35 beats per minute (bpm) for fluorescent light to 6.6 bpm for dim 

daylight. 
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1. Introduction 

 
During the last decade we witness significant improvement in the development of camera 

sensors in the aspects of power economy, sampling rate and resolution. Imaging sensors are 

built into objects of everyday use including TV sets, laptops, smartphones or security systems. 

These devices can also be applied as valuable sources of health-related information like the 

heart rate. Worldwide research proved that it is feasible to determine the heart rate by analyzing 

a plethysmographic signal captured with a regular video camera as image sequences. However, 

there are no studies that reveal the influence of different sampling rates, lighting conditions and 

video camera settings on reliability of the heart rate detection. 
In our research we examine various aspects of plethysmographic signal acquisition including 

the lighting conditions, frame-rate, compression and video camera settings and their influence 
on detection of the heart rate. Noninvasive heart rate monitoring plays a very important role 

particularly in ambient-assisted living systems for older people. However, heading to an indoor 

maintenance-free application of seamless cardiovascular monitoring must be preceded by 

a thorough study of its reliability.  

Due to applying a high-quality widely-configurable camera designed for machine vision, we 

were able to emulate limitations of various parameters present in consumer-grade imaging 

devices. We adjusted the sensitivity as well as the spatial resolution and the field of view. 

Moreover, the programmability of the camera frame-rate (up to 200 frames per second – FPS) 
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enabled to emulate the behaviour of low-frame-rate cameras and study the impact of fluorescent 

light on the quality of video signal. 

The remaining part of the paper is organized as follows. Section 2 presents related works. 

Section 3 describes videoplethysmographic signal processing rules and presents the experiment 

equipment and setup. Section 4 presents and discusses the results. Section 5 concludes the 

paper. 

 

2. Related works 

 
Verkruysse et al. [1] were probably the first, who drew attention of the researchers to the 

possibility of contactless measurement of plethysmographic signals in ambient light (over 1 lx) 

with a consumer-level video camera. Their predecessors for years have used dedicated light 

sources in the red or infra-red range, what was adequate for pulse-oximetry due to different 

absorption of these colours by oxygenated and deoxygenated hemoglobin. The authors 

collected a footage of several minutes with simple Canon Powershot cameras at 15 or 30 FPS 

and 640 × 480 or 320 × 240 resolutions in daylight or its combination with normal artificial 

fluorescent light. They found that the strongest plethysmographic signal was obtained in the 
green (G) channel, although the respiration rate (RR) signal was sometimes more pronounced 

in the red (R) or blue (B) channels.   
Application of the Blind Source Separation technique by Poh et al. [2] enabled the 

videoplethysmographic system to tolerate motion artifacts. The recordings were made with 

a basic webcam embedded in a laptop in a 24-bit RGB color space at 15 FPS with a pixel 

resolution of 640 × 480. Their algorithm uses the face detection (OpenCV) and automated face 

tracker to point and follow a region of interest. Three independent colour components were 

decomposed with Independent Component Analysis (joint approximate diagonalization of 

eigenmatrices [3]), and the second component is found to always contain the pulse wave. The 

authors not only demonstrated effective heart rate detection both at rest and during motion, but 
also performed simultaneous heart rate measurements of multiple participants. 

The use of regular RGB cameras was challenged by Jeanne et al. [4]. They explored the 

possibility of touchless monitoring the heart rate for automotive applications and found that in 

highly dynamic light conditions infra-red (IR)-based detection (in a range of 700 nm to 

1000 nm) is much more robust. Their video recordings were made at 20 frames per seconds 

with a resolution of 120 × 180 pixels, and the results show the root-mean-square error (RMSE) 

less than 1 BPM and the correlation above 0.99 with reference measurements.  

McDuff et al. [5] proposed extraction of the pulse wave form videos captured with a digital 
single-lens reflex camera at 30 FPS, with 960 × 720 resolution. The processing employed 

Independent Component Analysis and successive signal interpolation and differentiation to 
distinguish systolic and diastolic peaks. The system was tested with varying mixtures of 

sunlight and indoor illumination, and also compared the extended colour space (ROGCB – red-

orange-green-cyan-blue) and its subspaces with additional orange and cyan sensors.  

Another work [6] reports on the use of distant pulse rate measurement in neonates. The 

system was based on a high definition (HD) webcam, while the final image resolution was only 

640 × 480. The authors used motion compensation, controlled ambient light (300 lx) and 
separate green channel videos to obtain an average accuracy of 2.52 bpm for all 8 examined 

objects. They also found that continuous pulse rate (PR) monitoring can be improved by 

selecting and tracking multiple regions of interest (ROIs) from video frames to generate 

respective time-series signals.  

In the papers [7] and [8] facial video recordings were made on patients undergoing electrical 

cardioversion for treatment of atrial fibrillation (AF). The authors proposed a Pulse Harmonic 

Strength concept, based on the ratio of harmonic components (i.e. between 0.05 Hz and 3 Hz) 
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and the total signal energy, to effectively minimize the AF detection error. They used a Video 

Graphics Array (VGA) and high-definition (HD) cameras with 15/30 FPS and ambient light of 

the cardioversion room. The synchronization was made by a flash light. The reported 

uniqueness of the system consisted in its ability to capture the beat-to-beat interval variation.  

The problem of a moving object was solved by Li et al. [9] who employed detection and 

tracing of selected facial features. The proposed system can continuously capture pulse-related 

absorption of green light by the skin, predicts the location of ROI based on 2D geometric 

transformation of the face, and is immune to HCI-realistic lighting conditions (e.g. when the 
object watches movies on a screen). Besides compensating the object's motion, a novel method 

detects non-rigid face deformations (e.g. facial expressions) and prevents the heart rate 

detection algorithm from misleading by transient segments of frames. The system was tested 

on the MAHNOB-HCI database [10] containing 20 frontal face videos recorded for each object 

with a resolution of 780 × 580 pixels at 61 FPS, during his watching movie clips on a computer 

screen. 

An interesting approach has been reported in [11], where the heart rate and beat lengths are 

extracted from videos by measuring a subtle head motion caused by the Newtonian reaction to 

the influx of blood at each beat. The described method consists in tracking selected features on 
the head and further post-processing (made with Principal Component Analysis – PCA) applied 

in order to decompose their trajectories into a set of component motions. The authors revealed 
that an important factor which affected their results was the camera speed (expressed in FPS), 

so that they used the cubic interpolation to increase the sampling rate. Another factor pointed 

out in that paper was a suboptimal lighting that could affect the algorithm of face feature 

tracking. 

The authors of the work [12] proposed to increase the bit-width resolution in order to 

improve the pulse recognition ratio. The acquisition was performed with low ratios, i.e. 12−30 

FPS, assuming that the signal spectrum did not contain more than 2−4 harmonics of a human 

heart rate. The authors also report that ambient light flickering (100 Hz) can produce alias 

frequency components close to the cardiac frequency heart rate and thus worsen the quality of 

the measurement. They proposed a proprietary algorithm to identify and cancel these 

components. Sugita et al. [13] captured images at 140 FPS under a controlled illumination. 

They used a method of pulse transit time for estimation of blood pressure variations. 

Contributing to the research in this area, we aim to examine technical details of the video 

plethysmography. Our primary goal is to evaluate the possibility of heart rate measurements 

using industrial or surveillance cameras with a prospect of future hardware implementation 
(real-time). We aim at analysing the impact of an increased time resolution by performing 

acquisition of video sequences with an increased frame rate (up to 200 FPS) that enables to 

make measurement in the frequency domain more precise (and fulfil the Shannon sampling 

theorem in the presence of flicker frequencies). In this way, we avoid an additional processing 

stage during the analysis and prepare real-time implementation in the future. The use of 

different camera settings (frame rate, compression,  resolution and spectral sensitivity) and 

different light sources (fluorescent, dim daylight, infrared light, incandescent light bulb) reveals 

optimal conditions for distant pulse monitoring [15] and limitations of the method in natural 
indoor conditions.  

 

3. Materials and Methods 

 

3.1. Setup and acquisition of high-quality videos 

 

To estimate optimal conditions for distant pulse monitoring and limitations of the method in 

real-world settings, we have recorded several video sequences. The experimental setup 
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consisted of a monochrome acA200-165 µm camera with a 6 MegaPixel 25 mm focal length 

lens. The camera’s sensor has extended capabilities in the range of infra-red spectrum. This 

property is advantageous for video acquisition in low-light conditions and when using invisible 

IR illumination. Its quantum efficiency exceeds 35% in a spectrum range of 400 nm – 800 nm, 

whereas its maximum values of 65% appear between 500 nm and 650 nm. Beyond  800 nm, 

the quantum efficiency falls to 5% at 1000 nm. The nominal sensitivity is 5.56 V∙lux−1∙s−1. 
However, this parameter applies to the pixel array of the sensor, which is mounted behind the 

lens reducing the illumination accordingly to its properties and actual aperture settings. 

According to the specification provided by the manufacturer, the Signal-to-Noise-Ratio of the 
sensor does not fall below SNRmax = 41.3 dB. This value has been verified in the experiment, 

by analysing noise in a dark image acquired with the blinded lens. An influence of light 

flickering and other phenomena (e.g. vibrations, a shutter motion, etc.) on the noise 

characteristics of the sensor has been thoroughly studied and reported in details in the paper 

[16]. The device captured images in the global shutter mode with a free-run trigger, thus 

asynchronously with light pulsations caused by the AC power supply. 

Advanced features of the camera make the setup highly flexible for acquisition of image 

frames with various temporal resolutions of up to 200 FPS and adjustable dimensions of image 
frames. The device provides both automatic and manual setup of exposure and analogue gain 

parameters that enable to individually adjust to particular lighting conditions. The manual setup 
was used in order to keep all parameters fixed during subsequent experiments. The proprietary 

camera software provides strict control of the data flow and recording raw uncompressed videos 

into a hard disk. This prevents from an accidental loss of data and artefacts that could deteriorate 

the results of further frequency analysis.  

The camera we intentionally used does not include an anti-flicker subsystem that is usually 

embedded into consumer-grade devices making them immune to periodical fluctuations of the 

light intensity. Such a system prevents the video signal from appearing the flicker effect by 

automatically adjusting the trigger, so that setting it matches the phase of mains supplying the 
light. Another possible option is extending the exposition time to 40 ms to match the interval 

of powerline-dependent light pulsation. Both enable to acquire the video with minimized 

artefacts, yet available ranges of acquisition parameters (frame rate, exposure) are limited [17].  

The camera was positioned approximately 2.8 m away from the volunteer, in such a way 

that the face of the monitored person occupied the largest part of focal plane of the camera, as 

is shown in Fig. 1. Five sequences have been recorded in a greyscale uncompressed 8-bits-per-

pixel format, an image resolution of 640 × 480 pixels and a frame rate of 200 FPS in the 

following conditions: 

− Sequence S_FLU18: fluorescent artificial light (18 tubes); 

− Sequence S_FLU06: fluorescent artificial light (6 tubes); 

− Sequence S_DAY: dim daylight  (indirect daylight illumination from a north-directed 

window, January, 3:30 PM, cloudy weather); 

− Sequence S_IR: infrared IR light; 

− Sequence S_BLB: incandescent light bulb. 
To record the real value of the pulse (ground truth) a portable OxiMax N-65 (by Nellcor) 

pulse oximetry monitor has been used. The monitored person was seated motionless during the 

pulse and video acquisition (approximately 30 seconds of recording). In each frame three 

distinct ROIs were selected – ROI no. 1 on the upper part of the face, ROI no. 2 on the scene 

background area and ROI no. 3 on the whole face. The face ROIs were used for heart rate 
detection, and the background ROI was selected for the reference. An overview of the method 

used in our experiments is shown in a block diagram (Fig. 2a). 
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Fig. 1. An example of human head image with marked ROIs. 

 

 

Fig. 2a. An overview of the used method. 

 

 

Fig. 2b. An overview of the video processing algorithm. 

 
In the first step, the mean value of pixels is calculated inside a selected region of interest 

(ROI) of each image of the video sequence, resulting in the signal	������ � 	�
, ��, … , ��� 
(where � is the image frame index in the analysed video sequence). Then, we calculate the power 

spectrum density (PSD) estimate of the input signal with the use of Welch's overlapped segment 
averaging estimator (MATLAB ‘pwelch’ routine [14]). Subsequently, we identify the dominant 

frequencies for the entire video sequences and estimate the influence of video compression on 

the possible occurrence of artefacts or degradation of pulse data reliability. The results are 

presented in Sections 4.1–4.3. 

 

3.2. Video processing algorithm 

 

Our aim is enabling to precisely monitor  the patient’s vital signs in real-time and various 
lighting conditions, not only in daylight but also in artificial light or dusk. This implies that the 

RGB video data will not always be available (i.e. if a camera has a greyscale sensor or switches 
to the night mode in which only the luminance component is available). Most of the current 

state-of-the art pulse wave extraction methods are based on the RGB video data, and therefore 

further examination is needed in order to estimate the influence of different lighting conditions 

on heart rate detection in greyscale videos. 

An overview of our video processing algorithm used in deriving estimates of the heart rate 

signal is shown in a block diagram (Fig. 2b). This algorithm has already been tailored to a need 

of future real-time implementation. 

As described in the previous section, the first step is calculation of the mean value of pixels 
inside a selected region of interest (ROI). Then, from a sequence of consecutive frames, the 

signal ������
� is formed in a buffer of finite length �. Besides the pulse, the signal may also 

contain noise and the respiratory component. Therefore, the next step consists in band-pass 

filtering of the buffer contents with a least-square linear-phase FIR filter. Simultaneously, the  

DC offset is removed from the signal. Then, the periodogram estimate has been computed for 
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the filtered signal. In order to find the pulse frequency, the greatest frequency peak is localized 

in the periodogram. To obtain an accurate estimate of pulse wave, a central moment in the 

neighbourhood of the peak is computed. The results are presented in Section 4.4. 

 

3.3. Selection of frequency resolution 

 

An important aspect of the algorithm is the appropriate selection of the frequency resolution 

Δ�	and temporal resolution	�. The frequency resolution of the power spectrum is defined as 
(1), and it determines the algorithm accuracy: 

 �� � ��

�
, (1) 

where	� is the buffer length and �� is the sampling frequency.  

An example of analysis is shown  in Table 1. The larger the buffer length the higher the 

frequency resolution. However, a long buffer results in a considerable signal delay (i.e. 

deteriorates the temporal resolution) which might be impractical in real scenarios. 
 

 
Table 1.The relation between the frequency (Δ�) and temporal (T) resolutions for different frame rates  

and buffer lengths. 
 

Fs [Hz] N Δ� [Hz] Δ� [bpm (beats per minute)] T [s] 

200 4096 0.049 2.94 20.48 

200 2048 0.098 5.86 10.24 

200 1024 0.195 11.72 5.12 

30 1024 0.029 1.76 34.13 
30 512 0.059 3.52 17.07 

30 256 0.117 7.03 8.53 

 

 

4. Results and discussion 

 
For each test sequence, the following analyses have been performed: 

− Test 1: Estimation of the power spectrum density (PSD) for all 3 ROIs and computation of 

the signal to noise ratio (SNR). 

− Test 2: Estimation of PSD similarly to Test 1, but for compressed S_FLU18 and S_DAY 
source video sequences (see Section 3.1). The videos have been compressed using MJPEG 

encoding with high quality settings. 

− Test 3: Estimation of PSD similarly to Test 1, but for S_FLU18 and S_DAY source video 

sequences down-sampled to 28.5 FPS (every 7-th frame taken), a bit rate of 200 kB/s. 

− Test 4: Estimation of the heart rate using the proposed algorithm (see Section 3.2). 

 

 
4.1. Estimation of power spectrum density for high-quality videos  

 

The power spectrum density has been calculated using Welch’s overlapped segment 

averaging estimator with the rectangular window of length N = 2048 shifted by one sample 

through the entire sequence. 

The window length of 2048 samples results in the frequency resolution	Δ� = 0.0977 Hz/bin 

(which is equivalent to 5.8594 bpm − see Table 1) and the temporal buffer window � = 10.24 s. 

Respective PSD estimates for all test sequences, cropped to a range of 1–400 bpm, are shown 

in Figs. 3 to 7. The frequency range is given in beats per minute (bpm), being equal to 60 * f. 
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Fig. 3. The power spectrum density estimate of S_FLU18 sequence.  

 

 

 

 

 

Fig. 4. The power spectrum density estimate of S_FLU06 sequence.  

 

 

 

 

 

Fig. 5. The power spectrum density estimate of S_DAY sequence.  
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Fig. 6. The power spectrum density estimate of S_IR sequence. 

 

 

 

Fig. 7. The power spectrum density estimate of S_BLB sequence. 

 

It can be observed that in all tested videos the pulse frequency peak (and its harmonics, 

depicted as pulse h1 and pulse h2) is present in the ROI related to the face location.  Its power 

is greater than that in the background ROI (green dotted line) and quantitatively expressed as 

signal to noise ratio (SNR) computed for actual values of the ground truth pulse frequency 

(Table 2). The algorithm used to compute the SNR was a slightly modified function from 

MATLAB Signal Processing Toolbox [14]. Also, the SNR is computed only within the range 

of 50–150 bpm. The function [14] searches the periodogram for the largest nonzero spectral 

component. However, this value is computed by our algorithm and we want to estimate SNR 

exactly for this frequency. Thus, we add an additional input argument to the original function 

– the detected frequency value.  

Pulse peaks appear not always at the reference heart rate frequency – this is a result of the 
limited frequency resolution. Also, for S_DAY and S_IR sequences, the SNR (in dB) is 

negative, which means that the noise level is higher and might impede correct detection of the  

heart rate. Also, the value of SNR is greater for ROI 1 (forehead) than for ROI 3 (whole face). 

 
Table 2. The signal to noise ratio (SNR) for the ground truth pulse frequency computed  

within the range of 50–150 bpm. 
 

Sequence id Pulse freq. [bpm] SNR, ROI 1 [dB] SNR, ROI 2 [dB] SNR, ROI 3 [dB] 

S_FLU18 72.0 5.012 −6.799 5.677 

S_FLU06 70.5 8.759 −7.686 6.463 

S_DAY 76.0 −2.973 −6.539 −5.835 

S_IR 78.0 −2.424 −5.850 −3.063 

S_BLB 69.5 2.055 −3.596 2.041 
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4.2. Estimation of PSD for high-quality videos with compression  

 

The goal of this test is to assess the effect of video data compression, which is an industry 

standard in surveillance cameras considered for a target solution of heart rate monitoring.  

To this point we selected two video sequences – with fluorescent light (which contains 

flickering frequencies) and with dim daylight. The PSD has been estimated in the same way as 

in the previous experiment (see Section 4.1). Respective PSD estimates and values of SNR for 

selected test sequences, cropped to a range of 1−400 bpm, are shown in Figs. 8 and 9 and also 

summarized in Table 3. 
 

 

Fig. 8. The power spectrum density estimate of S_FLU18 sequence, MJPEG compression.  

 
 

 

Fig. 9. The power spectrum density estimate of S_DAY sequence, MJPEG compression. 

 
It can be noticed that MJPEG compression introduces significant distortions into the heart 

rate signal and the value of SNR is much lower. For S_FLU18 sequence (i.e. the video taken in 

fluorescent light) an extra peak at 164 bpm and a shift of the proper pulse peak to the left are 

observed, probably as a result of interference with the flickering frequency. For S_DAY 

sequence (i.e. the video taken in dim daylight) distortion peaks from compression appear above 

200 bpm, which can be easily filtered out. 

 

 
Table 3. The signal to noise ratio (SNR) for the ground truth pulse frequency computed within  

the range of 50–150 bpm (MJPEG compression). 
 

Sequence id Pulse freq.  [bpm] SNR, ROI 1 [dB] SNR, ROI 2 [dB] SNR, ROI 3 [dB] 

S_FLU18 72.0 −5.590 −15.403 −5.759 
S_DAY 76.0 −5.312 −8.210 −5.746 
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4.3. Estimation of PSD for high-quality videos down-sampled to 28.5 FPS 

 

The goal of this test is to assess the effect of limiting the frame rate (i.e. using values typical 

for surveillance or web cameras). To this point we selected two video sequences – with 

fluorescent light (which contains flickering frequencies) and with dim daylight. The PSD has 

been estimated using Welch’s overlapped segment averaging estimator, with the rectangular 

window of length N. The window length of 512 samples lasts � = 17.92 s and results in Δ� = 

0.0558 Hz/bin (i.e. 3.3482 bpm). Respective PSD estimates and values of SNR for selected test 
sequences, cropped to a range of 1–400 bpm,  are shown in Figs. 10–11 and in Table 4. 

 

 

Fig. 10.The power spectrum density estimate of S_FLU18 sequence, downsampling. 

 

 

Fig. 11.The power spectrum density estimate of S_DAY sequence, downsampling.  

 
Table 4. The signal to noise ratio (SNR) for the ground truth pulse frequency computed within  

the range of 50–150 bpm (down-sampled signal). 
 

Sequence id Pulse freq. [bpm] SNR, ROI 1 [dB] SNR, ROI 2 [dB] SNR, ROI 3 [dB] 

S_FLU18 72.0 2.956 −7.084 2.613 

S_DAY 76.0 −5.715 −9.276 −7.297 

 

 

4.4. Estimation of heart rate with use of proposed algorithm 

 

To verify the accuracy of the proposed algorithm (see Section 3.2), all video sequences were 
used. Each of the sequences are processed as follows. In the first step the mean value of pixels 

inside the selected region of interest (ROI) for each video frame is calculated, forming the signal 
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������
� , where � is the frame number	� � 1…�. Then, this signal is partitioned in a buffer 

of finite length N, resulting in the signal ������
� , where � � � …� − �. 

The buffer contents are normalized and filtered using a band-pass least-square linear-phase 

FIR filter with low- and high-frequency cut-offs corresponding to 50 beats per minute (bpm) 

and 200 bpm, respectively. Then, the periodogram has been calculated on the buffer data. The 

lengths of N = 2048 and N = 4096 samples result in Δf = 0.0977 Hz/bin (5.8594 bpm) and 

Δf = 0.0488 Hz/bin (2.9297 bpm), respectively. The pulse frequency	������
�  is estimated by 

localizing the greatest frequency peak within the range of 50-200 bpm in the periodogram. 

The dominant frequency ������
� 	calculated for each buffer (actually, it is calculated for each 

video frame), is compared with the value of ground truth of a heart rate, measured with  

a portable pulse oximeter. The estimation error for i-th frame is computed as the absolute value 

of difference between the ground truth and detected pulse frequency (2): 

 ���� �  !�"��#$%�&'_�$��) − ��'���*��'+. (2) 

 
The overall detection accuracy values for all video sequences and face ROIs are summarized 

in Table 5 and Table 6. It should be noted that due to the frequency resolution Δ�, the detected 

pulse can be accepted as correct if it is within the uncertainty range of ±Δ�. This results in 

a correct detection rate of 100% for the sequence with fluorescent light (i.e. S_FLU sequence) 

and only 53% for IR light (i.e. S_IR sequence). In order to facilitate comparison of the accuracy 

of all sequences, a visual representation of error distributions (a box plot) is shown in Fig. 13. 

 

 
Table 5. The pulse wave detection results for the buffer length of 2048 samples and the sequence  

length of 3951 frames. 
 

Sequence id Average error 
[bpm] 

Maximum error ROI 1 
[bpm] 

Average error 
[bpm] 

Maximum error ROI 3  
[bpm] 

S_FLU18 1.53 4.54 1.60 4.06 

S_FLU06 0.35 2.07 0.33 1.53 

S_DAY 6.59 65.91 8.07 78.25 

S_IR 4.86 104.17 6.29 104.58 

S_BLB 2.54 11.43 4.21 18.44 

 

 
Table 6. The pulse wave detection results for the buffer length of 4096 samples and the sequence 

 length of 1903 frames. 
 

Sequence id Average error 
[bpm] 

Maximum error ROI 1 
[bpm] 

Average error 
[bpm] 

Maximum error ROI 3 
 [bpm] 

S_FLU18 0.91 2.03 0.95 1.59 

S_FLU06 0.40 1.06 0.40 1.30 

S_DAY 4.62 19.24 7.44 38.07 

S_IR 2.53 3.95 2.57 3.89 

S_BLB 1.63 8.64 2.45 9.36 

 

 
The presented results confirm correctness of the proposed algorithm. However, the detection 

is incorrect for some video sequences (especially the videos acquired in low lighting conditions, 

e.g. S_DAY). Similarly, for S_IR sequence and the window length of 2048, the maximal 

detection error is very high. However, this is caused mainly by outliers (Fig. 12). 
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The obtained results presented so far can be further improved by using a more sophisticated 

peak detection algorithm (e.g. interpolation of the detected peak’s neighbourhood values) or by 

taking into account the temporal context (i.e. exclude spurious detections). 

 

 

Fig. 12a. The detected heart rate values for S_IR video sequence and the window length of 2048. 

 
 

 

Fig. 12b. The detected SNR values for S_IR video sequence and the window length of 2048. 

 
 

 
Fig. 13. Box plots of the heart rate detection errors for all video sequences and the buffer length of 2048. 
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5. Conclusions 

 
We showed that various lightning conditions and selected video acquisition and transmission 

settings influence the reliability of videoplethysmographic signals. We found that the value 

of SNR is negative for dim daylight and infrared light, which may suggest that the illuminance 

level plays important role in correct pulse wave detection. Also, the MJPEG compression 

introduces high distortions and consequently may degrade the algorithm performance. On the 

other hand, a lower frame rate does not significantly affect the heart rate detection. However, it 
might produce aliasing frequencies. An important aspect of the pulse wave detection is an 

appropriate selection of the buffer length, which influences the frequency and temporal 

resolution values. 

The experiments described in this paper show only a most representative fraction of research 

carried out in the area of contactless vital sign monitoring. Further research will focus on: 

− evaluation of the proposed algorithm regarding the video-footage acquired with surveillance 
cameras and webcams (to check whether such an equipment can be used for reliable heart 

rate monitoring); 

− developing a method of cancellation of noise frequencies introduced by the MJPEG 

compression; 

− extending the proposed algorithm to detection of other vital signs (e.g. the breathing rate), 

− extending the proposed algorithm to work in real conditions (handling head motions, face 
tracking); 

− extending and evaluating a combination of two approaches – the frequency analysis 

(described in this paper) and the algorithm proposed in [11]. 

 

Acknowledgements 

 
This scientific work is supported by the AGH University of Science and Technology in year 

2016 as a research project No. 11.11.120.612. 

 

References 
 
[1] Verkruysse, W., Svaasand, L.O., Nelson, J.S. (2008). Remote plethysmographic imaging using ambient 

light. Optics express, 16(26), 21434−21445. 

[2] Poh, M.Z., McDuff, D.J., Picard, R.W. (2010). Non-contact, automated cardiac pulse measurements using 

video imaging and blind source separation. Optics express, 18(10), 10762−10774. 

[3] Cardoso, J.F. (1999). High-order contrasts for independent component analysis. Neural Comput., 11(1), 157–

192. 

[4] Jeanne, V., Asselman, M., den Brinker, B., Bulut, M. (2013). Camera-based heart rate monitoring in highly 

dynamic light conditions. Connected Vehicles and Expo (ICCVE), 2013 International Conference 

on,  798−799. 

[5] McDuff, D., Gontarek, S., Picard, R.W. (2014). Remote detection of photoplethysmographic systolic and 

diastolic peaks using a digital camera. IEEE Transactions on Biomedical Engineering, 61(12), 2948−2954. 

[6] Mestha, L.K., Kyal, S., Xu, B., Lewis, L.E., Kumar, V. (2014). Towards continuous monitoring of pulse rate 

in neonatal intensive care unit with a webcam. Engineering in Medicine and Biology Society (EMBC), 2014 

36th Annual International Conference of the IEEE, 3817−3820.  

[7] Couderc, J.P., Kyal, S., Mestha, L.K., Xu, B., Peterson, D.R., Xia, X., Hall, B. (2014). Pulse Harmonic 

Strength of facial video signal for the detection of atrial fibrillation. Computing in Cardiology Conference 

(CinC), 661−664. 

[8] Couderc, J.P., Kyal, S., Mestha, L.K., Xu, B., Peterson, D.R., Xia, X., Hall, B. (2015). Detection of atrial 

fibrillation using contactless facial video monitoring. Heart Rhythm, 12(1), 195−201. 



 

J. Przybyło, E. Kantoch et al.: DISTANT MEASUREMENT OF PLETHYSMOGRAPHIC SIGNAL … 

[9] Li, X., Chen, J., Zhao, G., Pietikainen, M. (2014). Remote heart rate measurement from face videos under 

realistic situations. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 4264−4271. 

[10] Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M. (2012). A multimodal database for affect recognition and 

implicit tagging. IEEE Transactions on Affective Computing, 3(1), 42−55. 

[11] Balakrishnan, G., Durand, F., Guttag, J. (2013). Detecting pulse from head motions in video. Proc. of the 

IEEE Conference on Computer Vision and Pattern Recognition, 3430−3437. 

[12] Tarassenko, L., Villarroel, M., Guazzi, A., Jorge, J., Clifton, D.A., Pugh, C. (2014). Non-contact video-based 

vital sign monitoring using ambient light and auto-regressive models. Physiological measurement, 35(5), 

807. 

[13] Sugita, N., Obara, K., Yoshizawa, M., Abe, M., Tanaka, A., Homma, N. (2015). Techniques for estimating 

blood pressure variation using video images. Engineering in Medicine and Biology Society (EMBC), 37th 

Annual International Conference of the IEEE, 4218−4221. 

[14] MATLAB and Signal Processing Toolbox and Image Processing Toolbox, Release 2016a The MathWorks, 

Inc., Natick, Massachusetts, United States. 

[15] Przystup, P., Bujnowski, A., Ruminski, J., Wtorek, J. (2013). A multisensor detector of a sleep apnea for 

using at home. Human System Interaction (HSI), The 6th International Conference on, 513−517. 

[16] Sur, F., Grediac, M. (2014). Sensor noise measurement in the presence of a flickering illumination. Image 

Processing (ICIP), IEEE International Conference on, 1763−1767. 

[17] Trzupek, M., Ogiela, M.R., Tadeusiewicz, R. (2011). Intelligent image content semantic description for 

cardiac 3D visualisations. Engineering Applications of Artificial Intelligence, 24(8), 1410−1418. 


