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Abstract

When observations are autocorrelated, standardufaemfor the estimators of variancg, and variance
the mean,s*(X), are no longer adequate. They should be replagesultably defined estimatorss’? anc
s2(X) , which are unbiased given that the autocorreldfimction is known. The formula fos? was given b
Bayley and Hammersley in 1946, this work providesimple derivation. The quantity named effectiuenber
of observationgy is thoroughly discussed. It replaces the real rama observations when describing tt
relationship between the variance and variancehefrhean, and can be used to exprgssand s2(X) in &
simple manner. The dispersion of both estimatorgedds on another effective number called the éflect
degrees of freedom.y. Most of the formulae discussed in this papersaatered throughout the literature
not very well known, this work aims to promote theiore widespread use. The presergkggbrithms represe

a natural extension of the GUM formulation of typemncertainty for the case of autocorrelated olest@Erns.
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1. Introduction

The standard statistical analysis of a seinafbservations X} consists of calculating
the meanx :

_ 1
X==> X%, 1)
n=
as well as estimators of the variance:
n
Z(Xi -%)?
2 _i=1
sc== 2
1 (2)
and the variance of the mean:
2 s?
sS“ (W) =—. (3)
n

Guide to the Expression of Uncertainty in Measumm@UM) [1] defines type-A
uncertainty as the square root of an unbiased atiimof the variance, hence

u(x) = s(X) =4/s%(x) . The relative dispersion (defined by Eq. (21b)) stireatorss and s(x) is
given by:
s(9=s(€y O™, 4)(

It depends on a parameter n — 1 named the degrees of freedom.
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The estimators (1-3) are unbiased and have theleshalariance assuming that the
observations are equivalent, mutually uncorrelated and normdisgributed. The adjective
“equivalent” means that successive observationse hthe same statistical properties.
In particular they are characterized by the sanpeeted valugl and variancer>.

Let us suppose that the observatignisecome autocorrelated, whereas other assumptions
mentioned above remain the same. The arithmeticanxeaemains an unbiased estimator
because the expected value of a sum of randomblesialoes not depend on their mutual
correlations. This statement is not true for vazem As a result, estimator of the variance
defined by Eq. (2) becomes only asymptotically asbd (namely, understated for snm||
whereas the formulae for estimators of the variasfalie mean (Eq. (3)) and the dispersion
of standard deviation (Eg. (4)) are no longer valid

This work was prompted by the recent papers of gH{ah Dorozhovets and Warsza [3],
and Witt [4] aiming to introduce an algorithm repeating an extension of the GUM
formulation for the case of autocorrelated obsémmat A subsequent search has shown that
similar issues were independently worked out simicéeast 1935 in various papers usually
concerned with areas of science where autocorcetateervations are common (geophysics,
meteorology, acoustics, electric signadt;). This knowledge was, however, only scarcely
covered in monographs and is absent in older hadbmn general data analysis.
The problem of autocorrelated observations was ioeed by GUM ([1], Section 4.2.7) and
certain recent handbooks on data analysis ([Sl1ft.and [6], p. 161), but without providing
general methods for the processing of such data.

The objective of this work is to discuss the stai@d procedures which represent
equivalents of Eqgs (2—4) for the casenc&utocorrelated observations. It provides a ctiitica
synthesis of existing solutions, augmented with eamew results. The nomenclature and
notation used follows rather closely that of GUM.

The paper is organized as follows. The mathemattsscription of autocorrelated
observations is discussed briefly in Section 2. raspntation of the formalism starts in
Section 3 by introducing the relationship betwess tariances ? and variance of the mean
o?(X) considered as statistical parameters. This relasoexpressed through the use of
a quantity named effective number of observatiogg depending on the real number
of observationsn and elementspx of the autocorrelation function. Specific estinrato
of the variancesg and variance of the me:ﬂi (X) are introduced in Section 4. It is proved
that they are unbiased assuming that the autoatimelfunction {o} is known. Statistical
properties of both estimators of variance are desdrin Section 5 using a parameter called
effective degree of freedomys. Finally, an application of the discussed fornmali® real data
and possibilities of its extension are briefly dissed in Sections 6 and 7.

2. Mathematical modelsfor autocorrelated obser vations

A set of n observations X} which are equivalent and autocorrelated represent
an experimental reality which can be describeddrnjous mathematical models.

2.1. Multidimensional random variable

An elementary approach considers the s¢t s a particular realization of the multi-
dimensional random variableXy Xs, ..., X,). Assuming that its probability distribution
function represents an-dimensional normal distribution, its stochastiogerties are fully
specified by expected values, variances and ctioelaoefficients.

Equivalence of the componend§ in the presence of correlations implies that their
statistical properties do not depend on the sHifthe indexi. In the result, the expected
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values p and varianceso ? are the same for all components, whereas the latome
coefficients relatingX; andX; depend only on the diﬁerenqé— j|. Hence, a correlation
matrix takes the following form:

1 P P2 Ps v Poa
A1l o Py P
P A1 P Py (5)
Ps P P 1 o Py
L Pn-1 Pn-2 Pn-3 P-4 --- 1 _

with only n different coefficients. The information contained matrix (5) can be

conveniently presented as a one-dimensional desaatocorrelation functiond} of an
integer argumerk =0, 1, ...n— 1 called lag.

2.2. Stationary time series

The approach outlined above represents a minintahsion of the standard formalism for
uncorrelated variables and is sufficient to detive general results discussed in this work.
Nevertheless, the majority of handbooks and papersider a setX} of autocorrelated
observations as amelement sample taken from a stationary time series

The adjective “stationary” means that the probatidistructure of a time series is invariant
under a shift of an indeix(representing a discrete time). It leads to theesaonsequences as
a previous assumption of equivalence of componehtaultidimensional random variable,
i.e., it ensures that both expected value and veagiamcst and the autocorrelation matrix has
the structure given by Eq. (5) ([7], p. 106, [8h. 23—29). Both approaches lead to the same
results for estimators of variance because theydareved from the same autocorrelation
matrix.

Time series theory is really useful when one casum®e that the data are described
by a specified time series model. Moving averag@)Mnd autoregressive (AR) processes
are the two most simple categories of models diostary time series ([7—10]). They are
exemplified by two specific models defined below.

The simple moving average (SMA) is defined as titbraetic mean:

" =ui+ui_1:rm...+ui_m 6)(

of m successive numbers from a set of uncorrelatecbrandimbergu}. The values ok are
autocorrelated because eaghs used to calculaten successive elements Fig. 1 shows a
60-element sample from the seriesi}{representing a standard normal distribution
(u=0,0=1) and the autocorrelated serigg falculated using Eq. (6) witm = 5. Note that
changes of sign of} are less frequent than those for uncorrelatedbemn{u;}.
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Fig. 1. A comparison of: a) uncorrelated random bera {u;} with Gaussian distributiory/= 0, o= 1; and
b) simple moving average from five elements ofsbaes {i}.

The most common model of an autocorrelated timesas, however, the first-order
autoregressive model labeled AR(1)«ID]) or, sometimes, the Markov chain. Its successiv
elements are defined as a weighted mean of theopie\elementx; - ; and of the random
numberu;:

Xi=ax 4+ y (7)

with the parametelig| <1. (Note that Eqs (6) and (7) define the time sewiits zero expected

value assuming that = 0 for {u}. This convention is common in literature. To abtdx}
with a nonzero expected value one should add aamormonstant to Egs (6) and (7).)

For a given time series model one can calculatextiecorrelation function. For a simple
moving average (Eg. (6)) one obtains:

P =1-k/im dla k<m ®)
o =0 dla kzm
For the first-order autoregressive model:
P, =a. (9a)

Example graphs of bothgf} functions are shown in Fig. 2. They exemplify tywmperties
occurring for the vast majority of stationary awioelated processes occurring in nature.
First, correlations are positive,.e., all coefficients oc>0. Second, correlations are
characterized by a finite range: for a sufficiendggek all o, = 0.
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Fig. 2. Autocorrelation functions for two time m= models: a) SMANn =5 and b) AR(1) witla = 0.659.
2.3. Relation to the stationary stochastic process

A discrete time seriesxff can be considered as the result of sampling dirmeous
stochastic procesgt) [11, 12] at equal intervals of tinf&. Such a source of autocorrelated
data is very often in real word. The sampling igally realized by using a computerized data
acquisition system.

The most common is an AR(1) stochastic processactenized by a continuous
autocorrelation function:

A1) = expE1To) (9Db)

with variabler representing a continuous counterpart of the eisdagk. The time constant
To is the measure of the correlation range. It isteel to the parametarof the corresponding
AR(1) time series (Eq. (9)) by the equater exp(CAUTy).

Filtering the thermal noise generated by a resigtaaugh a low-pass RC filter represents
an almost ideal physical realisation of an AR(bhastic process [4].

3. Variance of the mean. Effective number of observations
3.1. Variance of the mean of autocorrelated observations

For an autocorrelated data sef} {the relation between varianez? and variance of the
meanao?(X) is no longer given by Eqg. (3). The correct formugads:

JZ(Y):[n+2n§(n— k)pk}i—zz. (10)

The expression inside the square brackets of BY.répresents the sum of all elements of
the autocorrelation matrix (5).

This result can be derived using the theorem ofawae of linear combination of
correlated variables because the arithmetic mean (BE) can be considered as a linear
combination ofx; with proportionality coefficients i/ (This theorem forms the basis of the
law of propagation of uncertainty for correlategbun variables ([1], Eg. (16)Eq. (10) is
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present in numerous papers from as early as 1935 4% well as in monographs on time
series ([7], Eq. (5.3.5), [8], p. 30).

3.2. Effective number of observations

It follows from the structure of Eq. (10) that tb&ect of many coefficientgx may be
accounted for by introducing a single parametegait be rewritten as:

2
2z =2, (11)

eff

where the effective number of observatiogs is given by:

n

= n-1 . _ '
1423 "5,
k= N

neff (12)

The concept of the effective number of observatieas introduced by different authors,
largely independently and in various ways. Manyh&fm were concerned with meteorology
because in this field the time-dependent obsemsatare notorious for being autocorrelated.
Not surprisingly hess appears in the literature under similar but nehiccal names: equivalent
number of subsequent coordinates, reduced numbssastlinates [13], effective number of
independent observations ([14, 12] p. 222), eqamahumber of independent data [15],
equivalent number of uncorrelated samples [16]eatiife independent sample size [17],
effective sample size [18], equivalent indepengentess effective number [19], equivalent
number of independent observations ([7] p. 320])[26ffective number of uncorrelated
observations [3]. The term adopted in this workolwk the nomenclature of GUM, in which
a (repeated) measurement is composed of obsersatmal the term effective is preferred
over “equivalent”.

A closely related parameter:

n-1._
r:L:1+22n—kpk 113
Nett k=1 N

has been used by a few authors [13, 2, 4]. Therddga of the term “effective numbers of
observations” is that its name provides a heuristiderstanding of the fact that the statistical
properties of autocorrelated data are similar tsusiably defined number of independent
observations. As will be shown in Section $i&; also remains a well defined quantity for a
continuous stochastic process, for which the matio/ne;; becomes meaningless.
The properties ofier, considered as a fixed parameter defined using @anori known
autocorrelation functiongy}, are as follows:
— effective number of observations is a real numbériwthe interval [10). Its lower limit
Negr =1 results from the fact that the valuesgpfcannot be larger than unity. The upper

limit n < o arises because the correlation matrix is postietnite;

— for uncorrelated variablegy =n;

— for positive correlation coefficientg(> 0) ner <n;

— in the limit of strong positive correlations (@l — 1) ne approaches unity. This means
that such am-element sample represents effectively a singlemasion;

— the cases > n may occur when some autocorrelation coefficiergsna@gative.
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3.3. Effective number of observationsfor specific models of time series and for continuous
stochastic process

Assuming that the range of correlation is much tendhat the length of the samphe
the factor ( —Kk)/nin Eqg. (12) may be approximated as unity. Thisi¢eto the approximate
formula [21]:

n
n-1

1423 py
k=1

Negy U (14)

Eq. (14) can be used as a starting point to desiivple formulae fones for specific time
series models. For the AR(1) model the sum in E4) ¢an be approximated as the sum of an
infinite geometrical seriega* = a/(1 — a). The resulting expression for AR(1):

Ney N —— (15)
was derived in a different way by Priestley ([7]320). For the SMA model one obtains:
n
Nest DE : (16)

An important property oft concerns autocorrelated data obtained as a &ssdtmpling
a continuous stochastic process at equal inteialime At. Let us assume that the total
measurement time is fixed andAt tends to zero, thus the number of observatioad/At
increases without limit. However, because ever elersampling cannot provide new
information able to reduce the variance of the méam effective number of observatiomg
remains a finite number. This general propertyngfis illustrated for the AR(1) model by
the function:

N LI N tanh% (17)
0

obtained by inserting = expEAU/To) with At= T/n into Eq. (15)). The evolution afes as
a function ofn is shown in Fig. 3.

1000 '
TI2Ty) oo g e
)
'o'
00 /’Q'.'
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G ] Q&
c °
.
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10+ TororrrrT T T T T T
10 100 n 1000 10000

Fig. 3. The functiom; vs.n for the AR(1) model. The parameters of the plot,
To =239 ms and = 286 s, are adopted from Ref. [4].
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With increasingn, the effective number of observations approacheduge defined by:

Mgy (N — ) =T /(2Tp) . (18)

By taking the limitAt — 0 in Eq. (12) one obtains an integral expression:

T

neff =

_ , 19]
2“1—r IT] p(r)dr

which definesne; for the stationary stochastic processes charaetbrby a continuous
autocorrelation functiop(7). Eq. (19) was used to derive the formularigrfor a continuous
AR(1) process [17, 18].

4. Unbiased estimator s of variance for autocorrelated observations

The approximate value of a given statistical patamean be calculated from a finite
sample §} using various estimators. We would like, howeueruse estimators, which are
unbiased, efficient, and expressed by formulae omthnumerical coefficients. The last
property is rarely explicitly formulated but oftepplied. Estimator of varianc® defined by
(Eq. (2) (alternatively named the sample varianseyidely accepted because it is better to
use an unbiased estimator rather than the biased on

d 2
, Zl(xi —X)
Sy 20

Sh . (20)
(known as the population variance), in a situatidren each of them is expressed by a simple
formula without numerical coefficients. The biagdatispersion of estimators considered in
this work can be characterized by dimensionlessitijies:
- relative bias:

E) -¢

bias(e) = (21a)

— relative dispersion:

JVar(e) (21b)

59 =0

Symbols € and e denote statistical parameter and correspondingalr, respectively,
and E and Var are standard statistical symbolsxpected value and variance.

The well-known derivation of the unbiased estimabdrvariance for an uncorrelated
variable will be adopted here for the case of aut@tated observations. It starts by defining
an estimators? (Eq. (20)). To check whether it is unbiased oseihone should calculate its
expected valu€&[s’] and compare it tar’.

Firstly, the use of algebraic manipulations (&g, [11]) allows Eq. (20) to be transform-
ed as follows:

n

£ (607 =23 (X~ W2 - (k- R,
=] i=1

[EEN

One may calculate now the expected value:
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n

58 EEZ”:(& ~py —(f—u)ﬂ =3 el -%07] - Elx-ny].
i=1 =1

From the very definition of variance the first teohthe obtained expression represents
the variance of the variable and the second the variance of the mean:

E[st] =0%-0%(X). (22)

Eq. (22) shows that the estimatsf is biased because its expected value is smaker th
&°. For uncorrelated observations (X) = 02 /n, henceE[s?] = (1-1/n)g?. To compensate
for this bias, Eg. (20) should be multiplied byagtbrn/(n — 1). In this way one obtains the
well-known formula (2).

What is to be changed in this derivation for thesecaf autocorrelated observations?
Eq. (22) also holds for such a case because (lkedion of the expected value of the sum of
random variables does not depend on the presenceri@ations, and (ii) in the derivation
leading to Eq. (22) the relatiom®(X) = g/ n, specific to uncorrelated observations, was not
used.

The remaining part of derivation should, however, hodified because the variance of
the mean for an autocorrelated variable is nowrghwe Eq. (11). Hence, Eq. (22) reads:

E[s]=0% 0% /ng;. (23)

The correction factor, which is to be applied tansform the biased estimator (Eqg. (20))
into anunbiased one equalgy / (ne —1) . The resulting formula for the estimator of vadan

for autocorrelated data reads:
n

2= 3 (x —x). (34a

N(Ney —1) i

(The indexa is used to distinguish it from other estimatorsvafiance). It can alternatively
be written as:

Negr (n-1)

2= Cs? withC = ,
> n(ny 1)

(24b)

i.e., as a product of the sample variance for uncated! data® (Eq. (2)) and the correction
factor C =ne¢(n —1)/[n(ness —1)]. An example graph of the dependerCevs. nis shown
in Fig. 4.

The variance of the meanrgs times smaller (Eq. (10)). Hence, the estimatorasfance
of the mean is given by the formula:

o iZ;)(& -X%)*
s (X = PO (25)

Both s§ and sg(i) can alternatively be expressed by the paranre{éq. (13)) or by
using elementgy of the autocorrelation function.
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Fig. 4. The facto€ = n«(n —1)/[n(ns# —1] as a function of the sample sizéor the SMA modelm = 5.

Estimatorss2 and s(X) are unbiased assuming that the effective numbebsérvations
is calculated (via Eq. (12)) from the autocorr@atifunction {i}. This property does not
depend on the probability distributiog(x) because this function is not involved
in the presented derivation. The only assumptioithvis made is that bojhand o? existfor
the giveng(x).

The above derivation was given by the author [22kubsequent search has shown that
Eq. (24b) was published by Bayley and Hammersleyl946 ([14], Eq. (10)). Later on
Anderson calculated the biﬁsﬁ] for an autocorrelated sample ([10], Eq. (52) od48).
Using this result, the formulae equivalent to E@4) and (25) were given by Law and Kelton
[23] and in Wikipedia [24]. Independentlgen [19] calculateds§ for a special case of the
ARIMA(1,0,1) time series model. In these works tlegivation was not provided and it seems
that the existence of unbiased estimators of veeidar autocorrelated observations is rather

not noticed in the literature. Instead, it is conmto combine Eqgs (2) and (11) which leads to
the estimator:

En (% —%)?
2(o — i=1 26
" Nest (N—1) (20)

which is biased (note the difference with respecEg. (25)). Relative bias (defined by Eq.
(21a)), which is removed by the introduction of iased estimator$§ and s2(x) (when
compared to corresponding estimators given by Egafd Eq. (26)), equals approximately
~1/nes. This is similar to the relation between estimstsf (Eq. (21)) ands® (Eq. (2)) for
uncorrelated data: the use of the latter removesdlative bias-1/n.

From Eqg. (23) it follows that the estimatsj is consistent.e., it converges to the value of
the parameted? for n — o, but only when the limite; — oo is simultaneously fulfilled. For
autocorrelated data resulting from the sampling @bntinuous stochastic process this limit
can be accomplished by increasing the total timenesurement. A mere increase of the
number of samples with the measurement time kepgtaat is not sufficient.
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5. Dispersion of the estimators of variance. Effective degrees of freedom

Relative dispersion of the estimator of variance tmcorrelated data (Eq. (4)) is
a consequence of the formula:

Var(s*/o®)=2/v. (27)

It is independent of the probability distributiohtbe variable considered.
Eq. (27) is not valid for autocorrelated data. Hegre an equivalent formula to Eq. (27)
can be formally written as:

Var(sl 10%)=21v, (28)

i.e,, with the parametev replaced by the effective degrees of freedasn Alternatively,
Eq. (28) can be expressed ¥ar(s /o?)=2/(ng — , L., by using another “effective
number” n;ff (Refs [7, 14], and [20]). The term “effective degs of freedom” (introduced by
Taubenheim [18]) seems to be better because #ctsflthe meaning of this quantity and
follows the nomenclature of GUM. (Another type dfieetive degrees of freedom is used in
the Welch-Satterthwaite formula, see [1], pt. G)YANy confusion withnes; is now avoided.
Note also thaves # Nes — 1!

An estimator of the variance of the mesf(x) is obtained froms? by dividing it bynes
(representing a fixed number). Hence, the stagisfioperties ofs> and s2(x) are the same.
In particular, Eq. (28) remains valid also f&f(X)/ o (X) .

A rather complex exact formula fogg for the unbiased estimataf was given by Bayley
& Hammersley ([14]):

_n*(n-1)- 4P, + 25, + 85— 4n5 - 8,

Vs +1=— . (29)
n*(n-1)-4n3, + 25, - 8 ,— 4n3 .- 8,
where:
n-1
- %= (0-Kp;
k=1
n-1
= X, =) (n-k)(n®+2n-4K)pj ;
k=1
n-1
- Z3=) (n-Kk)(n* - 2K)pg ;
k=1
n-1 j-1
- I,= (n-K) kp; oy ;
j=2 k=1
n-1 j-1 .
- Z5=) > (n-))(n-Kk) p; py;
i=2 k=1
[(n-D/2]
- Zg= Y. (n=2K)(n*-20)pj ;
k=1
n-1 K

2722 Z(n_j_k)pj P -

j=2 k=1
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The symbol [ — 1)/2] denotes the largest possible integer natgrahantg — 1)/2, andK
is equal tan —j — 1 orj — 1 whichever is less [14].

An approximate expression for the effective degreédreedom can be obtained by
retaining the highest order terms with respect,tae., O n*in the numerator, and n® in
the denominator of Eq. (29). In this way one oldan approximate formula [25]:

n
Vet U——7— 1 (30)

1+2> pf

k=1

which is sufficient for practical applications fdtlows from Eq. (30) thatesis less tham — 1
for both positive and negative correlations. Tlastfreflects an intuitive understanding that
any additional constraints, both deterministic atatistical (correlations) result in a decrease
in the degree of freedom.

The expressions fove; can be derived for specific models of time serkes. the AR(1)
model, inserting the sui(@")? Da?/(1 - &) into Eq. (30) leads to a formula:

-1, (31)

derived in a different way by Bartlett ([26], H)) and Priestley ([7], Eq. (5.3.30)).
6. Application of the formalism to experimental data

It has been assumed so far that the autocorrel&tiwstion {o} is known a priori. This
situation occurs for artificial data generated gsangiven time-series model. The presented
theory should, however, be applicable also to tleegssing of real autocorrelated data. This
requires the knowledge ofof} which can be gained, respectively, from a ste@tanalysis
of the investigated set of data, or by making dsalwer available information.

The autocorrelation functiong} can be known exactly when primarily uncorrelatiata
are smoothed using the moving average or otherdedlhed procedure. The same applies
to numerical differentiation of uncorrelated dafkor the two-point numerical derivative
o1 =-1/2 and the subsequent coefficients equal zeranfEq. (14) one obtaing; O, i.e.,
it is larger tham.)

The autocorrelation function can sometimes be ddrior electronic circuits with known
characteristics. It can also be determined to & kiggree of accuracy when a large amount
of data is available. Examples of autocorrelationctions for autocorrelated noise and for
meteorological data are given, respectively, insRef] and [17].

The possibilities mentioned above can be labelsihguthe vocabulary of GUM, as type-B
methods. The type-A methods aim to determing,{nes+ and vess from the investigated set of
observations}. This issue will be the subject of a forthcomipaper [27].

7. Conclusions

Guide to the Expression of Uncertainty in Measungmé] defines type-A standard
uncertainty as the square root of the unbiasethasdr of variance of the mean. Estimators of
variance s§ and variance of the meast (X) for autocorrelated variables presented in this
work are unbiased assuming that the autocorrel&tioction is known. Hence the square root
of s2(X) represents type-A uncertainty for autocorrelateseovationsu(x) =[s2(x)]¥2.



www.czasopisma.pan.pl P@ N www journals.pan.pl
=
<

Metrol. Meas. SystVol. XVII (2010), No. 1, pp. 316

In general, the formalism discusseditlims work can be used to extend the application of
GUM to the case of equivalent autocorrelated olzdems.

The approach presented in this work is based omwsstigation of the properties of
estimators. It is equivalent to the formalism o fkast-squares method for correlated entry
data. An application of this formalism for the cagenveighted mean was recently discussed
by Coxetal. [28].

Several aspects of this work are open to furthetiss. One is the calculation of expanded
uncertainty and the use of statistical tests incme of autocorrelated observations [18, 29].
The presented ideas can be extended to the praiflétting straight line and other functions.
The concept ofe; can be generalized to the case of an autocordelise-varying field [30].
Finally, the applicability of the presented fornsati to various experimental situations should
be tested.

The processing discussed here depends on the assuitigat the statistical parameters
o and {o} exist and do not depend on the sample giz€his assumption is not fulfilled for
nonstationary stochastic processes like the rangalk (in theory) or the difference of time
measured by two atomic clocks (in experiment). Uibe of other statistical tools, such as the
Allan variance, is necessary in such cases [31]wd¥er, when the investigated
autocorrelated process has well-defined classitatisscal parameters, the presented
approach is simpler and more adequate.
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