
193Bull. Pol. Ac.: Tech. 66(2) 2018

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 2, 2018
DOI: 10.24425/122100

Abstract. The goal of the paper was to shorten the calculation time by realising all used signal processing algorithms in the form of stack filters.
The architecture of these filters allows us to process signals using the advantages of hardware processing and simultaneous signal processing.
This paper elaborated on the synthesis of stack filters which realise median, averaging, opening and closing operations. The novel achievement
was to develop the binary box method which allows us to obtain stack filters for more complex algorithms. This method consists of two stages
and requires that we construct a spatial structure of the data. This structure allows us to examine the stacking property in two steps. Obtained in
this way architecture of the function is predisposed to VLSI implementation. The authors devised this method transforming the averaging filter
into stack filter; however, the invented binary box method allows us to synthesise stack filter which realises more complex signal processing
algorithms. The only assumption which limits the class of acceptable algorithms is the fact that the algorithm has to satisfy the stacking property
at each stage of the signal processing. The proposed approach allows us to convert well-known signal processing algorithms into realisation
which guarantees significantly greater speeds of signal processing.

Key words: stack filters, median, opening and closing operations.

The realisation of selected signal processing functions
by means of stack filters

Z. KUŚ* and A. NAWRAT
Silesian University of Technology, Institute of Automatic Control, 16 Akademicka St., Gliwice, Poland

There are linear and non-linear functions which find their
application in the field of image processing. However, a lot
of these functions are numerically complicated and require
a considerable amount of time for calculations. The most
popular functions are e.g. median [17–19], average [1] func-
tions or morphological operations [28]. The stack filters [22],
which have been known since 80s, have great features when
we need to speed up calculations. Unfortunately, the cost, we
have to incur, is the hardware; however, the more expensive
hardware results in the fact that the time of calculation may
be extremely shortened. The only constraint which limits the
class of functions, which may be represented in the form of
stack filters, is the requirement that the transformed function
has to satisfy the stacking property [22] at each stage of
signal processing. We may find a lot of methods for stack
filters synthesis which allow us to get stack filters based
on minimising various indicators. In such a case, the stack
filter is a solution of the optimisation problem. In this way,
we obtain stack filter with specific features depending on
requirements imposed by a given problem formulation. In
this paper, similarly to many examples in the literature, we
use the functions which are widely used in image filtering,
segmentation or pattern recognition tasks. Our goal is to find
the stack filter form for selected functions. This problem
may be complicated by the constraint which causes that
we are able to use only positive Boolean functions in the
architecture of the stack filter [22]. The collected and
perfected methods of creating stack filters will allow us to
obtain the form of processing which is dedicated to VLSI
implementation. Median and averaging filters, which are
used for image filtering, will be examples of non-linear and
linear functions respectively.

1.	 Introduction

Signal processing functions are essential elements of many
practical applications, especially in image processing systems.
The body of literature discusses widely image processing [1]
because of its multiple applications [2–7].

One of the most popular application of the image processing
systems is the system which can recognise the object’s in un-
known environment. An example one of such problem is the
problem of the control in the systems which are made for object
tracking, object observation or supervision of the object.

The location of the object may be used to steering the optic
system into proper direction. Dynamical properties of the ob-
served object, which are obtained from the localisation system,
decide about the parameters of the control system which works
with the optic system.

The problems of such a control system are discussed in
[8–10]. We may state that the properties of the system which
can recognise the object’s movements have crucial influence on
the problems with the synthesis of the control systems. Some
of such a problems were presented in [8–10].

High quality of the system which can find object location
results in high quality of the control system operation. The cal-
culation time in the image processing system is one of the most
important parameters for real time application. Realisation of
the signal processing in the form of stack filter allows us to
obtain very short time of calculation.

*e-mail: zkus@interia.pl

Manuscript submitted 2017-03-05, revised 2017-07‒30, 2017-09-14, 2017-10-16 and
2017-12-10, initially accepted for publication 2017-12-20, published in April 2018.

194

Z. Kuś and A. Nawrat

Bull. Pol. Ac.: Tech. 66(2) 2018

The main body of this paper will be divided into two parts.
The first one is devoted to basic formulation of the stack filter
properties and the second one discusses the realisation of the
used mathematical operations in the form of stack filters.

2.	 Literature review and the usefulness
of stack filters

There is a wide body of literature which discusses the architec-
ture of stack filters made in VLSI technology. We can find the
examples of such deliberations in e.g. [35, 42, 43, 46–57]. All
publications indicate on the fact that standard parallel stack filters
architecture ([50] Fig. 2.) is the fastest whereas its disadvantages
is the big size and cost of manufacturing the processor. However,
the comparison of the calculation time can be made by analysing
the operations which have to be conducted from the moment of
entering data into the filter to the moment of obtaining the output
result from the filter. Below, we will present the simplified anal-
ysis of the operations indispensable for carrying out stack filtering.

It is commonly known, that the signal calculation time is
dependent on, among other things, the necessity of writing data
into the register and reading data from the register, and per-
forming mathematical operations. These mathematical opera-
tions may be conducted for the numbers of binary-type (0,1),
integer-type numbers (integer numbers) or floating-point-type
numbers (the approximate values of real numbers). The calcu-
lation time of the abovementioned operations for the data in the
binary form is the shortest.

In the next paragraph, we will present the approximate anal-
ysis for the number of the clock cycles necessary for processing
data contained in one window in order to obtain stack filter
output for one pixel of the image.

2.1. Stack filter clock cycles. The stack filter conducts data
processing in the following stages.

The first stage comprises putting the M-value signal in the
filter input (the first clock cycle).

In all solutions the input data are written simultaneously – the
number of input registers is equal to size of the filter window.
The whole content of the window is processed simultaneously.

There is a close relation between the size of the window
selecting pixels from an image to processing and the size of the
processor’s register. The advantage of such a solution is the fact
that although the wider window results in a bigger register size
(the cost of the microprocessor increases), it does not influence
the calculation time.

The second stage comprises thresholding M-value signal
into M-1 binary signals (the second clock cycle).

The content of all registers containing data from the window
moving on the filtered image is thresholded simultaneously. In
this way, at each threshold level we obtain the sequence of bi-
nary numbers which are the arguments of the Boolean function
which defines stack filter. In this case, the following economic
problem appears: the greater the number of grey levels is, the
greater number of threshold levels. This results in a bigger size
of the processor what is strictly connected with the bigger pro-
cessor cost; however, it does not influence the calculation time.

The third stage comprises calculating the values of Boolean
functions (the third clock cycle).

The calculations are carried out simultaneously at all
threshold levels. In this case, the calculations come down to
passing the binary data vector through the appropriate combi-
nation of the logic gates. At this stage, it is especially valuable
to implement a stack filter as a dedicated microprocessor.

On the one hand, it is a constraint – one microprocessor
provides one Boolean function and we may have only one type
of stack filter, but on the other hand, we often do not need to
modify stack filter which is well adjusted to the features of the
noise. This situation is particularly common when we need fast
filtering which may be applied online to the video stream.

The fourth stage comprises detection of the highest level
of the binary output signal at which we met ‘1’ (the fourth
clock cycle).

Thanks to property of threshold decomposition and using
positive Boolean functions, we obtain the output values of the
Boolean functions which are ordered in the following way: for
a given position of a window we obtain an output binary vector
(the vertical column of binary numbers at the filter output). This
column has such a form that there are only zeros at the top and
there are only ones at the bottom. There is the one point where
ones change in zeros. It may be observed in Fig. 1.

Fig. 1. Stack filter architecture on the example of median filter with three elements inside window

195

The realisation of selected signal processing functions by means of stack filters

Bull. Pol. Ac.: Tech. 66(2) 2018

Due to this property, summing of the binary outputs may
be replaced by the detection of the highest level where the last
‘1’ is located. At this stage, the number of threshold levels does
not influence the processing time for a single filter window.

In this way, we obtain the value of the M-value output
signal. The key feature of this processing is the fact that the
signals are processed simultaneously at all stages of binary sig-
nals processing what is equivalent to passing the signal through
the logic gates. The number of such logic ways corresponds to
the window width and the number of grey levels. The above-
mentioned results in the fact that the stack filter made as a ded-
icated processor in VLSI technology is the fastest realisation
of the filter.

Each filter realisation based on programmable processors
requires more clock cycles for writing to registers, reading
from registers and mathematical calculations which altogether
extends data processing time. We obtain such a result when we
compare the stack filter and programmable processors made in
the same technology.

If, as an alternative to the stack filter, we use the computer
program, which was programmed in any computer language
and compiled to the processor’s language, it is necessary to take
further steps. Firstly, the data is entered into a register; secondly,
it is sent to the mathematical processor; then the calculations are
carried out and the result is finally sent back to a register. The
abovementioned four cycles of the processor, necessary for car-
rying out the calculations in the stack filter, need considerably
shorter time to obtain a result. It is due to the fact that data is
instantaneously sent to the logical gates which process the data.
This result concerns all types of the mathematical operations
which are discussed in this paper.

Concluding, we may state that the larger size of a window
and the larger number of grey levels do not influence the time of
window data processing. This is an obvious advantage of stack
filters over the solutions which use non-dedicated program-
mable processors. The total time of image processing depends
proportionally only on the image size. However, this problem
concerns all types of image filtering systems.

2.2. The motivation of dealing with stack filters. Considering
the motivation of dealing with stack filters nowadays, it is worth
reminding two features, well known from the first publications,
which make the problem still interesting to research.

The first feature, which stems from a big number of positive
Boolean functions, is the diversity of influence a filtered signal,
viz. the diversity of stack filters which have various features.

The second feature is to shorten data processing time. It is
a particularly significant problem which has appeared together
with the development of image processing applications – the
images which often appear in the form of video streams. It is
particularly worth quoting undermentioned deliberations indi-
cating on the significance of this problem on account of the
second feature.

The problem of time processing is particularly visible in
the case when we use more than one kind of image for object
tracking. Using thermal images together with a visual image
results in double amount of data which have to be processed

[2, 3]. In such a case, each way of shortening the processing
time is extremely useful. Due to using stack filter, in such
a case, the number of image types do not influence the pro-
cessing time because operations for each image type may be
conducted simultaneously.

The problem of time processing is crucial for the object
tracking task. The papers described below present various
methods which allow us to improve pattern recognition process.
The key feature of these solutions is decreasing the calculation
complexity and shortening calculation time. Additionally, if it
was possible to realise the necessary operation as stack filters,
then the methods presented below would allow us to decrease
the sizes of the stack filter elements.

The method of developing the invariant functions vector for
objects recognition from a given objects set is presented in [4].
This method allows us to select the proper set of the elements
of the pattern vector – the set which takes into consideration
the features of given tracked objects.

The method of guaranteeing the separation between the rec-
ognised object and background is presented in [5]. It reduces
the size of the pattern vector without losing the quality of the
recognition process.

The problem of minimizing the image resolution in order
to increase the computing speed without losing the separation
of the recognised patterns is presented in [6]. Presented results
show that it is possible to significantly decrease the amount of
processed data without losing the object.

Adjusting the thresholds to the recognised pattern in order
to improve the separation between the recognised patterns is
discussed in [7]. This solution is dedicated to realising calcula-
tions in stack filter architecture due to the fact that the lower the
number of threshold levels is, the lower cost of the stack filter.

The papers [8, 9] and [10] elaborate on the problem of the
synthesis control system for UAV and camera head which are
used for object tracking. The main conclusion which may be
drawn from these publications is the main role of data pro-
cessing time for an object tracking task. Image processing
system was not examined in these papers; however, we know
that the position of the tracked object is calculated on the basis
of the image processing system. In such a situation, the time of
image processing has to be treated as death time in the model of
the controlled plant. It can significantly worsen the operation of
the control system. The considerations discussed in [8–10] and
[11–13] convince us how important is the problem of shortening
processing time.

Yet another example of such a situation when we aim at
shortening the processing time is the problem of image retrieval
[14–16]. This problem is particularly important when we need
to enhance the quality of the image used to calculate UAV’s
trajectory in the object tracking task. In such a case, we have to
guarantee high image quality and short calculation time.

The abovementioned papers do not discuss stack filtering,
although in each of these problems it is visible how the problem
of shortening data processing time is crucial in particular appli-
cations of the image processing system.

The first publications concerning stack filters [22, 23] were
published in the 80s of the last century. Since then, we have

196

Z. Kuś and A. Nawrat

Bull. Pol. Ac.: Tech. 66(2) 2018

been observing that publications concerning stack filters have
been developing in two directions. One of them concerns stack
filter implementation, whereas the second focuses on the fea-
tures of stack filters based on different Boolean functions.

2.3. The synthesis of stack filters with different features.
The papers presented below consider the synthesis of stack fil-
ters with different features which depend on the used Boolean
function.

The problem of stack filters which minimise mean absolute
error was presented in [24] and [25]. The problem of morpho-
logical filters and their relations to median, order-statistic, and
stack filters were presented in [26] and [27]. Presented consid-
erations allow us to construct popular basic filters in the form
of stack filters. An algorithm that applies a stack filter simu-
lating the mean curvature motion equation via a finite difference
scheme is discussed in [32].

An unsupervised design of stack filters for recovering im-
ages from the impulse noise is proposed in [33]. The proposed
method bases on the tree structure optimization.

Binary quantum-behaved particle swarm optimization
(BQPSO) algorithm, and the design of stack filters for noise
suppression using BQPSO algorithm was proposed in [34].

An ant colony-clonal selection algorithm for stack filters’
optimizing is presented in [36]. The criterion used for mini-
mising was the MMAE criterion,

The synthesis of adaptive stack filters is discussed in [37].
In this work, the behaviour of adaptive stack filters is evaluated
for the classification of synthetic aperture radar (SAR) images,
which are affected by speckle noise.

An exact algorithm for optimal MAE stack filter design is
considered in [38]. The authors show that the duality of the
integer programming formulation of the filter design problem
is a minimum cost network flow problem. Next, they present
a decomposition principle that can be used to break this dual
problem into smaller sub-problems. Finally, they propose a spe-
cialization of the network Simplex algorithm based on column
generation to solve these smaller sub-problems.

Another approach to optimizing stack filters is presented in
[39]. As we know, the design of stack filters may be formulated
as a course of optimizing positive Boolean functions (PBF). In
this paper, the authors use clone selection algorithms (CSA)
to optimize stack filters under the mean absolute error (MAE)
criterion.

The authors of [40] indicate on the problems of using an
improved immune memory clonal selection algorithm (IMCSA)
for designing stack filters. The problem is the fact that the eval-
uation of each candidate solution involves the greatest computa-
tion complexity. In this paper, the authors propose representing
the positive Boolean function (PBF) in objective function and
a hybrid computation approach (software and hardware) for
the calculation tasks. An analysis framework that interprets
a Boolean vector to denote membership in a partition set is
present in [41]. Using this framework a new algorithm to com-
pute selection probabilities from positive Boolean functions is
derived. Next, they present a method to synthesize a stack filter
from specified selection probabilities.

The problem of improving the design of filters for enhancing
colour images is discussed in [44]. The proposed technique uses
an image fidelity measure based on models of the human visual
system – such as the visible differences predictor (VDP). It is
used in a nested loop training algorithm. In the inner loop of the
algorithm, a stack filter is trained under a weighted mean abso-
lute error (WMAE) Criterion to remove noise. In the outer loop,
the VDP is used to train the weights in the WMAE criterion to
ensure that the filter to which the algorithm converges is the
one that produces output images that are as visually satisfying
as possible.

The chapter in [45] concerns the comparison of various
stack filters features and approaches. We can find there such
subjects as minimum mean absolute error stack filtering, com-
putational requirements of stack filters, an application of stack
filters to noise reduction and edge detection.

The body of presented literature shows that the research on
stack filters has not finished, especially in the last decades there
has been a signficant development of the stack filters.

2.4. Stack filter implementations. The papers presented below
consider stack filter implementation.

The bit-plane stack filter algorithm for focal plane proces-
sors is presented in [35]. This work discusses a novel parallel
technique to implement stack morphological filters used for
image processing.

Several field programmable gate array (FPGA) imple-
mentations of stack filters are presented in [42]. This design
which was presented in the paper joins a modified version of
the Bit-Serial method, already used with Stack Smoothers. The
parallelism contained into the algorithms involved makes the
FPGA, with its remarkable ability to implement complex dig-
ital systems, to be especially appropriate for this application.
Owing to the fact that the FPGA contains the parallelism and
has its remarkable ability to implement complex digital sys-
tems, the authors consider this solution especially appropriate
for this application. What was found in this paper is the fact
that the properties of one of the mathematical structures in-
volved in the Stack Filter theory could help to significantly
improve the filter’s performance and to optimize its use of
hardware resources.

The paper [43] discusses the dynamic non-linear threshold
decomposition algorithm for implementing stack filters. This
paper has introduced a new non-linear threshold decomposition
architecture to reduce the complexity of the algorithm. Further-
more, by combining with the character of the image, a dynamic
non-linear decomposition architecture is proposed to implement
stack filters. This approach can shorten the running time in the
filtering procedure and improve the quality of the output image
simultaneously.

A new, however in the 90s, approach to the implementation
of stack filtering was suggested in work [47]. Based on this
approach, efficient algorithms and a new VLSI architecture
were developed and presented in [46]. The presented solution
is valuable because it connects two features: high speed of data
processing and programmability. This fact allows us to support
adaptive stack filtering in real time. The presented architec-

197

The realisation of selected signal processing functions by means of stack filters

Bull. Pol. Ac.: Tech. 66(2) 2018

ture of stack filter is based on the idea of information coding
about order relations between input samples within the filter’s
window by binary arrays (matrices). This information coding
is conducted in such a way that this information gives the pos-
sibility to find the output of a stack filter by applying simple
tests. Moreover, it can be easily updated during the sliding of
the window.

The main part of [48] concerns an algorithm for one-dimen-
sional stack filter, along with its hardware structure. The pro-
posed digital realization is simple and modular. The realization
proposed by authors is based on a compare and swap circuit.
Compared with other reported one-dimensional structures for
stack filters, and based on VLSI implementation, the new struc-
ture has a better performance in terms of area and time delay.
The new one-dimensional structure proposed in this paper has
been extended to a separable two-dimensional stack filter.

Yet another architecture of rank order median filter is pre-
sented in [49]. The architecture processes all window samples
in parallel in the bit-serial manner. Unlike related architectures,
it neither sorts/swaps nor modifies the window samples. Due to
this fact it requires less hardware resources. The authors showed
that in their solution, to process k samples, each of N-bits in
size, the architecture uses N shift registers of k bits each and
a simple logic. It results in N + 1 clock cycles independently
to the window size.

A particularly interesting work, in the area of stack filer
implementation in VLSI technology, is the paper [50] which
contains an overview of the various solutions of the stack filter
architecture problem. Presented approaches are aimed to main-
tain high speed for the data processing (due to the parallelism
of signal processing) as well as reduction of the cost which
has to be incurred for the production of the processor realising
stack filter (due to the changes in the data processing structure).

According to the authors of [50], the basic stack filter struc-
ture presented in Fig. 2. in [50] is not economical in production
due to the fact that it has a large number of threshold levels M
(e.g. grey scale images).

According to [51] and [52], a single threshold decomposi-
tion unit is used for the input sample entering the window while
the previously decomposed samples are stored in shift registers.
Despite the theoretical interest of this very fast architecture, it is
not practical for the large values of M because of the fact that
the area of the processor is proportional to the number of PBF
(positive Boolean function) units.

At the same time, the authors pay attention at the fact that
the size of the window is usually smaller than the number
of grey scale levels. This fact is the premise to decrease the
number of grey scale levels to the size of the window. It was
obtained by ordering input data in the window which is a kind
of the compression of the input data. It is the main idea of the
solution proposed in [50].

Another approximation is based on an algorithm of binary
search [53] implemented in a bit-serial way. A stack filter real-
izes nonlinear function processing by a “stack” of 2k ¡ 1 binary
processing circuits, where k is the number of bits in the input
signals. It is shown in this paper that the function of a stack
filter can be realized in k-step recursive use of one binary pro-
cessing circuit. This implementation uses only one PBF unit and
b = [log2M] calculations of the PBF in sequences. It is slow if b
is large and the throughput of the structure may be unacceptable
for high-speed applications.

Parametrizable decompositional algorithms and associated
VLSI architectures which generalize [53] are introduced in [54]
and [55]. They offer a series of tradeoffs between hardware
complexity and the degree of parallelism. A computationally
efficient algorithm for general stack filtering was presented in
[54]. This algorithm was based on the use of Fibonacci p-codes.
The resulting architecture allows compact VLSI implementa-
tions. A running stack filtering algorithm and architecture was
developed for filters based on a subclass of PBF’s. The bit-serial
approach for stack filter design, presented in [55], is generalized
to digit-serial processing for creating a class of pipeline-parallel
architectures using the lexicographic representation of data.
Threshold decomposition and bit-serial structures, as well as

Fig. 2. The structure of argument tables in binary box

198

Z. Kuś and A. Nawrat

Bull. Pol. Ac.: Tech. 66(2) 2018

Fibonacci p-code based designs are particular cases of the pro-
posed approach.

The architecture proposed in [56] can be seen as a bit-level
pipelined version of the bit serial implementation of stack fil-
ters, thus leading to implementations with a latency which is
too high for large values of M. That is, although less expensive
in hardware, these solutions might be non-suitable for real time
applications requiring parallel architectures.

A more efficient parallel architecture for stack filters uses
an input compression algorithm [57]. It maps the sample
points appearing in a window of size L onto the set of inte-
gers {0, 1, …, L ¡ 1} before any filtering takes places. By
combining input compression with the stack architecture prin-
ciple, the number of threshold levels is now (L ¡ 1) instead of
(M ¡ 1), so (L ¡ 1) binary filters are required instead of the
previous (M ¡ 1).

According to the abovementioned publications, stack filters
area of science has been developed in the last few years. How-
ever, publications presented in this paragraph are not connected
directly with the subject of this paper, but they show that there
are a lot of problems which are still worth developing. It proves
that stack filters are present in modern science.

3.	 Basic properties of the stack filters
architecture

Stack filters constitute a class of nonlinear filters. These filters
have two fundamental properties: threshold decomposition and
stacking property [22]. A lot of nonlinear filters are included
within the class of stack filters, especially such filters as: me-
dian filter [17], rank-order filters [20] and morphological filters
[28, 21].

The stack filter architecture is illustrated in Fig. 1 where
stack filter realises window-width three median filter for 1D
signal [22–25]. Figure 3.1. presents the fact that stack filtering
is based upon:

a)	 the threshold decomposition of the four-level input signal
into three binary signals;

b)	 the binary median filtering of these binary signals;
c)	 summing the output binary signals which results in

a four-level output signal.
In order to formalise the discussed terms, we will refer to

the following definitions.

The definition of the threshold decomposition [22–25].
The threshold decomposition of an M-valued sequence R with
integer elements R(k) is the ordered set of (M ¡ 1) binary se-
quences, called threshold sequences:

	 T1, T2, …, TM ¡ 1� (1)

which elements are denoted as follows:

	 Ti(j) = 
1  for  R(j)   ̧i
0  for  R(j) < i

� (2)

� □

The definition of the stacking property [22–25].
The ordered set M of binary vectors x–1, x–2, …, x–M satisfies the
stacking property if:

	 x–1   ̧x–2   ̧……   ̧x–M .� (3)

The Boolean function B(.) satisfies the stacking property if:

Fig. 3. The structure of argument tables in binary box which realises WA filtering for two input values f (1) = 5 and f (2) = 3

199

The realisation of selected signal processing functions by means of stack filters

Bull. Pol. Ac.: Tech. 66(2) 2018

	 x–   ̧ y– )  B(x–)   ̧B(y–).� (4)
� □

The necessary and sufficient condition of satisfying the
stacking property by the Boolean function [22, 23].
The Boolean function satisfies the stacking property if and only
if it can be expressed in the form of a Boolean expression con-
taining no complements of the input variables.� □

Taking into account the abovementioned definitions, we can
observe the following property. Owing to the fact that thresh-
olding results in a set of input binary sequences which satisfies
the stacking property and the fact that the Boolean function
used for binary filetring also satisfies the stacking property, we
can state that the output binary sequences satisfy the stacking
property.

Since zeros and ones are ordered in these sequences in such
a way that for a given moment of time (a vertical column of
zeros and ones) we have only zeros, moving from top to bottom,
and after the first switch from zero to one we have only ones till
the end of the column, we obtain the following simplification
of the multi-valued output signal calculation.

This simplification consists in the fact that instead of sum-
ming ones for a given column, in order to obtain the multi-valued
output for this element of the multi-valued output signal, we
detect the threshold level for which the output value equal one
occurs for the first time. During 2D grey scale image processing
we assume the following. The number of threshold levels equals
the number of grey levels minus one. The pixels of the input
image are chosen by defining the window and assigning the par-
ticular window pixels to the variables of the Boolean function.

Therefore the part of the image which is covered by the
window (for a given window location) is a multi-valued input
sequence for the filter. Thresholding of this sequence gives us
binary sequences which are the arguments of the Boolean func-
tion at each threshold level.

The values of the Boolean function for all threshold levels
create a column consisting exclusively of zeros (at the top)
and ones (at the bottom). The value of the pixel in the output
image, in the place where the window was located, is obtained
as a number of the threshold level where the value 1 is detected
for the first time (moving from top to bottom).

The fact that stack filters use Boolean functions at each
level of processing causes that the stack filters architecture is
predisposed to implement this filters in VLSI technology.

The architecture of stack filters does not limit the size and
shape of the filter window which is used for image processing.
The example presented in Fig. 1 has data arranged in 1D se-
quence; however, this sequence may be obtained from the filter
window of any shape and any size. It is necessary to define the
way of ordering this data into the input sequence of the stack
filter. This kind of data ordering is a part of a filter definition.
It depends on the result we want to obtain. However, we may
divide filters into two groups: the filters in which the result does
not depend and depends on the arguments order. In both cases,
the shape of the filter window has an unquestionable influence
on the obtained result.

4.	 Stack filters architecture for selected linear
and non-linear functions

The advantages of the hardware realisation of stack filters, es-
pecially in VLSI technology, cause that we will try to create
stack filters which will realise well-known and very useful func-
tions, such as the median filter, average filter, morphological
filters or gradient operation. The functions which are selected
as examples presented in the following subsections are chosen
according to the criterion of usefulness in the image processing
systems, e.g. [60–62].

4.1. Realising median filters as a stack filter. Median filter is
an example of nonlinear filter with very useful properties. These
properties constitute particularly edges preserve property and
the fact that during filtering new values of signal do not appear.
The median filters, on the whole, order statistics filters can be
realised by using maximum/minimum mathematical operations
as shown in [27]. It is known that in Boolean algebra the min-
imum (maximum) function corresponds to the expression of
the logical product (sum) of the Boolean variables – it allows
us to obtain an appropriate form of the Boolean function for
the stack filter.

As far as the k ¡ th order statistic filter is concerned, it
operates on the set A in this way that elements of A are arith-
metically ordered and then the k-th element of this ordered
sequence is the output of the filter. If the number of elements
inside the window equals 2N + 1, then we can describe creating
k-th order statistic filter as follows.

We choose all k-element combinations of (2N + 1) ele-
ments. The number of all elements equal (2N + 1) causes that
the number of these combinations is (2N + 1

k). For each such com-
bination, we calculate the minimum. Next, we calculate the
maximum of all minimums calculated in the previous step. We
can obtain a binary function when we replace max/min oper-
ations with logical operators and/or. An example of a binary
function for 2N + 1 = 3 (3 elements inside the window) and
k = 2 (median) is shown in (5)

	
med = {x1, x2, x3} = 
med = max{min{x1, x2}, min{x1, x3}, min{x2, x3}}
med = {x1, x2, x3} = x1 ∙ x2 + x1 ∙ x3 + x2 ∙ x3

� (5)

where a sum(product) corresponds to logical or(and).

4.2. Realising average filters as a stack filter. Average filters
are linear ones which are used to remove high frequency dis-
turbances. One of the disadvantages of these filters is the fact
that they blur the image. As it was presented in [26] and [27],
averaging filters can be realised by using supremum/infimum
(maximum/minimum) mathematical operations. It stems from
relations between linear and morphological filters, cf [26]. De-
tailed assumptions, theorems and proofs are presented in [26].
The methodology of mean value calculation may be quoted

200

Z. Kuś and A. Nawrat

Bull. Pol. Ac.: Tech. 66(2) 2018

from [26] where Section 4 presents relations between linear and
morphological filters. Formula (40) from the theorem 9 in [26]
is the basis for the method of calculating the average value for
any window width, which is presented in (8). The example on
page 1167 [26] presents the method for calculating the average
value for two arguments using the formula (42) and the method
for calculating the average value for three arguments using the
formula (43). Presented methods are based on calculating av-
erage value by calculating a supremum of minima. Formulas
(40), (42) and (43) in [26] allow us to derive (8) which presents
the method for calculating the average value for any number of
arguments. The deliberations presented between equations (42)
and (43) in [26], used for calculating the mean value of two
numbers, were used to derive (8) and (9), on the basis of which
we can calculate the mean value for any number of numbers.
We will present the formulation of the problem for discrete case.
We assume that the number of elements inside the window is
equal 2N + 1. The elements inside the window belong to the
subset of integer numbers 0, 1, 2, …, 255 (e.g. the values of
grey levels in grey images).

The size of the domain assumed for all calculations depends
on the task the calculations are used for. In some applications
it may be useful to decrease the domain size. For instance,
for greyscale images it is common to use the domain equal
{0, 1, 2, ¢¢¢, 255}. All intermediate results of calculations have
to be included in this assumed domain. It may result in an inac-
curacy of the calculations. The assumed size of the domain has
to guarantee that the inaccuracy will be acceptable.

In order to compute weighted average (WA), there is a factor
an ¸ 0 related to each window element. We assume that:

	
i = 2N +1

i = 1
∑ ai = 1.� (6)

The elements of the input signal are denoted as f (n). The
output value of WA filter is defined as:

	 YWA(n + N + 1) = 
i = 2N +1

i = 1
∑ ai f (n + i).� (7)

According to the discussions presented in [26], the reali-
sation of the abovementioned WA filter can be formulated as
presented in (8)

	

i = 2N +1

i = 1
∑ ai f (n + i) =  max

ri2{0, 1, …, 255}

(
min

(
f (n + 1) ¡ r1,

f(n + 2) ¡ r2, …,  f(n + 2N) ¡ r2N,  f(n + 2N + 1) +

+ 
a1r1 + a2r2 + … + a2Nr2N

1 ¡ ∑i = 2N
i = 1 ai

))
.

� (8)

The method of realisation WA filter formulated in (8), with
using max/min operations, allows us to compute the approxi-
mation of a linear filter in the form of a nonlinear stack filter.
However, the expression shown in (8) does not allow us to
describe the creation of a stack filter in a simple manner. It
was the reason that the novel method of stack filter creation
was developed. The necessity of creating a data spatial struc-
ture is the reason why the method is called the Binary Box
Method (BBM). BBM allows us to create the logical structure
which is predisposed to VLSI implementation. Standard stack
filtering, as it was presented in Fig. 1, consists of thresholding,
binary filtering and summing. BBM allows us to realize more
complex algorithms with the exploitation of advantages which
result from stacking property. It causes that Stacking Property
requirement has to be met at the each step of processing in
Binary Box Method.

4.3. Binary box method for a WA filter. The construction of
the stack filter which realises WA filtering described in (8) is
equivalent to the following steps.
1)	Creating 2-D argument tables.

In this case, these tables contain values for the elements
f (n + i) ¡ ri and last element from (8).

The tables in Fig. 2 contain the values of the signal (de-
creased, increased) thresholded with the threshold t. Firstly,
the tables with the size of (rmax£rmax) are filled with zeros.
rmax is the number of the admissible values of f (n), e.g. 256
grey levels.

Figure 2 presents forming the argument tables for i = {1,
2, ¢¢¢, 2N }. For ri = 1 we have f (n + i) in the table. For
ri > 1 there are decreasing values [f (n + i) ¡ ri] where
ri = {1, 2, ¢¢¢, f (n ¡ i) ¡ 1}. Figure 2 presents also forming
the argument table for i = 2N + 1. For r2N + 1 = 1 we have
the value of f(n + 2N + 1). For r2N + 1 > 1 we have increasing
values presented in (9)

	 f(n + 2N + 1) + 
r2N + 1 ∙ ∑

i = 2N
i = 1 ai

1 ¡ ∑i = 2N
i = 1 ai

.� (9)

Values ai have to meet the condition (6) (the sum of all ai
is equal 1). Therefore the expression (9) may be transformed
to the following form:

	 f(n + 2N + 1) + r2N + 1 ∙ 
1 ¡ a2N + 1

a2N + 1
.� (10)

If the coefficient (1 ¡ a2N + 1
a2N + 1

) is denoted as α, then we can see
that to the value of the function f(n + 2N + 1) there are added
in each step the values of r2N + 1 that increase by 1 in each step
and additionally they are multiplied by α. Therefore in the table
for i = 2N + 1 in Fig. 2 there will not be an increase by 1 in
the columns for the subsequent values r, but there will be an
increase by 1 times α. At the same time, we can see that irre-

201

The realisation of selected signal processing functions by means of stack filters

Bull. Pol. Ac.: Tech. 66(2) 2018

spective of the non-integer coefficients ai values the value α is
always integer and if we represent ai in the form of a fraction:
a2N + 1 = 1/β, where β is integer, then we obtain α = β ¡ 1. For
example, for each ai =  1

(2N + 1) we obtain α = 2N. Therefore in
this case, the rate of height increase for the columns of ‘ones’
in the table for i = 2N + 1 will be twice greater than N for
N > 1. For example, in the case from Fig. 3 we calculate the
mean value for two numbers so we assume a1 = a2 = 0.5 and
in this case α = 1.

The terms in (8) correspond to the tables presented in
Fig. 2. The element [f (n + 1) ¡ r1] corresponds to the table
X(i = 1, r, t). The element [f (n + 1) ¡ r2] corresponds to the
table X(i = 2, r, t). The penultimate element [f(n + 2N) ¡ r2N]
corresponds to the table X(i = 2N, r, t). The last element, pre-
sented in (10) corresponds to the table X(i = 2N + 1, r, t). When
we consider the signs of variables r1, r2, etc., then we can notice
that all variables r (except for the last r2N + 1) are subtracted
from f (…), whereas the last r2N + 1 is added to f(n + 2N + 1).
The variable r assumes values 0, 1, 2, …, 255. The range of
these values results from the assumed domain. This domain
corresponds to the grey levels in greyscale images. This as-
sumption does not limit our deliberations. The abovementioned
subtraction and addition decide about decreasing and increasing
of the columns containing ‘1’ in tables X(i, r, t) in Fig. 2. In the
tables for i = 1 to 2N, the number of ‘1’ in columns decreases
for the subsequent values r whereas in the table for i = 2N + 1
the number of ‘1’ in columns increases.

Variable r2N + 1 in (9) increases until the value of the expres-
sion (9) reaches rmax.

If the value of (9) achieves rmax for the value of variable
r2N + 1 < rmax, than the rest of the columns (the table for
i = 2N + 1 in Fig. 2 are filled with ones (two last columns of
the ‘1’ in the table for i = 2N + 1 in Fig. 2.

The sequence of the above-created tables defines a finite
discrete space (i, r, t) called binary box. The elements of this
space will be denoted as X(i, r, t).
2)	Calculating 2-D table with the values of the first function

operating on the tables from step 1.
In this case, the first function is a minimum. The elements

of the table are denoted as X(i = 2N + 2, r, t) and calculated
in (11)

	 X(i = 2N + 2, r, t) = 
i = 2N +1

i = 1
\ X(i, r, t).� (11)

3)	Calculating the vector of values for the second function
which operates on the rows (constant t) of the table calcu-
lated in step 2.
In this case, the second function is a maximum. The result

is the vector with the thresholded output YWA(n + N + 1) of the
WA filter. The elements of this vector for the thresholds t from
1 to (rmax ¡ 1) are denoted as YWA(n + N + 1)[t] and calculated
according to (12)

	 YWA(n + N + 1)[t] = 
r = rmax

r = 0
\ X(i = 2N + 2, r, t).� (12)

Thanks to the stacking property, the calculation of the final
result is nothing but the detection in YWA(n + N + 1) of the
threshold level for which 1 occurs for the first time, moving
from top to bottom. The number of this level constitutes the
output of the WA filter.

Figure 4 presents the schematic diagram of the logical
system which realises the average filter in the form of the
stack filter. In the scheme, there was presented a division of
the system into functional blocks; however, the realisation of
the filter in the VLSI technology assumes making the system
as a single processor.

Because of the necessity of carrying out a big number of
connections between particular blocks, for the sake of figure’s
clarity, only selected connections were marked. Particularly,
it concerns the ‘AND’ blocks which realise the operations de-
scribed in (11) and ‘OR’ blocks which realise the operations
described in (12).

To conclude the description of the variable X(i, r, t) from
the points 1, 2 and 3, we may state that the variable X(i, r, t)
is the block containing binary data which allow us to conduct
the process of calculating YWA. The subsequent stages of this
process are defined in the points 1, 2 and 3. In order to clarify
the way we use the calculations described in (8) we will present
two examples. The first of them presents an example for three
input values, described in a general way, whereas the second
one presents an example for two input values described in
a great detail in the paper.

Example 1. In this example we assume that we will calculate
the weighted average YWA for three input values with coeffi-
cients a1 = a2 = a3 = 1/3. According to (8), we assume N = 1
what results in three input elements. Therefore we obtain

YWA(n + N + 1) = YWA(n + 2) = 
i = 2N +1

i = 1
∑ ai f (n + i) = 

i = 3

i = 1
∑ai f (n + i) =  max

ri2{0, 1, …, rmax}

(
min

(
f (n + 1) ¡ r1,

f (n + 2) ¡ r2,  f (n + 3) + r3 ¢ 
∑i = 2N

i = 1 ai

1 ¡ ∑i = 2N
i = 1 ai

))
 =  max

ri2{0, 1, …, rmax}

(
min

(
f (n + 1) ¡ r1,  f (n + 2) ¡ r2,  f (n + 3) +

 + r3 ¢ 
1/3 + 1/3

1 ¡ (1/3 + 1/3)

))
 =  max

ri2{0, 1, …, rmax}

(
min

(
f (n + 1) ¡ r1,  f (n + 2) ¡ r2,  f (n + 3) + r3 ¢ 2

))
.

� (13)

202

Z. Kuś and A. Nawrat

Bull. Pol. Ac.: Tech. 66(2) 2018

Fig. 4. The schematic diagram of the logical system realising the average filter in the form of the stack filter

Input

Input

Input

value
f (n + 1)

value
f (n + 2N)

value
f(n + 2N  + 1)

203

The realisation of selected signal processing functions by means of stack filters

Bull. Pol. Ac.: Tech. 66(2) 2018

where r1, r2 and r3 assume the subsequent values 0, 1, …, rmax. There-
fore to find minimum { f(n + 1) ¡ r1,  f(n + 2) ¡ r2,  f(n + 3) +
+ r3 ¢ 2} for ri 2 {0, 1, …, rmax} we assume the following values
of ri and for them we obtain the values of minima M(ri):

	

M(ri = 0) = min
(

f (n + 1),  f (n + 2),  f (n + 3)
)

M(ri = 1) = min
(

f (n + 1) ¡ 1,  f (n + 2) ¡ 1, 

M(ri = 1) = min
(

f (n + 3) + 1 ¢ 2
)

M(ri = 2) = min
(

f (n + 1) ¡ 2,  f (n + 2) ¡ 2, 

M(ri = 1) = min
(

f (n + 3) + 2 ¢ 2
)

M(ri = 3) = min
(

f (n + 1) ¡ 3,  f (n + 2) ¡ 3, 

M(ri = 1) = min
(

f (n + 3) + 3 ¢ 2
)

	 	

M(ri = rmax) = min
(

f (n + 1) ¡ rmax,  f (n + 2) ¡ rmax,

M(ri = rmax) = min
(

f (n + 3) + rmax ¢ 2
)

.

� (14)

On account of the fact that the domain for all used variables
is equal {0, 1, …, rmax}, we assume that when f (n + j) ¡ ri < 0,
then we assume f (n + j) ¡ ri = 0.

The same reason causes that when f(n + 3) + ri ¢ 2 > rmax,
then we assume f (n + 3) + ri = rmax.

In this way, we obtain YWA(n + 2) in the following form:

	
YWA(n + 2) =  max

ri2{0, 1, …, rmax}

(

M(ri = 0), M(ri = 1), …

YWA(n + 2) = 
(

…, M(ri = rmax)
)

.
� (15)

The next example presents the calculation of YWA for two
input values.

Example 2. In this example we assume that we will calculate
the weighted average YWA for two input values with coefficients
a1 = a2 = 1/2. We will use the simplified notation for input
values and we assume that f (n + 1) and f (n + 2) will be de-
noted as f (1) = 5 and f (2) = 3 respectively.

The domain for all non-binary variables is equal D = {0, 1,
…, rmax} where rmax = 7. The maximum value of variables in
D is equal 7, which causes that the maximum value of the
threshold t is equal 7 and t 2 {1, 2, …, 7}. Owing to the fact
that we calculate weighted average for two inputs, the variable
i assumes 2 + 1 values: 1, 2 and 3. The variable X(i, r, t) is
a block which contains in its cells binary values 0 or 1. The size
of X(i, r, t) is equal 3£8£7. The tables for i = 1 and i = 2 are
connected to f(1) and f (2) respectively. The table for i = 3 is

obtained as a result of calcutations in (11). The variables r1 and
r2 assume subsequent values 0, 1, 2, …, 7. The variable t de-
fines the threshold and it assumes subsequent values 1, 2, …, 7.

According to (8), for the abovementioned assumpions, we
obtain the following expression for calculating the weighted
average for two arguments.

YWA(f (1),  f (2)) = a1 f (1) + a2 f (2) = 
f (1) + f (2)

2
 =

=  max
ri2{0, 1, …, rmax}

(
min

(
f (1) ¡ r1,  f (2) + r2 ¢ 

a1

1 ¡ a1

))
 =

=  max
ri2{0, 1, …, 7}

(
min

(
f (1) ¡ r1,  f (2) + r2

))
.

� (16)

where r1 and r2 assume the subsequent values 0, 1, …, rmax,
rmax = 7.

The procedure for calculating the value of YWA(f (1),  f (2))
is detailed in the following four steps.

1.	Calculating X(i = 1, r, t).
The table X(i = 1, r, t) includes the element f(1) ¡ r1 from

(16). We denote the variable on the axis r for i = 1 as r1. For
the subsequent values of r1, we obtain the values of f (1) ¡ r1
presented in (17).

	

f (1) ¡  r1 =  5  for  r1 =  0
f (1) ¡  r1 =  4  for  r1 =  1
f (1) ¡  r1 =  3  for  r1 =  2
f (1) ¡  r1 =  2  for  r1 =  3
f (1) ¡  r1 =  1  for  r1 =  4
f (1) ¡  r1 =  0  for  r1 =  5
f (1) ¡  r1 =  0  for  r1 =  6
f (1) ¡  r1 =  0  for  r1 =  7 .

� (17)

As we can see in (17), for values f(1) ¡ r1 < 0 we assume
f (1) ¡ r1 = 0. It is caused by the fact that the domain for all
used variables is equal {0, 1, …, 7}.

Next, each value of f (1) ¡ r1 is thresholded with the thresh-
olds t equal 1 to 7 and in this way we obtain the binary columns
in X(i = 1, r, t). The first column corresponds to f(1) ¡ r1 for
r1 = 0, the second column corresponds to f (1) ¡ r1 for r1 = 1
and so on up to r1 = 7. It is presented in the Table 1.

We obtain the table X(i = 1, r, t) by combining the binary
columns from the Table 1.

2.	Calculating X(i = 2, r, t).
The table X(i = 2, r, t) includes the element f (2) + r2 from

(16). We denote the variable on the axis r for i = 2 as r2. For

204

Z. Kuś and A. Nawrat

Bull. Pol. Ac.: Tech. 66(2) 2018

the subsequent values of r2, we obtain values of f(2) + r2 pre-
sented in (18).

	

f (2) +  r2 =  3  for  r2 =  0
f (2) +  r2 =  4  for  r2 =  1
f (2) +  r2 =  5  for  r2 =  2
f (2) +  r2 =  6  for  r2 =  3
f (2) +  r2 =  7  for  r2 =  4
f (2) +  r2 =  7  for  r2 =  5
f (2) +  r2 =  7  for  r2 =  6
f (2) +  r2 =  7  for  r2 =  7 .

� (18)

As we can see in (18), for values f (2) + r2 > 7 we assume
f (2) + r2 = 7. It is caused by the fact that the domain for all
used variables is equal {0, 1, …, 7}.

Next, each value of f(2) + r2 is thresholded with the thresh-
olds t equal 1 to 7 and in this way we obtain the binary columns
in X(i = 2, r, t). The first column corresponds to f (2) + r2 for
r2 = 0, the second column corresponds to f (2) + r2 for r2 = 1
and so on up to r2 = 7. It is presented in the Table 2.

We obtain the table X(i = 2, r, t) by combining the binary
columns from the Table 2.

3.	Calculating X(i = 3, r, t).
The calculation of X(i = 3, r, t), described in (11), corre-

sponds to the operation min from (8). For the example 2, we
obtain the form of (11) presented in (19)

	 X(i = 3, r, t) = 
i = 2

i = 1
\ X(i, r, t).� (19)

4.	Calculating YWA.
The general expression which is used to calculate YWA in the

binary form is presented in (12). For the example 2, the equation
(12) assumes a form shown in (20)

	 YWA(t) = 
r = 7

r = 0
\ X(i = 3, r, t).� (20)

The way of carrying out these logical operations is pre-
sented in Table 3.

The multi-value form of YWA(t) is obtained as a sum of bi-
nary outputs

	 YWA = 
t = 7

t = 0
∑ YWA(t) = 4 .� (21)

Figure 3 presents the structure of argument tables in binary
box which realises WA filtering for two input values f (1) = 5
and f (2) = 3 with coefficients a1 = a2 = 1/2.

Table 3
Calculating YWA in the binary form

X(i = 3, r, t) binary
YWA(t)r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0

0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0

0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0

0 or 1 or 0 or 0 or 0 or 0 or 0 or 0 = 1

1 or 1 or 1 or 0 or 0 or 0 or 0 or 0 = 1

1 or 1 or 1 or 1 or 0 or 0 or 0 or 0 = 1

1 or 1 or 1 or 1 or 1 or 0 or 0 or 0 = 1

Table 1
Thresholded values of f (1) ¡ r1

Multi-value variables

f (1) 5 5 5 5 5 5 5 5

r1 0 1 2 3 4 5 6 7

f (1) ¡ r1 5 4 3 2 1 0 0 0

Binary values of thresholded f(1) ¡ r1

t = 7 0 0 0 0 0 0 0 0

t = 6 0 0 0 0 0 0 0 0

t = 5 1 0 0 0 0 0 0 0

t = 4 1 1 0 0 0 0 0 0

t = 3 1 1 1 0 0 0 0 0

t = 2 1 1 1 1 0 0 0 0

t = 1 1 1 1 1 1 0 0 0

Table 2
Thresholded values of f(2) + r2

Multi-value variables

f (2) 3 3 3 3 3 3 3 3

r2 0 1 2 3 4 5 6 7

f(2) + r2 3 4 5 6 7 7 7 7

Binary values of thresholded f (2) ¡ r2

t = 7 0 0 0 0 1 1 1 1

t = 6 0 0 0 1 1 1 1 1

t = 5 0 0 1 1 1 1 1 1

t = 4 0 1 1 1 1 1 1 1

t = 3 1 1 1 1 1 1 1 1

t = 2 1 1 1 1 1 1 1 1

t = 1 1 1 1 1 1 1 1 1

205

The realisation of selected signal processing functions by means of stack filters

Bull. Pol. Ac.: Tech. 66(2) 2018

The proposed Binary Box Method, applied to calculating
weighted average, may be used to realise other signal pro-
cessing functions in the case when it is necessary to make cal-
culations in two steps. When the stacking property is guaranteed
for both steps of calculation, then using BBM allows us to use
all assets of stack filters.

4.4. Realising morphological filters as a stack filter. Other
filters, realised as stack filters, which are often used for fil-
tering are the morphological filters realising opening and
closing operations. The morphological filters can be realised
as stack filters with appropriate binary functions as shown in
[26] and [27].

In morphological filtering, each input signal is presented
as a set, and its geometrical features are modified by the mor-
phological convolution of the signal with a structuring element.
This structuring element is another set of a simple shape and
size [28]. The shape and size of this element define which
pixels of the input image are taken into account for calculating
the value of the output pixel for a given window location. By
adjusting appropriately the shape and size of the structuring
element to the size and shape of the recognised object we can
remove or enlarge the selected elements in the image.

According to the approach presented in [26], we may present
the formulation of morphological filters which operate on: sets
– set-processing filters (SP), functions – function-processing
filters (FP) or function-and-set-processing filters (FSP). At the
same time, we will consider only the class of upper semicon-
tinuous (u.s.c.) functions.

Morphological filters may be analysed as SP filters which
operate on input m-D sets by interacting them via Minkowski
set addition or subtraction with structuring elements that are
n-D sets n ∙ m. The Minkowski set addition [29, 30] of the sets
A, B µ Rm is the set shown in (22)

	 A © B = {a + b : a 2 A, b 2 B} = 
b 2 B
[Ab .� (22)

where Ab = {a + b : a 2 A} The Minkowski set subtraction [30]
of B from A is the set defined in (23)

	 A ª B = (AC © B)C 
b 2 B
\Ab .� (23)

Let BS = {–b : b 2 B} denote the symmetric set of B and

The Realisation of Selected Signal Processing Functions

Table 2. Thresholded values of f (2)+ r2.

Multi-value variables

f (2) 3 3 3 3 3 3 3 3

r2 0 1 2 3 4 5 6 7

f (2)+ r2 3 4 5 6 7 7 7 7

Binary values of thresholded f (1)− r1

t = 7 0 0 0 0 1 1 1 1

t = 6 0 0 0 1 1 1 1 1

t = 5 0 0 1 1 1 1 1 1

t = 4 0 1 1 1 1 1 1 1

t = 3 1 1 1 1 1 1 1 1

t = 2 1 1 1 1 1 1 1 1

t = 1 1 1 1 1 1 1 1 1

Table 3. Ccalculating YWA in the binary form.

X(i = 3,r, t) binary
r=0 r=1 r=2 r=3 r=4 r=5 r=6 r=7 YWA(t)
0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0
0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0
0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0
0 or 1 or 0 or 0 or 0 or 0 or 0 or 0 = 1
1 or 1 or 1 or 0 or 0 or 0 or 0 or 0 = 1
1 or 1 or 1 or 1 or 0 or 0 or 0 or 0 = 1
1 or 1 or 1 or 1 or 1 or 0 or 0 or 0 = 1

X(i = 3,r, t) =
i=2⋂
i=1

X(i,r, t) . (19)

4. Calculating YWA

The general expression which is used to calculate YWA in
the binary form is presented in (12). For the example 2, the
equation (12) assumes a form shown in (20)

YWA(t) =
r=7⋃
r=0

X(i = 3,r, t) . (20)

The way of carrying out these logical operations is presented
in table 3.

The multi-value form of YWA(t) is obtained as a sum of bi-
nary outputs

YWA =
t=7

∑
t=1

YWA(t) = 4 . (21)

Fig.3 presents the structure of argument tables in binary box
which realises WA filtering for two input values f (1) = 5 and
f (2) = 3 with coefficients a1 = a2 = 1/2.

The proposed Binary Box Method, applied to calculating
weighted average, may be used to realise other signal process-
ing functions in the case when it is necessary to make calcula-
tions in two steps. When the stacking property is guaranteed
for both steps of calculation, then using BBM allows to use all
assets of stack filters.

4.4. Realising morphological filters as a stack filter. Other
filters, realised as stack filters, which are often used for filter-
ing are the morphological filters realising opening and closing
operations. The morphological filters can be realised as stack
filters with appropriate binary functions as shown in [26] and
[27].

In morphological filtering, each input signal is presented as
a set, and its geometrical features are modified by the morpho-
logical convolution of the signal with a structuring element.
This structuring element is another set of a simple shape and
size [28]. The shape and size of this element define which pix-
els of the input image are taken into account for calculating
the value of the output pixel for a given window location. By
adjusting appropriately the shape and size of the structuring
element to the size and shape of the recognised object we can
remove or enlarge the selected elements in the image.

According to the approach presented in [26], we may
present the formulation of morphological filters which oper-
ate on: sets - set-processing filters (SP), functions - function-
processing filters (FP) or function-and-set-processing filters
(FSP). At the same time, we will consider only the class of
upper semicontinuous (u.s.c.) functions.

Morphological filters may be analysed as SP filters which
operate on input m-D sets by interacting them via Minkowski
set addition or subtraction with structuring elements that are
n-D sets n ≤ m. The Minkowski set addition [29], [30] of the
sets A,B ⊆ Rm is the set shown in (22)

A⊕B = {a+b : a ∈ A,b ∈ B}=
⋃

b∈B

Ab . (22)

where Ab = {a+ b : a ∈ A} The Minkowski set subtraction
[30] of B from A is the set defined in (23)

A�B =
(
AC ⊕B

)C ⋂

b∈B

Ab . (23)

Let BS = {−b : b ∈ B} denote the symmetric set of B and
/0 denotes the empty set. The basic SP morphological filters
are the erosion X �BS, opening XB and closing XB of X by B,
defined in [26] as:

X �BS = {z : Bz ⊆ X}=
⋂

b∈B

X−b (24)

X ⊕BS = {z : Bz ∩X �= /0}=
⋃

b∈B

X−b (25)

XB = (X �BS)⊕B (26)

XB = (X ⊕BS)�B . (27)

Bull. Pol. Ac.: Tech. XX(Y) 2016 11

 denotes the empty set. The basic SP morphological filters
are the erosion X ª BS, opening XB and closing X B of X by B,
defined in [26] as:

	 X ª BS = {z : Bz µ X } = 
b 2 B
\ X–b � (24)

	 X © BS = {z : Bz \ X  6= 

The Realisation of Selected Signal Processing Functions

Table 2. Thresholded values of f (2)+ r2.

Multi-value variables

f (2) 3 3 3 3 3 3 3 3

r2 0 1 2 3 4 5 6 7

f (2)+ r2 3 4 5 6 7 7 7 7

Binary values of thresholded f (1)− r1

t = 7 0 0 0 0 1 1 1 1

t = 6 0 0 0 1 1 1 1 1

t = 5 0 0 1 1 1 1 1 1

t = 4 0 1 1 1 1 1 1 1

t = 3 1 1 1 1 1 1 1 1

t = 2 1 1 1 1 1 1 1 1

t = 1 1 1 1 1 1 1 1 1

Table 3. Ccalculating YWA in the binary form.

X(i = 3,r, t) binary
r=0 r=1 r=2 r=3 r=4 r=5 r=6 r=7 YWA(t)
0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0
0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0
0 or 0 or 0 or 0 or 0 or 0 or 0 or 0 = 0
0 or 1 or 0 or 0 or 0 or 0 or 0 or 0 = 1
1 or 1 or 1 or 0 or 0 or 0 or 0 or 0 = 1
1 or 1 or 1 or 1 or 0 or 0 or 0 or 0 = 1
1 or 1 or 1 or 1 or 1 or 0 or 0 or 0 = 1

X(i = 3,r, t) =
i=2⋂
i=1

X(i,r, t) . (19)

4. Calculating YWA

The general expression which is used to calculate YWA in
the binary form is presented in (12). For the example 2, the
equation (12) assumes a form shown in (20)

YWA(t) =
r=7⋃
r=0

X(i = 3,r, t) . (20)

The way of carrying out these logical operations is presented
in table 3.

The multi-value form of YWA(t) is obtained as a sum of bi-
nary outputs

YWA =
t=7

∑
t=1

YWA(t) = 4 . (21)

Fig.3 presents the structure of argument tables in binary box
which realises WA filtering for two input values f (1) = 5 and
f (2) = 3 with coefficients a1 = a2 = 1/2.

The proposed Binary Box Method, applied to calculating
weighted average, may be used to realise other signal process-
ing functions in the case when it is necessary to make calcula-
tions in two steps. When the stacking property is guaranteed
for both steps of calculation, then using BBM allows to use all
assets of stack filters.

4.4. Realising morphological filters as a stack filter. Other
filters, realised as stack filters, which are often used for filter-
ing are the morphological filters realising opening and closing
operations. The morphological filters can be realised as stack
filters with appropriate binary functions as shown in [26] and
[27].

In morphological filtering, each input signal is presented as
a set, and its geometrical features are modified by the morpho-
logical convolution of the signal with a structuring element.
This structuring element is another set of a simple shape and
size [28]. The shape and size of this element define which pix-
els of the input image are taken into account for calculating
the value of the output pixel for a given window location. By
adjusting appropriately the shape and size of the structuring
element to the size and shape of the recognised object we can
remove or enlarge the selected elements in the image.

According to the approach presented in [26], we may
present the formulation of morphological filters which oper-
ate on: sets - set-processing filters (SP), functions - function-
processing filters (FP) or function-and-set-processing filters
(FSP). At the same time, we will consider only the class of
upper semicontinuous (u.s.c.) functions.

Morphological filters may be analysed as SP filters which
operate on input m-D sets by interacting them via Minkowski
set addition or subtraction with structuring elements that are
n-D sets n ≤ m. The Minkowski set addition [29], [30] of the
sets A,B ⊆ Rm is the set shown in (22)

A⊕B = {a+b : a ∈ A,b ∈ B}=
⋃

b∈B

Ab . (22)

where Ab = {a+ b : a ∈ A} The Minkowski set subtraction
[30] of B from A is the set defined in (23)

A�B =
(
AC ⊕B

)C ⋂

b∈B

Ab . (23)

Let BS = {−b : b ∈ B} denote the symmetric set of B and
/0 denotes the empty set. The basic SP morphological filters
are the erosion X �BS, opening XB and closing XB of X by B,
defined in [26] as:

X �BS = {z : Bz ⊆ X}=
⋂

b∈B

X−b (24)

X ⊕BS = {z : Bz ∩X �= /0}=
⋃

b∈B

X−b (25)

XB = (X �BS)⊕B (26)

XB = (X ⊕BS)�B . (27)

Bull. Pol. Ac.: Tech. XX(Y) 2016 11

} = 
b 2 B
\ X–b � (25)

	 XB = (X ª BS) © B � (26)

	 X B = (X © BS) ª B.� (27)

In order to discuss the FSP morphological filters, we have
to define herein, according to [26], the cross section term. We
consider m-dimensional function f (x) which domain is a subset
of the domain space D = Z m or Rm (Z-integer numbers, R-real
numbers). We assume the range of f (x) values as a subset of
the range space V = R or Z. Signals can be represented either
by functions or by sets. The set is the primary notion which
causes that the main issue is to represent functions by sets. It
will be conducted in the way described below. An m-D function
can be represented by an ensemble of m-D sets called its cross
sections. The set

	 Xt(f) = {x 2 D :  f (x) ¸ t}, t 2 V� (28)

is called the cross section of f (x) at the level t and is obtained
by thresholding f (x) at the level t. By considering all different
levels t, we can associate f (x) with a family of sets. These sets
decrease monotonically as t increases.

According to [26], we can present FSP filters. ‘m-D u.s.c.
function’ denotes m-dimensional function which is upper
semi-continuous (m-dimensional function, D = Zm or D = Rm).
It is defined in [56] and [59] together with the lower semi-con-
tinuous functions (1.s.c.). The input signals are m-D u.s.c.
functions and the structuring elements are compact n-D sets
with n ∙ m. As presented in [26] they commute with thresh-
olding. As an example we can present the erosion. Let Φ be
the SP erosion filter by B then [28] defines an FSP erosion
by B as follows. Since Φ is increasing (positive Boolean
function) and u.s.c., for any input function f, the set class
{Φ[Xt(f)] = Xt(f) ª BS : t 2 V} creates an output function h
by setting Xt(h) = Φ[Xt(f)]. This output function is the ero-
sion of f by B, denoted by f  ª BS. Likewise, we can define the
dilation f  © BS

	
Xt(f  ª BS) = 

= Xt(f) ª BS , (f  ª BS)(x) =  inf
y2Bx

f(x)
� (29)

	
Xt(f  © BS) = 

= Xt(f) © BS , (f  © BS)(x) = sup
y2Bx

f(x).
� (30)

In this way, we obtain the erosion (dilation) description
using the operation infimum (supremum) which operations for
discrete compact closed sets are equal minimum (maximum).
Thus, the erosion (dilation) of f by B at any point x is obtained
by shifting the set B to location x and taking the minimum
(maximum) of f inside this shifted set.

206

Z. Kuś and A. Nawrat

Bull. Pol. Ac.: Tech. 66(2) 2018

At the same time, it is known that in Boolean algebra cal-
culating the minimum (maximum) for binary variables corre-
sponds to the expression in the form of logical product (sum) of
these variables. By using, at each threshold level, the Boolean
functions which are product (sum) of variables corresponding
to elements of the structural element B we obtain the operation
erosion (dilation) in morphological processing.

4.5. Calculation of the gradient as a stack filter. Other fil-
ters, realised as stack filters, which we are often used for
filtering are the morphological filters realising gradient as
opening and closing operations [31]. One knows, that for func-
tion F(x1, x2) of two variables x1, x2 with continuous partial
derivatives the gradient grad(F) is defined as 2-D vector pre-
sented in (31)

	


 ∂F
∂x1

,  ∂F
∂x2 


.� (31)

Hence morphological gradient may be defined as [31]:

	 grad(F) =  lim
r!0

1
2r

[(F © rB) ¡ (F ª rB)] � (32)

where B – is the circle with the radius equal 1, r – the real
number. For discrete images, it is necessary to formulate gra-
dient term taking into consideration that r cannot be arbitrarily
small. Therefore on a discrete plane we use the equation [31]:

	 F∇B =  1
2
[(F © B) ¡ (F ª B)] � (33)

In (33)[31] F∇B corresponds to an absolute value of the gra-
dient from (33)[31] B is a discrete approximation of a unit circle
in the form of a square 3£3 pixels. These operations conducted
in each threshold level guarantee stacking property. Therefore
taking into consideration the abovementioned discussion about
morphological filters as a stack filters, it is possible to make
calculations of gradient as stack filtering.

The realisation of data processing in the form of stack filters
results in shorter processing time which constitutes a crucial
problem in many signal processing tasks, especially in many
image processing tasks.

5.	 Conclusions

The presented paper focused on the method of refining signal
processing by shortening the time of calculations. We proposed
a modification bringing in realising various functions in the
form of stack filters. The selected functions represent both
linear and non-linear classes of functions. The examples of
functions which were presented in the paper were selected be-
cause of their large usefulness in the image processing systems.

These systems are ones in which the time of calculation is often
the critical parameter and it decides about the usefulness of the
proposed solution.

The paper collected and presented the methods of selected
functions transformation into form of stack filter for the fol-
lowing functions: median, opening and closing morphological
operations and gradient operation. In the body of literature,
these functions are well-known and widely used for image pro-
cessing.

The problems which appeared during the synthesis of the
morphological filters as stack filters led to developing a novel
method for the stack filter synthesis. This method was called
by the authors the Binary Box Method (BBM). It is a two-stage
method which allows us to present in the form of stack filter the
more complicated mathematical operations. What we mean by
“complicated” is the complex representation of a given function
in the form of a stack filter. In this paper, the application of
BBM was presented for the average filter. The only condition
for the BBM which has to be met is the stacking property at all
stages of the converted algorithm.

The developed method was proposed for the limited class
of functions because of stack filters properties. The functions
which we intend to convert have to satisfy stacking property
requirement at each step of signal processing.

The proposed approach allows us to convert well-known
signal processing algorithms into realisation which guarantees
significantly greater speeds of signal processing.

References
	 [1]	 M. Sonka, V. Hlavac, and R. Boyle: Image Processing, Analysis

and Machina Vision, 3rd ed. Thompson, (2008).
	 [2]	 Z. Kuś, “Dynamical Pattern Vector in Pattern Recognition with

the Use of Thermal Images”, 8th International Conference on
Computer and Automation Engineering (ICCAE 2016), MATEC
Web of Conferences, Volume 56, (2016).

	 [3]	 Z. Kuś, “The Fusion of the Visual and Thermal Images on the
Basis of Determining the Image Fragments which Contain Es-
sential Details”, 8th International Conference on Computer and
Automation Engineering (ICCAE 2016), MATECWeb of Con-
ferences ,Volume 56, (2016).

	 [4]	 Z. Kuś and A. Nawrat, “The Method of Developing the Invariant
Functions Vector for Objects Recognition from a Given Objects
Set”, Innovative Simulation Systems, Eds. A. Nawrat, K. Jedra-
siak, ISBN 9783319211176 9783319211183, Springer, (2016).

	 [5]	 Z. Kuś and A. Nawrat, “The Method of Guaranteeing the Separa
tion between the Recognised Object and Background”, Innova-
tive Simulation Systems, Eds. A. Nawrat, K. Jedrasiak, ISBN
9783319211176 9783319211183, Springer, (2016).

	 [6]	 Z. Kuś and A. Nawrat, “Minimizing the Image Resolution in
order to Increase the Computing Speed without Losing the
Separation of the Recognised Patterns”, Innovative Simulation
Systems, Eds. A. Nawrat, K. Jedrasiak, ISBN 9783319211176
9783319211183, Springer, (2016).

	 [7]	 Z. Kuś and A. Nawrat, “Adjusting the Thresholds to the Rec-
ognised Pattern in order to Improve the Separation Between
the Recognised Patterns”, Innovative Simulation Systems, Eds.
A. Nawrat, K. Jedrasiak, ISBN 9783319211176 9783319211183,
Springer, (2016).

207

The realisation of selected signal processing functions by means of stack filters

Bull. Pol. Ac.: Tech. 66(2) 2018

	 [8]	 Z. Kuś, “The Analysis of Dynamical Properties of the Ob-
ject Tracking System’s Elements”, Bull. Pol. Ac.: Tech. 64
(3), 479‒489, ISSN (Online) 2300‒1917, DOI: https://doi.
org/10.1515/bpasts-2016‒0053, September 2016

	 [9]	 Z. Kuś and A. Nawrat, “Camera head control system with
a changeable gain in a proportional regulator for object
tracking”, Innovative control systems for tracked vehicle plat-
forms. Ed. Aleksander Nawrat. Cham : Springer, (2014), (Studies
in Systems, Decision and Control ; Vol. 2 2198‒4182) ISBN:
978‒3‒319‒04623‒5 (Print) 978‒3‒319‒04624‒2 (Online) DOI
10.1007/978‒3‒319‒04624‒2

	[10]	 Z. Kuś and A. Nawrat, “The limitation for the angular velocity
of the camera head during object tracking with the use of the
UAV”, Innovative control systems for tracked vehicle platforms.
Ed. Aleksander Nawrat. Cham : Springer, (2014), (Studies in
Systems, Decision and Control ; Vol. 2 2198‒4182) ISBN:
978‒3‒319‒04623‒5 (Print) 978‒3‒319‒04624‒2 (Online) DOI
10.1007/978‒3‒319‒04624‒2

	[11]	 M. Blachuta and R. Grygiel, “Are anti-aliasing filters really
necessary for sampled-data control?”, American Control Con-
ference, St Louis, 2009 American Control Conference, VOLS
1‒9 Book Series: Proc. of the American Control Conf. Pages:
3200‒3205, Jun 10‒12, (2009).

	[12]	 M. Blachuta and R. Grygiel, “On the Effect of Anti-aliasing
Filters on Sampled-Data PID Control”, 21st Chinese Control
and Decision Conference, Guilin, Peoples R China, Jun 17‒19,
(2009).

	[13]	 R. Bieda, M. Blachuta, and R. Grygiel, “High Performance PID
Control of a Cascade Tanks System as an Example for Control
Teaching”, International Conference on Methods and Models in
Automation and Robotics (MMAR), Miedzyzdroje, Poland, Aug.
28-SEP 31, (2017).

	[14]	 M. Luszczkiewicz-Piatek, “Which colour space should be chosen
for robust colour image retrieval based on mixture modelling”,
Image Processing and Communications Challenges 5 (IP&C
2013), Series: Advances in Intelligent Systems and Computing,
vol. 233, pp. 55‒64, Springer International Publishing, (2014).

	[15]	 M. Luszczkiewicz-Piatek and B. Smolka, “Robust image re-
trieval based on mixture modelling of weighted spatio-colour in-
formation”, Image Processing and Communications Challenges 6
(IP&C 2014), Series: Advances in Intelligent Systems and Com-
puting, vol. 313, pp. 85‒93, Springer International Publishing,
(2015).

	[16]	 M. Luszczkiewicz-Piatek, “Image Similarity in Gaussian Mix-
ture Model Based Image Retrieval”, Image Processing and Com-
munications Challenges 7 (IP&C 2015), Series: Advances in In-
telligent Systems and Computing, vol. 389, pp. 87‒95, Springer
International Publishing, (2016).

	[17]	 J.W. Tukey, “Nonseparable (nonsuperposable) methods for
smoothing data”, in Conf. Rec., EASCON, 1974, p. 673, and
Exploratory Datu Analysis. Reading, MA: Addison-Wesley,
(1977).

	[18]	 N.C. Gallagher, Jr. and G.L. Wise, “A theoretical analysis of
the properties of median filters”, IEEE Trans. Acoust. , Speech,
Signal Processing, vol. ASSP-29, pp. 1136‒1141, Dec. (1981).

	[19]	 S.G. Tyan, “Median-filtering: Deterministic properties”, in
Two- Dimensional Digital Signal Processing, II: Transforms and
Median Filters, ch. 5. vol. 42, pp. 197‒217, Topics in Applied
Physics, T. S . Huang, Ed. New York: Springer-Verlag. (1981).

	[20]	 T. Nodes and N.C. Gallagher. , “Median filters: Some modifica-
tions and their properties”, IEEE Trans. Acoust. , Speech, Signal
Processing, vol. ASSP-30, pp, 739‒746. Oct. (1982).

	[21]	 G. Matheron: Random Sets and Integral Geometry, New York:
Wiley, 1975.

	[22]	 P.D.Wendt, E.J. Coyle, and N.C. Gallagher. Jr., “Stack filters”,
IEEE Trans. Acoust. Speech. Signal Processing, vol. ASSP-34,
pp. 898‒911 , Aug. (1986).

	[23]	 M. Gabbouj, “Optimal stack filter examples and positive Boolean
functions”, M.S. thesis, School Elec. Eng. Purdue Univ., West
Lafayette, IN. Dec. (1986).

	[24]	 J.H. Lin and E. Coyle, “Minimum Mean Absolute Error Estima-
tion over the Class of Generalized Stack Filters”, IEEE Trans-
actions On Acoustics, Speech And Signal Processing, vol. 38,
No. 4, April (1990).

	[25]	 B. Zeng, M. Gabbouj, and Y. Neuvo, “Design of minimum MAE
generalized stack filters for image processing”, SPIE vol. 1606
Visual Communications and Image Processing ’91: Image Pro-
cessing, (1991).

	[26]	 P. Maragos and R.W. Schafer, “Morphological filters–Part I:
Their set-theoretic analysis and relations to linear shift-invariant
filters”, Acoustics, Speech and Signal Processing, IEEE Trans-
actions on, Volume: 35, Issue: 8, August (1987).

	[27]	 P. Maragos and R. W. Schafer, “Morphological filters–Part II:
Their relations to median, order-statistic, and stack filters”,
Acoustics, Speech and Signal Processing, IEEE Transactions
on, Volume: 35, Issue: 8, August (1987).

	[28]	 I. Serra: Image Analysis and Mathematical Morphology, New
York: Academic, (1982).

	[29]	 H. Minkowski, “Volumen und Oberflache”, Math. Annalen, vol.
57, pp.447‒495, (1903).

	[30]	 H. Hadwiger: Vorlesungen uber Inhalt, Oberflache und Isope-
rimetrie, Berlin, Germany: Springer-Verlag, (1957).

	[31]	 M. Nieniewski: Mathematical Morphology for Image Processing,
in Polish, AOW, Warszawa, (1998).

	[32]	 M. Mondelli, “A Finite Difference Scheme for the Stack Filter Sim-
ulating the MCM”, Image Processing On Line, ISSN 2105‒1232
c 2013 IPOL & the authors CC-BY-NC-SA, (2013‒07‒11).

	[33]	 T. Suzuki, Y. Hanada, and M. Muneyasu, “Unsupervised design of
stack filters by tree structure optimization”, 8th International Confer-
ence on Information, Communications & Signal Processing, (2011).

	[34]	 K. Yan, Y. Hongwei, and F. Jiayin, “Design of optimal stack
filters using QPSO”, The 2nd International Conference on In-
formation Science and Engineering, (2010).

	[35]	 A. Frias-Velazquez and W. Philips, “Bit-plane stack filter algo-
rithm for focal plane processors”, IEEE International Conference
on Image Processing, (2010).

	[36]	 Y. Tian, Ch. Zhao, “Design of Optimizing Stack Filters by an
Ant Colony – Clonal Selection Algorithm”, Chinese Conference
on Pattern Recognition, (2009).

	[37]	 M. E. Buemi, M. Mejail, J. Jacobo, J. Gambini, “Improvement
in SAR Image Classification using Adaptive Stack Filters”, XX
Brazilian Symposium on Computer Graphics and Image Pro-
cessing (SIBGRAPI 2007). (2007).

	[38]	 D. Dellamonica, P.J.S. Silva, C. Humes, N.S.T. Hirata, and
J. Barrera, “An Exact Algorithm for Optimal MAE Stack Filter
Design”, IEEE Transactions on Image Processing, Volume: 16,
Issue: 2, Pages: 453 – 462, August (1987).

	[39]	 Ch. Zhao, Ch. Zhang, H. Ning, and Y. Cui, “Optimizing Stack
Filters by Clone Selection Algorithm”, 8th international Confer-
ence on Signal Processing, Volume: 1, (2006).

	[40]	 G. Shi, W. Dong, and Z. Liu, “Design and implementation of
stack filter based on immune memory clonal algorithms with
hybrid computation”, 48th Midwest Symposium on Circuits and
Systems, (2005).

208

Z. Kuś and A. Nawrat

Bull. Pol. Ac.: Tech. 66(2) 2018

	[41]	 M.K. Prasad, “Stack filter design using selection probabilities”,
IEEE Transactions on Signal Processing, Volume: 53, Issue: 3
Pages: 1025–1037, (2005).

	[42]	 D. Diaz and J.L. Paredes, “FPGA implementation of a new
family of stack filters”, Proceedings of the Fifth IEEE Interna-
tional Caracas Conference on Devices, Circuits and Systems,
Volume: 1, Pages: 152–157, (2004).

	[43]	 S. Guangming, S. Liya, L. Honghua, and H. Daojun, “Dynamic
nonlinear threshold decomposition algorithm for implementing
stack filters”, IEEE International Symposium on Circuits and
Systems (IEEE Cat. No.04CH37512) Volume:3, Pages: III –
641‒4, Vol. 3, (2004).

	[44]	 J. Huang and E.J. Coyle, “Using models of the Human Visual
System in the design of stack filters for the enhancement of color
images”, 10th European Signal Processing Conference, (2000).

	[45]	 C. Toumazou, N. Battersby, and S. Porta, “Stack Filters in Signal
and Image Processing”, Circuits and Systems Tutorials, Pages:
22 – 39, Wiley-IEEE Press eBook Chapters, (1996).

	[46]	 D. Gevorkian, M. Hu, O. Vainio, and J. Astola, “VLSI architec-
ture for stack filters”, Digital Signal Processing Proceedings,
1997. DSP 97., 13th International Conference on, (1997).

	[47]	 J. Astola, S. Agaian, K. Egiazarian, O. Vainio, and D. Gevorkian,
“High-speed algorithms and an architecture for running stack
filters”, Proceedings of Int. Conf. on Digital Signal Processing,
(1995).

	[48]	 A. Hiasat, O. Hasan, “Bit-serial architecture for rank order and
stack filters”, Integration, the VLSI Journal archive, Volume 36
Issue 1‒2,Pages 3‒12, (2003).

	[49]	 T. Yamamoto and V.G. Moshnyaga, “A New Bit-Serial Archi-
tecture of Rank-Order Filter”, Conference Paper in Midwest
Symposium on Circuits and Systems, (2009).

	[50]	 M.J. Avedillo, J.M. Quintana, H. Alami, and A. Jimenez-Cal-
deron, “A Practical Parallel Architecture for Stacks Filters”,
Journal of VLSI signal processing systems for signal, image and
video technology, Volume 38, Issue 2, pp 91‒100, (2004).

	[51]	 C. Chakrabarti, “Efficient stack filter implementations of rank
order filters”, Circuits and Systems, ISCAS ’93, IEEE Interna-
tional Symposium on, (1993).

	[52]	 C. Chakrabarti and L. Lucke, “VLSI Architectures for Weighted
order Statistic (WOS) Filters”, Circuits and Systems, ISCAS
’98. Proceedings of the 1998 IEEE International Symposium on,
(1998).

	[53]	 K. Chen, “Bit-Serial Realization of a Class of Nonlinear Filters
Based on Positive Boolean Functions”, IEEE Transactions on
Circuits and Systems, Volume: 36, Issue: 6, Pages: 785–794,
(Jun 1989).

	[54]	 D.Z. Gevorkian, K.O. Egiazarian, S.S. Agaian, J.T. Astola, and
O. Vainio, “Parallel algorithms and VLSI architectures for stack
filtering using Fibonacci p-codes”, IEEE Transactions on Signal
Processing, Volume: 43, Issue: 1, Page(s): 286 – 295, Jan (1995).

	[55]	 J. Astola, D. Akopian, O. Vainio, and S. Agaian, “New digit-se-
rial implementations of stack filters”, Signal Processing, Volume
61, Issue 2, Pages 181‒197, September (1997).

	[56]	 J.P. Fitch, “Software and VLSI algorithms for generalized ranked
order filtering”, IEEE Transactions on Circuits and Systems,
Volume: 34, Issue: 5, Page(s): 553 – 559, May (1987).

	[57]	 G.B. Adams, E.J. Coyle, L. Lin, L.E. Lucke, K.K. Parhi, “Input
compression and efficient VLSI architectures for rank order
and stack filters”, Signal Processing, Volume 38, Issue 3, Pages
441‒453, August (1994).

	[58]	 R.G. Bartle: The Elements of Real Analysis, New York: Wiley,
(1968).

	[59]	 H.L. Royden: Real Analysis, New York: Macmillan Library Ref-
erence, ISBN 10: 0024041505 ISBN 13: 9780024041500 (1968).

	[60]	 A. Kordecki, A. Bal, and H. Palus, “A smooth local polyno-
mial model of vignetting”, 22nd International Conference on
Methods and Models in Automation and Robotics (MMAR),
DOI: 10.1109/MMAR.2017.8046944, August (2017).

	[61]	 A. Kordecki, A. Bal, and H. Palus, “Fast vignetting reduction
method”, 20th International Conference on Methods and Models
in Automation and Robotics (MMAR), At Miedzyzroje, Poland,
DOI: 10.1109/MMAR.2015.7284040, August (2015).

	[62]	 A. Kordecki, H. Palus , and A. Bal, “Practical vignetting correction
method for digital camera with measurement of surface luminance
distribution”, Signal Image and Video Processing 10(8), DOI:
10.1007/s11760‒016‒0941‒2, License: CC BY 4.0, July (2016).

