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Abstract 

When observations are autocorrelated, standard formulae for the estimators of variance, s2, and variance of 
the mean, )(2 xs , are no longer adequate. They should be replaced by suitably defined estimators, 2as  and 

)(2 xsa , which are unbiased given that the autocorrelation function is known. The formula for 2as  was given by 
Bayley and Hammersley in 1946, this work provides its simple derivation. The quantity named effective number
of observations neff is thoroughly discussed. It replaces the real number of observations n when describing the 
relationship between the variance and variance of the mean, and can be used to express 2

as  and )(2 xsa  in a 
simple manner. The dispersion of both estimators depends on another effective number called the effective
degrees of freedom νeff. Most of the formulae discussed in this paper are scattered throughout the literature and 
not very well known, this work aims to promote their more widespread use. The presented algorithms represent 
a natural extension of the GUM formulation of type-A uncertainty for the case of autocorrelated observations.  
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1. Introduction 
 

The standard statistical analysis of a set of n observations {xi} consists of calculating 
the mean x : 
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as well as estimators of the variance: 
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and the variance of the mean: 
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Guide to the Expression of Uncertainty in Measurement (GUM) [1] defines type-A 
uncertainty as the square root of an unbiased estimator of the variance, hence 

)()()( 2 xsxsxu =≡ . The relative dispersion (defined by Eq. (21b)) of estimators s and )(xs is 

given by:  
                                                 1/2( ) ( ( )) (2 ) .r rs s s s x ν −= ≅                                                   (4) 
 

It depends on a parameter ν = n – 1 named the degrees of freedom. 
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The estimators (1–3) are unbiased and have the smallest variance assuming that the 
observations xi are equivalent, mutually uncorrelated and normally distributed. The adjective 
“equivalent” means that successive observations have the same statistical properties. 
In particular they are characterized by the same expected value µ and variance σ 2. 

Let us suppose that the observations xi become autocorrelated, whereas other assumptions 
mentioned above remain the same. The arithmetic mean x  remains an unbiased estimator 
because the expected value of a sum of random variables does not depend on their mutual 
correlations. This statement is not true for variances. As a result, estimator of the variance 
defined by Eq. (2) becomes only asymptotically unbiased (namely, understated for small n), 
whereas the formulae for estimators of the variance of the mean (Eq. (3)) and the dispersion 
of standard deviation (Eq. (4)) are no longer valid.  

This work was prompted by the recent papers of Zhang [2], Dorozhovets and Warsza [3], 
and Witt [4] aiming to introduce an algorithm representing an extension of the GUM 
formulation for the case of autocorrelated observations. A subsequent search has shown that 
similar issues were independently worked out since at least 1935 in various papers usually 
concerned with areas of science where autocorrelated observations are common (geophysics, 
meteorology, acoustics, electric signals, etc.). This knowledge was, however, only scarcely 
covered in monographs and is absent in older handbooks on general data analysis. 
The problem of autocorrelated observations was mentioned by GUM ([1], Section 4.2.7) and 
certain recent handbooks on data analysis ([5], p. 111 and [6], p. 161), but without providing 
general methods for the processing of such data.  

The objective of this work is to discuss the statistical procedures which represent  
equivalents of Eqs (2–4) for the case of n autocorrelated observations. It provides a critical 
synthesis of existing solutions, augmented with some new results. The nomenclature and 
notation used follows rather closely that of GUM.   

The paper is organized as follows. The mathematical description of autocorrelated 
observations is discussed briefly in Section 2. A presentation of the formalism starts in 
Section 3 by introducing the relationship between the variance σ 2 and variance of the mean 

)(2 xσ considered as statistical parameters. This relation is expressed through the use of 
a quantity named effective number of observations neff, depending on the real number 
of observations n and elements ρk of the autocorrelation function. Specific estimators 
of the variance 2

as  and variance of the mean )(2 xsa  are introduced in Section 4. It is proved 
that they are unbiased assuming that the autocorrelation function {ρk} is known. Statistical 
properties of both estimators of variance are described in Section 5 using a parameter called 
effective degree of freedom νeff. Finally, an application of the discussed formalism to real data 
and possibilities of its extension are briefly discussed in Sections 6 and 7.  
 
2. Mathematical models for autocorrelated observations 

 
A set of n observations {xi} which are equivalent and autocorrelated represents 

an experimental reality which can be described by various mathematical models.  
 
2.1. Multidimensional random variable 
 

An elementary approach considers the set {xi} as a particular realization of the multi-
dimensional random variable (X1, X2, …, Xn). Assuming that its probability distribution 
function represents an n-dimensional normal distribution, its stochastic properties are fully 
specified by expected values, variances and correlation coefficients.   

Equivalence of the components Xi in the presence of correlations implies that their 
statistical properties do not depend on the shift of the index i. In the result, the expected 
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values µ and variances σ 2 are the same for all components, whereas the correlation 
coefficients relating Xi and Xj depend only on the difference ji − . Hence, a correlation 

matrix takes the following form: 
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with only n different coefficients. The information contained in matrix (5) can be 
conveniently presented as a one-dimensional discrete autocorrelation function {ρk} of an 
integer argument k = 0, 1, ..., n – 1 called lag.  
 
2.2. Stationary time series 
 

The approach outlined above represents a minimal extension of the standard formalism for 
uncorrelated variables and is sufficient to derive the general results discussed in this work. 
Nevertheless, the majority of handbooks and papers consider a set {xi} of autocorrelated 
observations as an n-element sample taken from a stationary time series.  

The adjective “stationary” means that the probabilistic structure of a time series is invariant 
under a shift of an index i (representing a discrete time). It leads to the same consequences as 
a previous assumption of equivalence of components of multidimensional random variable, 
i.e., it ensures that both expected value and  variance exist and the autocorrelation matrix has 
the structure given by Eq. (5) ([7], p. 106, [8], pp. 23–29). Both approaches lead to the same 
results for estimators of variance because they are derived from the same autocorrelation 
matrix. 

Time series theory is really useful when one can assume that the data are described 
by a specified time series model. Moving average (MA) and autoregressive (AR) processes 
are the two most simple categories of models of stationary time series ([7–10]). They are 
exemplified by two specific models defined below.  

The simple moving average (SMA) is defined as the arithmetic mean: 
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of m successive numbers from a set of uncorrelated random numbers { ui}.  The values of xi are 
autocorrelated because each ui is used to calculate m successive elements xi. Fig. 1 shows a 
60-element sample from the series {ui} representing a standard normal distribution 
(µ = 0, σ = 1) and the autocorrelated series {xi} calculated using Eq. (6) with m = 5. Note that 
changes of  sign of {xi} are less frequent than those for uncorrelated numbers {ui}. 
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Fig. 1. A comparison of: a) uncorrelated random numbers {ui} with Gaussian distribution, µ = 0, σ = 1; and 
b) simple moving average from five elements of the series {ui}. 

 
The most common model of an autocorrelated time series is, however, the first-order 

autoregressive model labeled AR(1) ([7−10]) or, sometimes, the Markov chain. Its successive 
elements are defined as a weighted mean of the previous element xi − 1 and of the random 
number ui: 

                                                        iii uxax += −1                                                              (7) 
 

with the parameter 1<a . (Note that Eqs (6) and (7) define the time series with zero expected 

value assuming that µ = 0 for {ui}. This convention is common in literature. To obtain {xi} 
with a nonzero expected value one should add a nonzero constant to Eqs (6) and (7).)  

For a given time series model one can calculate the autocorrelation function. For a simple 
moving average (Eq. (6)) one obtains: 
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For the first-order autoregressive model:   
                                                                                     .k

k aρ =                                                                        (9a) 
 

Example graphs of both {ρk} functions are shown in Fig. 2. They exemplify two properties 
occurring for the vast majority of stationary autocorrelated processes occurring in nature. 
First, correlations are positive, i.e., all coefficients ρk > 0. Second, correlations are 
characterized by a finite range: for a sufficiently large k all ρk ≈ 0.  
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 Fig. 2. Autocorrelation functions for two time series models: a) SMA, m = 5 and b) AR(1) with a = 0.659. 
  
2.3. Relation to the stationary stochastic process 

 
A discrete time series {xi} can be considered as the result of sampling a continuous 

stochastic process x(t) [11, 12] at equal intervals of time ∆t. Such a source of autocorrelated 
data is very often in real word. The sampling is usually realized by using a computerized data 
acquisition system.  

The most common is an AR(1) stochastic process characterized by a continuous 
autocorrelation function: 

                                                      ρ(τ) = exp(−τ/T0)                                                         (9b) 
 

with  variable τ representing a continuous counterpart of the discrete lag k. The time constant 
T0 is the measure of the correlation range. It is related to the parameter a of the corresponding 
AR(1) time series (Eq. (9)) by the equation a = exp((−∆t/T0).  

Filtering the thermal noise generated by a resistor through a low-pass RC filter represents 
an almost ideal physical realisation of an AR(1) stochastic process [4]. 
 
3. Variance of the mean. Effective number of observations 

 
3.1. Variance of the mean of autocorrelated observations 

 
For an autocorrelated data set {xi} the relation between variance σ 2 and variance of the 

mean )(2 xσ  is no longer given by Eq. (3). The correct formula reads: 
 

                                          
21

2
2

1

( ) 2 ( ) .
n

k
k

x n n k
n

σσ ρ
−

=

 
= + − 
 

∑                                              (10) 

 

The expression inside the square brackets of Eq. (10) represents the sum of all elements of 
the autocorrelation matrix (5). 

This result can be derived using the theorem of variance of linear combination of 
correlated variables because the arithmetic mean (Eq. (1)) can be considered as a linear 
combination of xi with proportionality coefficients 1/n. (This theorem forms the basis of the 
law of propagation of uncertainty for correlated input variables ([1], Eq. (16)). Eq. (10) is 
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present in numerous papers from as early as 1935 [13], as well as in monographs on time 
series ([7], Eq. (5.3.5), [8], p. 30). 
 
3.2. Effective number of observations 

  
It follows from the structure of Eq. (10) that the effect of many coefficients ρk may be 

accounted for by introducing a single parameter. It can be rewritten as: 
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where the effective number of observations neff  is given by: 
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The concept of the effective number of observations was introduced by different authors, 
largely independently and in various ways. Many of them were concerned with meteorology 
because in this field the time-dependent observations are notorious for being autocorrelated. 
Not surprisingly, neff appears in the literature under similar but not identical names: equivalent 
number of subsequent coordinates, reduced number of coordinates [13], effective number of 
independent observations ([14, 12] p. 222), equivalent number of independent data [15], 
equivalent number of uncorrelated samples [16], effective independent sample size [17], 
effective sample size [18], equivalent independent process effective number [19],  equivalent 
number of independent observations ([7] p. 320, [20]), effective number of uncorrelated 
observations [3]. The term adopted in this work follows the nomenclature of GUM, in which 
a (repeated) measurement is composed of observations, and the term effective is preferred 
over “equivalent”.  

A closely related parameter: 
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has been used by a few authors [13, 2, 4]. The advantage of the term “effective numbers of 
observations” is that its name provides a heuristic understanding of the fact that the statistical 
properties of autocorrelated data are similar to a suitably defined number of independent 
observations. As will be shown in Section 3.3, neff also remains a well defined quantity for a 
continuous stochastic process, for which the ratio r = n/neff becomes meaningless. 

The properties of neff, considered as a fixed parameter defined using an a priori known 
autocorrelation function {ρk}, are as follows: 
− effective number of observations is a real number within the interval [1, ∞). Its lower limit 

1≥effn  results from the fact that the values of ρk cannot be larger than unity. The upper 

limit ∞<effn  arises because the correlation matrix is positive-definite;     

− for uncorrelated variables neff  = n; 
− for positive correlation coefficients (ρk > 0)  neff  < n;  
− in the limit of strong positive correlations (all ρk  → 1) neff  approaches unity. This means 

that such an n-element sample represents effectively a single observation;  
− the case neff > n may occur when some autocorrelation coefficients are negative. 
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3.3. Effective  number  of observations for specific models of time series and for continuous 
       stochastic process 

 

Assuming that the range of correlation is much smaller that the length of the sample n 
the factor (n – k)/n in Eq. (12) may be approximated as unity. This leads to the approximate 
formula [21]: 
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Eq. (14) can be used as a starting point to derive simple formulae for neff for specific time 
series models. For the AR(1) model the sum in Eq. (14) can be approximated as the sum of an 
infinite geometrical series, Σak = a/(1 − a). The resulting expression for AR(1): 
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was derived in a different way by Priestley ([7], p. 320). For the SMA model one obtains: 
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n
neff ≅ .                                                                (16) 

 

An important property of neff concerns autocorrelated data obtained as a result of sampling 
a continuous stochastic process at equal intervals of time ∆t. Let us assume that the total 
measurement time T is fixed and ∆t tends to zero, thus the number of observations n = T/∆t 
increases without limit. However, because ever denser sampling cannot provide new 
information able to reduce the variance of the mean, the effective number of observations neff 
remains a finite number. This general property of neff is illustrated for the AR(1) model by 
the function: 
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obtained by inserting a = exp(−∆t/T0) with ∆t= T/n into Eq. (15)). The evolution of neff as 
a function of n is shown in Fig. 3.  
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Fig. 3. The function neff  vs. n for the AR(1) model. The parameters of the plot,  
T0  = 239 ms and T = 286 s, are adopted from Ref. [4]. 
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With increasing n, the effective number of observations approaches a value defined by: 
 

                                                  )2/()( 0TTnneff =∞→ .                                                    (18) 
 

By taking the limit ∆t → 0 in Eq. (12) one obtains an integral expression: 
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which defines neff for the stationary stochastic processes characterized by a continuous 
autocorrelation function ρ(τ). Eq. (19) was used to derive the formula for neff for a continuous 
AR(1) process [17, 18].  
 
4. Unbiased estimators of variance for autocorrelated observations 

 
The approximate value of a given statistical parameter can be calculated from a finite 

sample {xi} using various estimators. We would like, however, to use estimators, which are 
unbiased, efficient, and expressed by formulae without numerical coefficients. The last 
property is rarely explicitly formulated but often applied. Estimator of variance s2 defined by 
(Eq. (2) (alternatively named the sample variance) is widely accepted because it is better to 
use an unbiased estimator rather than the biased one: 
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(known as the population variance), in a situation when each of them is expressed by a simple 
formula without numerical coefficients. The bias and dispersion of estimators considered in 
this work can be characterized by dimensionless quantities: 
− relative bias:                                

                                                         biasr(e) = 
ε

ε−)E(e
,                                                   (21a) 

− relative dispersion:    

                                                          
ε

Var(e)
)( =esr .                                                        (21b) 

Symbols ε and e denote statistical parameter and corresponding estimator, respectively, 
and E and Var are standard statistical symbols for expected value and variance.   

The well-known derivation of the unbiased estimator of variance for an uncorrelated 
variable will be adopted here for the case of autocorrelated observations. It starts by defining 
an estimator 2

bs  (Eq. (20)). To check whether it is unbiased or biased one should calculate its 
expected value ][E 2

bs and compare it to σ 2.  
Firstly, the use of algebraic manipulations (see, e.g., [11]) allows Eq. (20) to be transform-

ed as follows: 
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One may calculate now the expected value: 
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From the very definition of variance the first term of the obtained expression represents 
the variance of the variable xi, and the second the variance of the mean: 
 

                                                        )(][E 222 xsb σσ −= .                                                                (22) 
 

Eq. (22) shows that the estimator 2
bs  is biased because its expected value is smaller than 

σ2. For uncorrelated observations nx /)( 22 σσ = , hence 22 )/11(][E σnsb −= . To compensate 
for this bias, Eq. (20) should be multiplied by a factor n/(n – 1). In this way one obtains the 
well-known formula (2). 

What is to be changed in this derivation for the case of autocorrelated observations? 
Eq. (22) also holds for such a case because (i) calculation of the expected value of the sum of 
random variables does not depend on the presence of correlations, and (ii) in the derivation 
leading to Eq. (22) the relation nx /)( 22 σσ = , specific to uncorrelated observations, was not 
used.  

The remaining part of derivation should, however, be modified because the variance of 
the mean for an autocorrelated variable is now given by Eq. (11). Hence, Eq. (22) reads: 

  
                                                  effb ns /][E 222 σσ −= .                                                    (23)  
 

The correction factor, which is to be applied to transform the biased estimator (Eq. (20)) 
into an unbiased one equals )1(/ −effeff nn . The resulting formula for the estimator of variance 
for autocorrelated data reads:  
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(The index a is used to distinguish it from other estimators of variance). It can alternatively 
be written as: 
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i.e., as a product of the sample variance for uncorrelated data s2 (Eq. (2)) and the correction 
factor C = neff (n − 1)/[n(neff − 1)]. An example graph of the dependence C vs. n is shown 
in Fig. 4. 

The variance of the mean is neff times smaller (Eq. (10)). Hence, the estimator of variance 
of the mean is given by the formula:   
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Both 2
as   and )(2 xsa  can alternatively be expressed by the parameter r (Eq. (13)) or by 

using elements ρk of the autocorrelation function. 
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Fig. 4. The factor C = neff(n – 1)/[n(neff  – 1] as a function of the sample size n for the SMA model, m = 5. 
 

Estimators 2
as  and )(2 xsa  are unbiased assuming that the effective number of observations 

is calculated (via Eq. (12)) from the autocorrelation function {ρk}. This property does not 
depend on the probability distribution g(x) because this function is not involved 
in the presented derivation. The only assumption which is made is that both µ and σ 2 exist for 
the given g(x). 

The above derivation was given by the author [22]. A subsequent search has shown that 
Eq. (24b) was published by Bayley and Hammersley in 1946 ([14], Eq. (10)). Later on 

Anderson calculated the bias ][E 2
bs  for an autocorrelated sample ([10], Eq. (52) on p. 448). 

Using this result, the formulae equivalent to Eqs. (24) and (25) were given by Law and Kelton 

[23] and in Wikipedia [24]. Independently, Şen [19] calculated 2
as  for a special case of the 

ARIMA(1,0,1) time series model. In these works the derivation was not provided and it seems 
that the existence of unbiased estimators of variance for autocorrelated observations is rather  
not noticed in the literature. Instead, it is common to combine Eqs (2) and (11) which leads to 
the estimator:   
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which is biased (note the difference with respect to Eq. (25)). Relative bias (defined by Eq. 
(21a)), which is removed by the introduction of unbiased estimators 2as  and )(2 xsa  (when 
compared to corresponding estimators given by Eq. (2) and Eq. (26)), equals approximately 
−1/neff. This is similar to the relation between estimators 2

bs  (Eq. (21)) and s2 (Eq. (2)) for 
uncorrelated data: the use of the latter removes the relative bias  −1/n. 

From Eq. (23) it follows that the estimator 2
as  is consistent, i.e., it converges to the value of 

the parameter σ2 for n → ∞, but only when the limit neff  → ∞ is simultaneously fulfilled. For 
autocorrelated data resulting from the sampling of a continuous stochastic process this limit 
can be accomplished by increasing the total time of measurement. A mere increase of the 
number of samples with the measurement time kept constant is not sufficient. 
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5. Dispersion of the estimators of variance. Effective degrees of freedom 

 
Relative dispersion of the estimator of variance for uncorrelated data (Eq. (4)) is 

a consequence of the formula: 
                                                   2 2Var( / ) 2 / .s σ ν=                                                         (27) 
 

It is independent of the probability distribution of the variable considered.  
Eq. (27) is not valid for autocorrelated data. However, an equivalent formula to Eq. (27) 

can be formally written as: 
 

                                                 2 2Var( / ) 2 / ,a effs σ ν=                                                        (28) 
 

i.e., with the parameter ν replaced by the effective degrees of freedom νeff. Alternatively, 
Eq. (28) can be expressed as )1/(2)/(Var *22 −= effa ns σ , i.e., by using another “effective 
number” *

effn  (Refs [7, 14], and [20]). The term “effective degrees of freedom” (introduced by 
Taubenheim [18]) seems to be better because it reflects the meaning of this quantity and 
follows the nomenclature of GUM. (Another type of effective degrees of freedom is used in 
the Welch-Satterthwaite formula, see [1], pt. G.4.1.) Any confusion with neff is now avoided. 
Note also that νeff ≠ neff − 1! 

An estimator of the variance of the mean )(2 xsa  is obtained from 2
as  by dividing it by neff 

(representing a fixed number). Hence, the statistical properties of 2
as  and )(2 xsa  are the same. 

In particular, Eq. (28) remains valid also for )(/)( 22 xxsa σ . 
A rather complex exact formula for νeff for the unbiased estimator 2as  was given by Bayley 

& Hammersley ([14]):  
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The symbol [(n − 1)/2] denotes the largest possible integer not greater than (n − 1)/2, and K 
is equal to n – j – 1 or j – 1 whichever is less [14]. 

An approximate expression for the effective degrees of freedom can be obtained by 
retaining the highest order terms with respect to n, i.e., ∝ n4 in the numerator, and ∝ n3 in 
the denominator of Eq. (29). In this way one obtains an approximate formula [25]:  
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which is sufficient for practical applications. It follows from Eq. (30) that νeff is less than n − 1 
for both positive and negative correlations. This fact reflects an intuitive understanding that 
any additional constraints, both deterministic and statistical (correlations) result in a decrease 
in the degree of freedom.  

The expressions for νeff can be derived for specific models of time series. For the AR(1) 
model, inserting the sum Σ(ak)2 ≅ a2/(1 − a2) into Eq. (30) leads to a formula: 
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derived in a different way  by Bartlett ([26], Eq. (2)) and Priestley ([7], Eq. (5.3.30)). 
 
6. Application of the formalism to experimental data 

 
It has been assumed so far that the autocorrelation function {ρk} is known a priori. This 

situation occurs for artificial data generated using a given time-series model. The presented 
theory should, however, be applicable also to the processing of real autocorrelated data. This 
requires the knowledge of {ρk} which can be gained, respectively, from a statistical analysis 
of the investigated set of data, or by making use of other available information.  

The autocorrelation function {ρk} can be known exactly when primarily uncorrelated data 
are smoothed using the moving average or other well-defined procedure. The same applies 
to numerical differentiation of uncorrelated data. (For the two-point numerical derivative 
ρ1 = −1/2 and the subsequent coefficients equal zero. From Eq. (14) one obtains neff ≅ n2, i.e., 
it is larger than n.)  

The autocorrelation function can sometimes be derived for electronic circuits with known 
characteristics. It can also be determined to a high degree of accuracy when a large amount 
of data is available. Examples of autocorrelation functions for autocorrelated noise and for 
meteorological data are given, respectively, in Refs. [4] and [17]. 

The possibilities mentioned above can be labeled, using the vocabulary of GUM, as type-B 
methods. The type-A methods aim to determine {ρk}, neff and νeff from the investigated set of 
observations {xi}. This issue will be the subject of a forthcoming paper [27].  
 
7. Conclusions 

 
Guide to the Expression of Uncertainty in Measurement [1] defines type-A standard 

uncertainty as the square root of the unbiased estimator of variance of the mean. Estimators of 
variance 2

as  and variance of the mean )(2 xsa  for autocorrelated variables presented in this 
work are unbiased assuming that the autocorrelation function is known. Hence the square root 
of )(2 xsa  represents type-A uncertainty for autocorrelated observations: 2/12 )]([)( xsxu a≡ .  
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In general, the formalism discussed in this work can be used to extend the application of 
GUM to the case of equivalent autocorrelated observations.  

The approach presented in this work is based on an investigation of the properties of 
estimators. It is equivalent to the formalism of the least-squares method for correlated entry 
data. An application of this formalism for the case of weighted mean was recently discussed 
by Cox et al. [28].  

Several aspects of this work are open to further studies. One is the calculation of expanded 
uncertainty and the use of statistical tests in the case of autocorrelated observations [18, 29]. 
The presented ideas can be extended to the problem of fitting straight line and other functions. 
The concept of neff can be generalized to the case of an autocorrelated time-varying field [30]. 
Finally, the applicability of the presented formalism to various experimental situations should 
be tested. 

The processing discussed here depends on the assumption that the statistical parameters µ, 
σ and {ρk} exist and do not depend on the sample size n. This assumption is not fulfilled for 
nonstationary stochastic processes like the random walk (in theory) or the difference of time 
measured by two atomic clocks (in experiment). The use of other statistical tools, such as the 
Allan variance, is necessary in such cases [31]. However, when the investigated 
autocorrelated process has well-defined classical statistical parameters, the presented 
approach is simpler and more adequate. 
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