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Abstract 

The paper presents major issues associated with the problem of modelling change output accelerometers. The 

presented solutions are based on the weighted least squares (WLS) method using transformation of the complex 

frequency response of the sensors. The main assumptions of the WLS method and a mathematical model of charge 

output accelerometers are presented in first two sections of this paper. In the next sections applying the WLS 

method to estimation of the accelerometer model parameters is discussed and the associated uncertainties are de-

termined. Finally, the results of modelling a PCB357B73 charge output accelerometer are analysed in the last 

section of this paper. All calculations were executed using the MathCad software program. The main stages of 

these calculations are presented in Appendices A−E. 

Keywords: weighted least square method, charge output accelerometer, mathematical modelling, parameter 

estmation. 
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1. Introduction 
 

Modelling accelerometers with charge output, based on the measured data of frequency char-

acteristics, should be carried out by taking into account a charge-to-voltage conversion system. 

Therefore, it is necessary to combine the accelerometer transfer function and the transfer func-

tion related to both the voltage amplifier and the connecting cable [1]. Such an approach can 

guarantee proper estimation of the model parameters. 
In many cases, the accelerometers with charge output are modelled in the same way as 

the accelerometers with voltage output, which is a significant simplification of the estimation 
procedure. This modelling is usually carried out by means of the WLS method which enables 

simultaneous approximation of the amplitude and phase characteristics. The majority of studies 

discuss the nonlinear version of this method [2−11]. It is implemented in a recursive way and 

is aimed at minimizing the objective function by using one of gradient type methods (mostly 
employing the Levenberg-Marquardt algorithm). However, the problems related to proper de-

termination of the regularization parameter as well as the significant computational difficulties 
resulting from the necessity to determine Jakobian matrix have arisen. 

In spite of the above limitations, the linear version of WLS method provides satisfactory 

results in the widely understood sense of modelling measurement systems. This procedure is 

based on the Monte Carlo (MC) method which is used to determine the covariance matrix 

by performing a series of draws from the normal Gaussian distribution. This distribution is de-

fined by the statistical metrics (mean and standard deviation) which are calculated from 

the measured data of both frequency characteristics [12]. The matrix-vector equation which 

meets the linear WLS method requirements is determined on the basis of two complex fre-

quency responses. The first one results from the measurement data, while the second one refers 
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to an assumed parametric model of the accelerometer [13−14]. A straightforward and compu-

tationally efficient linear WLS method based on the inverse complex frequency responses 

is discussed in detail in [15]. This method was applied for modelling Endevco 2270 

and Brüel&Kjær 8305 charge output accelerometers and − as a result − the values of parameters 

and associated uncertainties of the sensors were obtained. However, the complex frequency 
responses were calculated on the basis of a mathematical model related to the accelerometers 

with voltage output [16−18]. Both the voltage amplifier and the connecting cable were modeled 

as a low-pass filter and their influence on the modelling output was neglected. 

To omit the above simplification, a total system model including a charge output accelerom-

eter, an amplifier and a connecting cable is considered in this paper. 

 

2. Applied modelling method 

 

The method discussed in this section can be applied for modelling sensors whose complex 
frequency response is presented by: 
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where: 

                                                       0, 1, 2, , 1, 2,[ , , ]ma a a a b b br=θ K K                                              (2) 

is a vector of unknown model parameters, and m < r. In turn, taking into account the measument 

points of amplitude )( nA ω  and phase )( nΦ ω  characteristics, the complex frequency response 

is: 

                                ( ) ( )exp[ ( )] ( ) ( ), 0,1, , 1,n n n n nK A jΦ R I n Nω ω ω ω ω= = + = −K                        (3) 

where N  denotes the number of measurement points, and )( nR ω  and )( nI ω  are the real and 

the imaginary parts of this frequency response, respectively. 

Let us also introduce the numerator N  and the de-numerator D  of the relation (1) by means 

of their real and imaginary representation in accordance with the measured frequencies nω  [14–

15]. Then, we have:  
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The best estimation of model parameters is obtained when the deviation between the meas-

ured (3) and estimated (4) frequency responses takes the minimum value. Then, we can assume 

the close equality of (3) and (4), as follows: 

                                     
( , ) ( , )

( ) ( ) ( ) ( ).
1 ( , ) ( , )

R n I n
n n R n I n

R n I n

N jN
R jI j

D jD

ω ω
ω ω ε ω ε ω

ω ω
+

≅ + = +
+ +

θ θ

θ θ
               (5) 

Simple transformation of (5) yields the estimation errors: 

                                         ( ) ( , ) ( ) ( , ) ( ) ( , )R n R n n R n n I nN R D I Dε ω ω ω ω ω ω= − +θ θ θ                                (6) 

and 

                                          ( ) ( , ) ( ) ( , ) ( ) ( , ).I n I n n R n n I nN I D R Dε ω ω ω ω ω ω= − −θ θ θ                              (7) 

In an analogous way, based on (1), the following relations can be obtained: 

                                                          K−+−= 4
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Substitution (8) into (6) and (7) yields: 
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The estimation θ
~

 of the vector (2) is calculated using the formula: 

                                                 YΣΨΨΣΨθ 111 )(
~ −−−= TT

,                                             (11)     

which represents the linear WLS method. The N2 -dimensional vector Y  is constructed based 

on (3) and it takes the following form:  

                                            [ ])()()()()()( 1100 NN
T

IRIRIR ωωωωωω K=Y ,                           (12) 

while the )1(2 rmNx ++ -dimensional matrix Ψ  is represented by (see Appendix A): 

                                                                   ][ 10
T
N

TTT ψψψΨ K= .                                                  (13) 

Successive rows of this matrix are developed by splitting up (9) − (10) according to the order 

of parameters in the vector (2), as follows: 
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The diagonal covariance matrix ,Σ  whose dimension is equal to NNx22  is: 
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According to the standard [12], it is recommended to apply the MC method to determine this 

matrix in two stages [15]. 

During the first stage the matrices: 
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are calculated, where M  denotes the number of MC trials. The vectors: 
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contain the uncertainties associated with the measured vectors )( nA ω  and ),( nΦ ω  while the 

vectors Aε  and Φε  include the random variables drawn from the Gaussian normal distribution 

(e.g. the Box-Muller basic form − see Appendix B) with means and standard deviations calcu-

lated on the basis of vectors )( nA ω  and )( nΦ ω [19]. 

The second stage refers to determination of the matrix: 
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  Particular elements nΣ  of the diagonal in matrix Σ  are determined as the inverse of the 

variance for each row of the matrix TV  (see Appendix C). 

 

3. Mathematical model of charge output accelerometer 
 

The mathematical model of charge output accelerometer is represented by its complex fre-

quency responses which can be directly derived from the differential equation: 

                                             0)()()( =++ tkztzrtym &&& .                                                       (20) 
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This equation is obtained on the basis of corresponding mechanical construction of a seismic 

mass accelerometer shown in Fig. 1, where the following notations are used: )(tz  – the relative 

mass displacement (relative output), )(ty  – the absolute mass displacement (absolute output), 

)(tx  – the vibration (excitation), ][kgm  – the seismic mass, ][ smkgr ⋅  – a dumping coeffi-

cient, ][ mNk  – a spring constant, )(tym &&  – the inertial force, )(tzr&  – the dumping force, )(tkz  

– the elastic force. 
 

 

Fig. 1. The mechanical construction of a seismic mass accelerometer. 

 
Analysing Fig. 1, we have: 

                                                       )()()( txtzty += ,                                                       (21) 

Substitution (21) into (20) gives: 

                                             )()()()( txmtkztzrtzm &&&& −=++ .                                            (22) 

The response of charge output accelerometer to the force )(tF  which acts onto the quartz 

crystal represents the absolute mass displacement. Unlike to the seismic mass accelerometer, it 

implies the following substitution in (20): 

                                                         )()()( txtytz −= .                                                           (23) 

After this substitution, we have: 

                                       )()()()()( txktxrtkytyrtym +=++ &&&& .                                         (24) 

Transformation of (24) into the s-domain yields: 
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where: 

                                                           ,0
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k
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2
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The force )(tF  generates the electric charge )(tQ :  

                                                    )()( tFktQ p= ,                                                                (28) 

where ][102.2
12

NCk p
−⋅=  is a piezoelectric constant. 

The mechanical construction of a charge output accelerometer is shown in Fig. 2. 
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Fig. 2. The mechanical construction of a charge output accelerometer. 

 

The force is proportional to the absolute acceleration according to: 

                                                   )()( tymtF &&= .                                                                 (29) 

Substituting (29) into (28) and then transforming it into the s-domain, we have: 
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Taking into account (30) and (26), we obtain the following complex frequency response: 
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where: mpQ SkS = ][ 2smC ⋅  is the charge sensitivity; β  and 0ω  represent the damping ratio 

and the non-damped natural frequency, respectively, while mSm = ][kg  is the mechanical sen-

sitivity. 

Figure 3 shows an equivalent circuit model of a charge output accelerometer. This circuit 

includes a voltage amplifier and a low-noise coaxial cable.  

 

 

Fig. 3. An equivalent circuit model of a charge output accelerometer. 

 
A simplified circuit model of a charge output accelerometer is shown in Fig. 4. Based on 

this model we can calculate the total resistance and capacitance in a simple way [17]: 

                                          vacat RRRR 1111 ++=                                                        (32) 

and 

                                                 vacat CCCC ++= .                                                               (33) 

In (32) – (33) there are: the accelerometer internal resistance and capacitance aR  and ,aC

the resistance between the cable screen and the centre conductor ,cR  the cable capacitance ,cC  

the resistance vaR  and capacitance .vaC  of the voltage amplifier input. 
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Fig. 4. A simplified circuit model of a charge output accelerometer. 

 

Analysing the circuit model shown in Fig. 4, it is easy to obtain: 
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The corresponding complex frequency response has the form: 
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where emV SSS = ][ 2smV ⋅  is the voltage sensitivity determined by the product of the me-

chanical and electrical sensitivities, while ttCR=τ ][s  is a time constant. The electrical sensi-

tivity tpe CkS = ][ NV  and the time constant result from the electrical properties of the 

charge-to-voltage converter.  

Let us present (35) in a form related to the model (1). Then, we have: 
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are functional relations between the accelerometer parameters. 

 

4. Modelling charge output accelerometer 

 
In this section, the modelling method presented in Section 2 were used to model the charge 

output accelerometers. The complex frequency response (36) does not contain a constant 0a  in 

the numerator. In order to apply the linear WLS, it is necessary to extend the numerator with 
this constant. Hence, we have: 
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Based on (38), the real and imaginary parts of numerator and de-numerator are as follows: 
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It results from (42) that the constant 0a  appears in the vector .
~
θ  It is a disadvantage of the 

above modelling method because any recalculation of the parameters of model (35) by traform-
ing (37) is not possible. However, due to a high accuracy of the parameter estimation, the pre-

sented procedure can be very useful for the modelling used to determine maximum dynamic 

errors [16−18] as well as for the deconvolution algorithms [20–21]. In both cases, the accuracy 

of modelling is usually better than that of the construction of accelerometer model. 

 

5. Calculation of parameter uncertainties 

 

The uncertainties associated with the parameters of model (38) are calculated as follows [15] 
(see Appendix D): 

− determine the vector: 
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ε∆  is a random vector drawn from the multidimensional normal distribution with  

mean equal to zero and the covariance matrix defined by: 

                                                           
11 )( −−= ΨΣΨΣ T

u ;                                                         (44) 

− calculate the covariance matrix 
θ

Σˆ  associated with uncertainties θ̂  on the basis of:  

                            2,1,0,)ˆ(
1

)ˆ(
1-

1 1

0

2
1

0
,,ˆ =














∑









∑−=
−

=

−

=
i

NN

T
N

n

N

n
in

T
in

T θθ
θ

Σ ;             (45) 

− calculate the uncertainties θ̂  associated with parameters (39) as the root squares of diagonal 

elements of matrix .
θ̂

Σ  
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6. Results of accelerometer modelling 

 
The procedures discussed in Sections 2–5 were applied to modelling a PCB357B73 type 

charge output accelerometer. The main parameters of this sensor can be found in the corre-

sponding datasheet. Hence, we have: 

− charge sensitivity 5%,]s[pC/m2.10 2 ±⋅=QS  

− frequency range 5%,kHz][2 ±=cutf  

− resonant frequency kHz].[8≥rf  

The accelerometer frequency characteristics were measured for 34=N  points – Table 1, 

while their ordinate values )( fA  and )( fΦ  are tabulated in Tables 2 and 3. 

 

 
Table 1. The measurements points. 

]kHz[]0.10,5.9,0.9,5.8,0.8,5.7,0.7,5.6,0.6,5.5,0.5,5.4,0.4,5.3

,0.3,5.2,0.2,5.1,0.1,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0,09.0,08.0,07.0,06.0,05.0,04.0[=f
 

 
 

Table 2. The values of the amplitude characteristic. 

]smV/m[]8.13,5.15,3.14,5.16,2.14,4.13,2.11,2.10,1.10,8.8,8.8,2.8

,6.7,9.6,0.6,0.7,9.5,3.6,9.5,7.5,2.6,7.5,2.6,8.5,1.6,7.5,8.5,7.5,3.6,2.6,0.6,7.5,2.6,1.6[)(

2⋅

=fA
 

 
 

Table 3. The values of the phase characteristic. 

.][deg]0.97,6.95

,4.74,6.37,9.25,6.35,8.19,2.10,3.7,3.9,1.6,3.3,5.2,2.1,6.1,8.0,2.0

,0.0,2.0,6.0,0.0,0.0,1.0,1.0,4.0,2.0,3.1,5.0,4.0,6.0,7.0,1.0,1.0,8.0[)(

−−

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−=fΦ

  
 

The number of MC trials is assumed to be equal to ,105
 while the means and standard de-

viations calculated based on the measurement data tabulated in Tables 2–3 are: ,23.8=AE  

,22.0−=ΦE  ,29.3=Aσ  .45.0=Φσ  The uncertainties associated with these measurements are 

equal to 57.0)( n =Au  and .08.0)( =nΦu  The estimates of parameters corresponding to the 

model (38) and the estimates of associated uncertainties are: 

             ]1019.4,1022.1,1045.1,1046.2,1009.1,95.5[
~ 138584 −−−−− ⋅−⋅⋅−⋅⋅−=θ            (46) 

and 

             ]1013.1,1039.5,1092.3,1031.3,1050.6,1003.4[ˆ 2519101084 −−−−−− ⋅⋅⋅⋅⋅⋅=θ .       (47) 

Approximations of the frequency characteristics based both on the measurements tabulated 

in Tables 2–3 and the results presented by (46) are shown in Fig. 5. 

Multiplication by π180 of both the measured data of phase characteristic and the argument 

calculated for the complex frequency response (38) is necessary to obtain the results expressed 

in degrees rather than in radians. 

Figure 6 shows the error ∆  between the complex frequency responses (3) and (38) which is 

determined for the measurement data and the estimates of parameters (46) (see Appendix E). 
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Based on Fig. 6 it is apparent that he greatest value of fitting error was obtained for the 

frequency of 8.5 kHz which is close to the resonant frequency. 
 

                                         

 
Fig. 5. Approximations of the amplitude and phase characteristics obtained with MathCad. 

  

              

Fig. 6. The fitting error for estimation of accelerometer parameters. 

 

7. Conclusion 
 

The main advantage of the solutions presented in this paper is the possibility of modelling a 

total system related to the charge output accelerometers. The disadvantage is the lack of possi-

bilities to determine the parameters of this accelerometer, but only the functional relations as-
sociated with these parameters can be obtained. Furthermore, the numerator of the complex 

frequency response is extended with a constant value. It follows, that the presented approach to 

modelling the total system associated with the charge output accelerometer cannot be used for 

calibration of accelerometers, which requires determination of the voltage sensitivity. 
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APPENDIX A 

Calculation of the vector Y  and the matrix :Ψ  

               , 

where 1K  and 2K  are the real and imaginary parts of the complex frequency response con-
structed on the basis of measured amplitude and phase characteristics. 

 

APPENDIX B 

Implementation of the Box-Muller (basic form) algorithm: 

 

 

Y i 0←
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a1 11600 47003 23000 33000( )
T:=

b1 185127 45688 93368 65075( )
T:=

c1 10379 10479 19423 8123( )
T:=

d1 2147483123 2147483123 2147483123 2147483123( )
T

456 420 300 0( )
T+:=
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, 

where 11,σE  and 22 ,σE  denote the mean and the standard deviation calculated for the vectors 

)( nA ω  and ),( nΦ ω  respectively. 
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APPENDIX C 

Calculation of the covariance matrix: 

 

 
 

APPENDIX D 
Calculation of the uncertainties associated with model parameters: 

− determination of the covariance matrix 

 

− determination of the X  matrix associated with the multidimensional normal distribution 

using the Cholesky decomposition: 

 

 
 

− determination of the uncertainty vector: 
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, 

where 
><mε is a six-element random vector determined using the Box-Muller algorithm (Ap-

pendix A).  

 

− determination of the vector (43): 

 
− calculation of the covariance matrix (45) and uncertainties θ̂  associated with the parameters 

(39): 

 
 

 
 

APPENDIX E 

Determination of the difference between the complex frequency responses (3) and (38): 
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