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Abstract

The present work offers new equations for phaséuatian in measurements. Several phsisifting equatior
with an arbitrary but constant phaseift between captured intensity signs are propo3ée equations a
similarly derived as the so called Carré equatidre idea is to develop a genezalion of the Carré equati
that is not restricted to four images. Errors aaddom noise in the images cannot be eliminated,ths
uncertainty due to their effects can be reducednbyeasing the number of observations. An experial
analysis of tk errors of the technique was made, as well asadletanalysis of errors of the measurement.
advantages of the proposed equation are its poecisi the measures taken, speed of processing la
immunity to noise in signs and images.
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1. Introduction

Phase shifting is an important technique in expental mechanics [3]. Conventional
phase shifting equations require phase shift ansotmmbe known; however, erroirs phase
shifts are common for the phase shift modulatorsead applications, and such errors can
further cause substantial errors in the deternonatif phase distributions. There are many
potential error sources which may affect the acouiE the practical measuremertg the
phase shifting errors, detector nonlinearities,njgation errors, source stability, vibrations
and air turbulence, and so on [4].

Currently, the phase shifting technique is the modely used technique for evaluation of
interference fields in many areas of science argineering. Its principle is based on the
evaluation of the phase values from several phasilated measurements of the intensity of
the interference field. It is necessary to carry atl least three phase-shifted intensity
measurements to determine the phase unambiguoudlyery accurately, at every point of
the detector plane. The phase shifting technigtexfully automatic calculation of the phase
difference between two coherent wave fields thtdrfare in the process. There are various
phase shifting equations for phase calculation thi#r on the number of phase steps, on
phase shift values between captured intensity fsanad on their sensitivity to the
influencing factors during practical measuremedis [

The general principle of most interferometric meaments is afllows. Two light beams
(reference and object) interfere after an intecsciof the object beam with the measured
object,i.e. the beam is transmitted or reflected by the dbjBee distribution of the intensity
of the interference field is then detectedy using a photographic film, CCD camera. The
phase difference between the reference and thectobgam can be determined using the
mentioned phase calculation technique. The phasgéinghtechnique is based on an
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evaluation of the phase of the interference sigsalg phase modulation of this interference
signal [5].

2. Theory of phase shifting technique

The fringe pattern is assumed toebsinusoidal function and it is represented bynisity
distributionl (x, y). This function can be written in general form as:

(%, y) = 1,6 y)+ 1.(x, y)cosp (x, y)+ 2], 1

wherel, is the background intensity variatioly,is the modulation strengtlgx, y) is the
phase at origin andis the phase shift related to the origin [6].

The general theory of synchronous detection caaplpéed to discrete sampling procedure,
with only a few sample points. There must be astlédaur signal measurements needed to
determine the phasgand the ternd. Phase Shifting is the preferred technique wheniee
external turbulence and mechanical conditions efithages remain constant over the time
required to obtain the four phase-shifted framegpidally, the technique used in this
experiment is called Carré equation [7]. By solvieg (1), the phase can be determined.
The intensity distribution of fringe pattern in xgd may be represented by gray level, which
varies from 0 to 255. With Carré equation, the phakift (@ is treated as an unknown
parameter. The equation uses four phase-shiftegasexpresseas:

IAxy)=h&my}+gongo{¢ogyy3§£}
Ixny)=hxxyyrgongo{¢o“yy§é}
L0 y) = 1,06 y)+ 1,(X, y)cos{¢ (X,y)-l-%:| :
.06 = (X Y)*+ 1,(x )cog 6 (x, Y39 |

@)

Assuming the phase shift is linear and does natghauring the measurements, the phase
at each point is determined:

= arcta -1+ = 1)] 830, - 15) - (1, - 1,)] , (3)
i’ (|2+|3)_(|1+|4)

Expanding Eq. (3), we obtain the Carré equation:

-2 +2,0, =21, +2,,
+312  -6l,l, -2,l,
+312 +2.,

12
12

tan(y) = (4)

PR P PO A

or emphasizing only the matrix of coefficients loé numerator and the denominator:
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‘n, n, ng n,
n,, N,, N
Num= 22723 240 pem=[d, d, d, d,]
43 n3,3 n3,4
zznr,slrls n 5
r=1s=r 4.4 .
tan@) = SR (5)
zdrlr
r= 3 -6 -2
' Num= s o | Dem=[-111 -
i -1

Almost all the existing phase-shifting equations @ased on the assumption that the
phase-shift at all pixels of the intensity framesgual and known. However, it may be very
difficult to achieve this in practice. Phase meampequations are more or less sensitive to
some types of errors that can occur during measemenwith images. The phase-shift value
is assumed tbe unknown but constant in phase calculation egustiwhich are derived in
this article. Consider now the constant but unkngivase shif between recorded images of
the intensity of the observed interference field.

ConsideringN phase-shifted intensity measurements, we can wotethe intensity
distributionly at every point ok recorded phase-shifted interference patterns.

O Y) = 1Y)+ 1,06 ) co{qp (x,yﬁ[z“TNlj 5} (6)
wherek = 1,..,N and N is the number of frames.

In Novak [4], several five-step phase-shifting doues insensitive to phase shift
calibration are described and a complex error a@malyf these phase calculation equations is
performed. The best five-step equation, Eq. (Bnseto be a very accurate and stable phase-
shifting equation with the unknown phase step faide range of phase step values.

a=liohe g e YAa A ) (1)t
bjk:|j+|k 2'3_b15 21, =1, =1
Expanding Eq. (7), we obtain the Novak equation:
—12 +20 1,
+417 -8l,l,
+417
t ls 8
an() =
® TN (8)

or emphasizing only the matrix of coefficients loé thnumerator and the denominator:
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n, n, ng n, ng
Mo Moy Npy Mg
Num= Nz Nag Nys |, Dem:[dl d, d; d, ds]
5 5 n n
> Sn.d . o .9
tan@) — r=1s=r L n5x5
5 __
Zdrlr 100 0 2
=] 4 0 -8 0
Num= 0 0 0| Dem=[-1 0 2 0 -1
4 0
L -1

3. Uncertainty analysis

Following the model of uncertainty analysis presdnin [8], these new equations have
excellent results with the application of Monte Bdvased technique of uncertainty
propagation. The Monte Carlo-based technique requiassigning probability density
functions (PDFs) to each input quantity. A compuigorithm is set up to generate an input
vectorP = (ps...pn)"; each elemer; of this vector is generated according to the speBIDF
assigned to the corresponding quarityBy applying the generated vectdrto the model Q
= M(P), the corresponding output value Q can be mded. If the simulating process is
repeated times (1 >> 1), the outcome is a series of indicatiogs.(g,) whose frequency
distribution allows us to identify the PDF of Q.dfh irrespective of the form of this PDF, the
estimatege and its associated standard uncertaidy) can be calculated by:

qe :iiqlf (10)
and
N T <P 11
u(qe) \/(n_l) ;(ql Qe) 6

The influence of the error sources affecting thagghvalues is considered in these models
through the values of the intenslty This is done by modifying Eq. (6):

Ik(x,y>:Im(x,y>+Ia(x,y)co{co(x,y)+(”'T“Hj(5+e>+ek}+fk. (12)

Comparing Egs (6) and (12), it can be observedttirat input quantities &, &) were
included. @ allows us to consider in the uncertainty propageathe systematic error used to
induce the phase shift, is not adequately calidtafbe error bound allowed us to assigréto
a rectangular PDF over the interval/f10 rad, #710 rad]. & allows us to account for the
influence of environmental perturbations. The erbmund allowed us to assign @ a
rectangular PDF over the intervat7f20 rad, #720 rad]. & allows us to account for the
nearly random effect of the optical noise [8]. Teetangular PDFs assigned foshould be
in the interval £10, +10].

The values ofpwere considered given in the range f2]. A computer algorithm was set
up to generate single values @ ¢, &) according to the corresponding PDFs. With the
generated values of the input quantities, we etatldhe phasep by using the new
equations. Since this simulating process and theegponding phase evaluation were
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repeatedn = 10" = 10000 times, we were able to form the seri@s.(@10000 With the
outcomes [8].

4. Proposed equations

Here is proposed a general equation for calculdtiegphase for any numbét, of images
where:
N

N
zznr,slrls

r=1 s=r

N
> d.l,

r=1

tan@ )= , 3j1

whereN is the number of imagesy s are coefficients of the numeratok,are coefficients of
the denominatom, ands are indexes of the sum. Or, expanding the summaaod allowing
an arbitrary number of lines obtains:

2
r]1.1|1 +n1,2| 1|2 +nl3| 1|3 +nl4| 1|4 +n1,NI1IN
+n2,2|22 +n2,3l2|3 +n2,4|2|4 +n2,N|2|N
+n3,3|32 +n3,4|3|4 +n3,NI3IN
| +n,,07 g l,ly
+ nN N l l%l
tan(@) = (14)
|d1|1 +d2|2 +d3|3 +d4|4 +"'+dN—l| N-1 +dNI N|
Emphasizing only the matrix of coefficients of themerator and the denominator:
nl,l nl,2 nl,3 nL4 n].,N
N N n2,2 n2,3 n2,4 nz,N
Zznr,sl s — N3z Niy Nan
_ r=1s=r Num=
tan(p) = . Ny4 Ny n (15)
>d,1,
r=1
- nN'N -
Dem=[d, d, d, d, .. dy, d]

The display of the phase calculation equation iis thay permits the viewing of
symmetries and plans of sparse matrix. The uskeoélbsolute value in the numerator and the
denominator restricts the angle between 0 atXrad but avoids negative roots and also
eliminates finding false angles. Subsequent coralidas will later remove this restriction
[4-6].

In the tested practical applications, an increas@086 in processing time was noticed
when using 16 images instead of 4, while proces#iegstandard Carré equation, due to
many zero coefficients. But if one changes thefaoehts from integer type to real numbers,
the processing time for the evaluation of phasalisost doubled, because real numbers
require more memory and more processing time tduata floating point additions and
multiplications, which are many in the equationgwiarge number of images.
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The shift on the problem focus of obtaining equaidor calculating the phase of an
analytical problem of a numerical vision is a greatovation. It breaks a paradigm that was
hitherto used by several authors. After severahapts in numerical modeling of the problem,
the following mathematical problem was identifid® ¢ 19):

_ Z@T]
where a=(’:1 / and n=10000 (16)

number of variables(v)
n, 1Y v=1..[@+N}

Minimal

M=
M=z

rs'r s’

i) tanz(cov)[idrw} =

r=1s=r
i) SZ’i: N, +d|=1 r =1.N,enter all frames
ZN: n,|+|d, |21 r =1.N,enter all frames
|i|\|/)) Z2N<n,, <2N, r=1N,s=r.N
subject V) -2N <d, <2N, r=1.N
vi) n, , areinteger, r=1.N,s=r..N
vii) d, areinteger, r=1.N

T=1n

N N N A

| T
PIILIMHK
r=1 s=r

vii) @ =arcta

d i’
~ a7)
where for each:
1603 = 100+ 1k o0g 0 by 2N e 1
[, 0[0; 128] random and real
(18)

I, 0[0; 127] random and real
¢'0[-m m random and real
o'0[-2m 2m] random and real

where for eaclx
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fﬂkw=fﬂxyﬁfﬂmwmﬁk’@yF[
com k=1..N

f,;D[O; 128] random and real

fa’D[O; 127] random and real

¢ 0[o; %] random and real

K-N-1) = ~ ] =
LA

(19)

3’D[—27T, 2] random and real
o -7/ - 1T,
g 0] 50 /Zd random and real

=1/ - T
& O] 40, /16 random and real
E[D[—lo; 10] random and real

The coefficients of the matrices of the numeratpg)(and the denominatod must be
integers to increase the performance of the complgerithm, as the values of the intensity
of the imagesl() are also integers ranging from 0 to 255. Modenmputers perform integer
computations (additions and multiplications) muebktér than floating point ones. It should
be noted that the modern commercial digital camatesady present graphics resolution
above 12 Mega pixels and that the evaluation os@h@ should be done pixel by pixel.
Another motivation is the memory usage: integeugalcan be representbd a single byte
while real values use at least 4 bytes. The presdm@me uses real numbers only in the square
root of the numerator, in the division by denomomadnd in the arc-tangent over the entire
operation.

The idea is to obtain the values of the coeffigenit matrices of the numeratar, {) and
denominatord;) with the minimum standard uncertainty the phaseasu(¢) in Eq. (11). It
comes from the attempt to force these factors to,zZer computational speed-up and for
reducing the amount of the memory required, sirege #ferms in sparse matrices do not need
to be stored. It is also important that those satice not very large so that the sum of the
numerator and the denominator does not have ahighyvalue to fit into an integer variable.
For a precise phase evaluation, these factorsingibase the values of the intensity of the
image (k) that contains errors due to noise in the imagetsi discretization in pixels and in
shades of gray.

The first restriction of the problem (£619) is the Eq. (13), which is squared to form the
relation that one is seeking. It should be noteat tihe results obtained by solving the
mathematical problem of the coefficients are in fitven of matrices for the numeratar; §)
and the denominatod,{), so the number of unknowns is given lbyTo ensure that one has a
hyper-restricted problem, the number of restriiomust be greater than or at least equal to
the number of variables. Therestrictions of the model are obtained throughdoam choice
of values for,, 15, ganddand by using the Eq. (6) to complgeTests showed that even for
low numbers for other values of the mathematical problem leads to only one optima
solution though it becomes more time-consumingedadthe values df,, 1, @andd can be
any real number, but to maintain compatibility witlte problem images, it was decided to
limit 1, between O to 128 arigdbetween 0 and 127 so thatvould be between 0 and 255.

The restrictions ii and iii of the problem are ldhse the idea that all image luminous
intensities ly, must be present in the equation. It increasesuh@unts of samples to reduce
the noise of random images. This requires thabfathe sampling images enter the equation
for phase calculation. This is achieved by imposimag the sum of the absolute values of the
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coefficients of each row or column of the matrix edich of the numeraton;), plus the
module at the rate corresponding to that imagbendenominatord), is greater than or equal
to 1. Thus the coefficients on an equation to dateuthe phase for a given imalgewill not

be all zeros, ensuring their participation in toeation.

.,16.

4,5,6,..

Table 1. Matrix of Coefficient folN
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Restrictions iv and v of the problem are used tekrate the solution of this mathematical
model. This limitation in the value of the coef@ots of matrices of the numerator § and
denominatord;) presents a significant reduction in the seardkause and in the search of a
solution for model optimization. Restriction viif the problem (16- 19) is the Eq. (12).

The following multi-step equation for phase caltiola uses well known trigonometric
relations and branch-and-bound algorithm [9] forepinteger nonlinear programming with
the mathematic problem (1619). Table 1 shows equations.

5. Tests of uncertainty analysis

The objectives are equations of phase calculabetier, more accurate, more robust and
more stable for the random noise. The tests shaivtlie optimum phase-shift interval with
which the equation gives minimum uncertainty fag tioise is in the vicinity off2 rad (Fig.

1).

160

140 /
o 120 | b A =N =4
}:‘3 "\ /l/ =W=N=5
5 N \ 7> —
© T 100 - O\ > — /) - N=6
2% \&\Wwf =7
E 8 080 ==\ - S s HEN=E
g% \\W I
£ 8 060 1 “=‘\ _ e4 =N =10
% N —e
5 8 ) N=12
T T 040 f— - A4
5 > =N =13
2 “=N=14
8 020
7 N=15
2 N=16
= 000 B

000 020 039 059 079 098 118 137 157 177 196 216 236 255 275 295 314

Phase shift (&) x10 2 rad

Fig. 1. Standard uncertainty of the phase vali{e§ using new equations with variation of
phase shift§). Note that the uncertainty is smaller ndar 772 radian and decreases with
increasing number of images.

Fig. 2 shows the relationship between the standao@rtainty and the phase valugs
the range {7z 7. This relationship expresses the accuracy arillisyeof the proposed phase
shifting equations. Further, there were studiedpitoperties of the equations with respect to
the change of parameters simulating the real neatities of the phase shifting device and
detector.

Fig. 3 shows the average of the standard unceyta{gt) generated with valuegin the
range [0, 772] by using new equations. It can be observed that uncertainty by new
equations diminishes as the number of images isesea
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350

0

-314 -275 -236 -196 -157 -118 -79 -39 0 39 79 118 157 196 236 275 314

The standard uncertainty of the phase values u(¢’) x10 3 rad

Values of Phase (¢) x 102 rad

Fig. 2. Standard uncertainty of the phase valij¢gg using new equations with variation of
phase §). Note that the uncertainty is smaller near thétiplas of ¢= 774 radian and
decreases with an increasing number of images.

Average of the standard uncertainty u(¢’) x10-3 rad

140
120
100 ‘\:
080 \
060 \
040 \
020 \
000
4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Images

Fig. 3. Average of the standard uncertainty) by using new equations. Note that the
uncertainty decreases with an increasing numbenages.

6. Symmetry and sparse matrix of coefficients

To solve the problem of increasing the processmg to obtain new equations for phase
calculation with the increased number of variatieshigh values oN uses up an important
data; the equations showed symmetries in the mafrizoefficients of numerator and the
denominator (Fig. 4). Lét = (N div 2) + (N mod 2), where the value gfdiv y is the value of
xly down rounded to the nearest integer (integer divisiorg the mod operator returns the
remainder obtained by dividing its operands (ineotlvords x mody = x— (x div y) * y). The
symmetries are:
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r=1h and
r=1h and

r=1.hs=r.h and

r=1L.hs=r.h and s>r
r=1.nhs=r.h and s>r

raN+1-s and sZN+1-r
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rgN+1-r
rgN+1-r

and sZN+1-s
and s#N+1-r

Fig. 4. Symmetries in the coefficients of the nuater and denominator.

So as the matrix fdl also was:

nl.l n2I..2 n1,3
n2,2 n2,3
n3,3

Num=

Dem=[d, d, d, d,

As well the matrix for oddN was:

Ny My N,
CYERLY
N33

Num=

Dem:[d1 d, d, d,

Ny Ny —Ny, LT — Ny —Nny, - 2n1,1
Ny h-1 Ny Ny ~Nyh Ny, 2n2,2 —Ny,
Ngn-1 Nsp ~ My ~M3hg —2n;; TNy, —Ny,
Mapr Mhean " Mhegn — 2nh—Lh—1 Nypy “ Mo Ny
Mhp  —2My,  — Ny Ny =Ny — Ny,
Ny h Ny1h Ny, N, n,
My_ih-1 MNapes Mapg Mipg
N34 Ny3 N5
n,, P
n,
d, d, d, d_ .. d, d; d, dl]
Myh-g M Myhg —Ns -, -~ 2n1,1
Ny N, Ny Ny~ 2n2,2 n,,
N3pq Ny, N3pq - 2n3,3 Ny3 N3
Mp-thr Mhean ~ 2nh—l,h—1 “Ngh TNoh T
Ny Mh-1n Ny, n,, My
Mh-1p-1 N3pq Ny ha Nypg
Ny3 n,; N3
n,, Ny,
nll
dyy dy dpy .o d, dy d, d

(20)

(21)

(22)
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Therefore, using symmetry to the numerator coeffits can be represented with only its
first quarter and the denominator coefficients banrepresented only with the first half, as
shown below:

nll I’]l2 nl3 . nlh_l nlh
n2,2 n2,3 T n2,h—l n2,h
n .. N n
4 _ 33 3h-1 3h 12 _
Nunt'* = Dent'?=[d, d, d, .. d,, d,] (23)

INETRET | MU
Mhn |

In theprevious Egs (23), most of the coefficients of nlsenerator and the denominator are
zero. And even more for the first quarter of thefioients of the numerator, the terms are
different from zero in the main diagonal and closethe three diagonals, so only the first
four coefficients of each line are different fromra. In the first half of the coefficients of the
denominator, only the first four and the last temra different from zero. A matrix where most
of the terms are zeros is usually called sparsexnat

d'? =0, r=>5.h-1
Sparse 1a (24)
ng=0 r=1Lh-5 s=r+4h and s>r+3
In order, the matrix is:
_nll an nZL3 nZL4 0 0 0 0 0 0 0 i
Ny Myg Ny Ny 0 0 0 0 0 0
Mg Ngy Ngs  Ngg 0 0 0 0 0
Mg Nys Nyg N7 0 0 0 0
. . 0 0 0
(25)
Num? = Meh-6 Mhens Mhsn-a Mhsns 0 0
Mhshs Mhsh-a Mhsphs Mhshe 0 0
Mean-a Mhaps Meapz Mhegpa O

Msh-3 Mh-anz Theapa Mhean
M2h-2 Mhezha Mhean

Mhtha Mhan

Mon |

Dent?=[d, d, d, d, 0 0 ... 0 O d]

An important fact is that the resolution of the heahatical model generates new and
efficient equations for calculating the phase. Asstrof the coefficients of both the numerator
and the denominator is zero, the implementatiotheée new equations is very fast and the
volume of mathematical operations is reduced, bex#ue terms are zero as there is no need
for a multiplier to the values of luminous integsik for these factors, as any number
multiplied by zero will be zero.

7. Equations for phase calculation of many images
Analyzing the equations deducted, it was attemfuegkt a rule for training for them or an

algorithm to provide valid values of coefficientstbe numerator and the denominator of the
equations for phase calculation of large quantibésmages N > 15). The concept of
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symmetry and sparse matrix of the previous sedstias used to look for a rule of training for
the first four terms of each line of the fourthtbé coefficients of the numerator, and for the
four words which may be different from zero to hhiké denominator. The first thing that was
done was to reset all the coefficients of the natogrand the denominator.

The rule that established training is divided iatght cases depending on the value of the
number of imaged\). For each case there was training wiié rule shown below.

For case 1, wheN is evenN is divisible by 4 andN is also divisible by 8:

Half = N/2
Fourth = N /4
Row :
-1 0 1 0 .. ] 1
10 -1 0 2
0 0 1 0 .. 3
-1 0 0 0 .. 4
0O 0 1 o0 .. Repeat
-1 0 0 0 .. Repeat
Num/ 4 = 0 0 -1 0 Fourth +1
1 0 0 O Fourth + 2
0O 0 -1 0 .. Repeat
1 0 0 O ..| Repeat
1 0 -1| Half -2 (26)
1 1| Half -1
L 1| Half
Dem*?=[-1 0 1 0 0 0 .. 0 0 0]
Col 1 2 3 4 5 6 .. Haf -2 Half -1 Half
For case 2, wheN is evenN is divisible by 4 bul is not divisible by 8:
Half = N/2
Fouth = N /4
Row :
-1 01 0 .. i 1
10 -1 0 .. 2
0 0 1 O 3
-10 0 0 .. 4
0O 0 1 0 .. Repeat
-1 0 0 0 .. Repeat
Num'é = 0 0 -1 0 Fourth
1 0 0 O Fourth +1
0O 0 -1 0 .. Repeat
1 0 0 O ..| Repeat
(27)
0 1| Half -1
L Half
Dem'2=[-1 0 1 0 0 0O .. 0 0 0]
Col 1 2 3 45 6 Half -2 Half -1 Half

For case 3, wheN is evenN +2 is divisible by 4 andll +2 is divisible by 8:
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Half =N/2
Fourth=(N+2)/4
Row:

-1 01 0

10-10

0 0 1
-1 0
0

w N P

4
0o .. Repeat
0 0 .. Repeat

o O o

Fourth+1
Fourth+ 2
-1 0 .. Repeat
0 0O O ..| Repeat

Nunt’* =

,_\
o

» O o o
o

1 0 -1 0] Half -3
1 0 -1| Half -2 (28)
1 1| Half -1
1| Half

Dent?=[-1 010 0 0 .. 0 0 0]
Col 123 456 .. Half -2 Half -1 Half

For case 4, wheN is evenN +2 is divisible by 4 bulN +2 is not divisible by 8:

Half = N/2
Fourth=(N+2)/4

-1 01 0 .. 1
10 -1 0 .. 2
0 0 1 0 .. 3

0 0 1 0 .. Repeat
-1 0 0 0 .. Repeat

Fourth
Fourth+1
-1 0 .. Repeat
0 0O O ..| Repeat

Numt’* =

,_\
o

» o o o
o

Half -3
Half -2 (29)
Half -1

Half

—
|
=

o O

P P oo

Dent’?=[-1 010 0 0 .. 0 0 0]
Col 112 345 6 .. Haf-2 Half-1 Half

For case 5, wheN is odd,N — 1 is divisible by 4 andll — 1 is divisible by 8:
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Half = (N +1)/2
Fouth= (N —1)/4

<12 -1 0 ..
0-200
2 0 -10
0 0 0 1
0 -1 00
00 2 -2 .
2 -2 0 2
Nur’rfj{‘=
0 2 0
0 0
0
Dem2=[-110 -1 0 0 .. 0 0
Col 12 3 456 .. Half -2 Half -1

2]

Half

Row:

1

2

3
Repeat
Repeat

Fourth
Fourth+1
Fourth+2

Repeat

Repeat

Half -2
Half -1
Half

For case 6, wheN is odd,N — 1 is divisible by 4 buN — 1 is not divisible by 8:

Half =(N+1)/2
Fouth=(N-1/4

-1 2
0

Nun%{1 =

Dem?=[-110 -1 0 0
1123 456 ..

Col

-1 0
-2 00
20
0

-1
0
0

Half -2

0 0

Half -1

R O ON

2]
Half

Repeat
Repeat

Fourth
Fourth+1
Fourth+2

Repeat

Repeat

Half -2
Half -1
Half

For case 7, wheN is odd,N +1 is divisible by 4 an®l +1 is divisible by 8:

(30)

(31)
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Half =(N+1)/2
Fourth=(N+1)/4
Row :

-1 -2 0 1 0 ..
1 1 -10
00

0

B O o o
o :
A w N PR

0O 0 0 .. 5
Repeat
Repeat
o .. Fourth-1
Fourth
-2 0 0 .. Fourth+1
0 O -1 0 ..| Repeat
1 0 O ..| Repeat

Nunt'* =

O O O o

N NN O
)
|
N
o

0 1 OfHalf-2 (32)
1 0] Half -1
0] Half

Den"}’2=[_—1 1100 0 .. 0 0 2]
Col 1 23456 .. Half -2 Half -1  Half
For case 8, wheN is odd,N +1 is divisible by 4 buN +1 is not divisible by 8:

Half =(N+1)/2
Fourth=(N+1)/4

Row :
(-1 -2 0 0 0 .. 1 1
1 2-100 2
0 0 -1 0 .. 3
1 0 0 0 .. 4
0O 0 1 0 .. Repeat
-1 0 0 0 .. Repeat
N -10 2 0 .. Fourth-1
02 2 -2 0 .. Fourth
2 -2 0 0 .. Fourth+1
0 O -1 0 ..| Repeat
1 0 O ..| Repeat
(33)
1 0| Half -1
L 0| Half
Dent'?=[-1 =110 0 0 .. 0 0 2]
Col 1 2 3 456 .. Half -2 Half -1  Half

As the new equations were developed from the dlgos, numerical calculation, instead
of analytical demonstrations of trigonometric riglas, is necessary to check them. It is
believed that a large number of numerical testsvedidate or verify these new equations, or
at least reduce to a minimum the chance of thesateaqs being wrong or false. The goal
here is to verify that the new equations reallycakdte the tangent of the phase tanEor
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that reason, real figures are attributed to rantipthat ranges from 0 to 128 that are assigned
at random to real valuek, that ranges from 0 to 127, and the cosinelofaries by 1 to the
values of luminous intensity will be between 0 and 255 that is the range oélpamplitude

for amonochrome digital photo. It is interesting to netthat the digital images and values
are intact here to further enlarge the test in wiiey are made real. They are also assigned
values to real randorg that varies from-77to 77 tracking common algorithms used on the
main unwrapped. Real values are assigned andidemad that ranges from10s7to 1077 a
very wide range of possible values of step-phas$e Values ofly (image luminosity) are
calculated withk ranging from 1 td\. The new equations with the valueslpfre applied,
giving a tan @ that must be compared to the value of phase mlydassigned §). This
comparison is the accuracy through a very smallev@kecause the number of rounding errors
that can occur in the calculations, say, preci$pr ¢ < 10°. This was done thousands of
times (at least 10000 times) for each equatiompfase calculation. It generated and made up
of at least 99.9% of the time with an accuracy @f.IThus, it was believed that the chances
for the equations to be wrong or false have becmmnanal or remote.

8. Before unwrapping, changepO [0, 7#2] to @ O [-77 7}

Because of the character of the evaluation equatiomy phase valuegll [0, 772] were
calculated. For unequivocal determination of thapped phase values it was necessary to
test four valuesp —@ ¢— mand-g@+ mrusing values ofy and small systems. With this, the
value ¢” O [-77 71 was obtained [36]. In caseN=5, with I, I, I3, 14 andls, dwas found in
first equation and the values —@ @— mand-@+ 7 were attributed tap to test the other
equation and, was found using a second equation. As an exarnfglegach ¥, y) it was
tested for the four valueg —¢ ¢— rand-g@+ rin (Addition and subtraction of first, last and

middle frames, thé&):
Coi/é) V4u —Ia

=21, sin(g )sm35/ (34)
even N=4 I,-1,=2l_sin@@ )S'nd/z)

(I +1)=(,+1)=2I cos@ {cos(35/2) cos(/z)]
-1, :Ia[cos(qo —3%)—cos(¢ +%)]

cos@) = 2(I—|I)

I, =1, =2l_sin(@ )sin(2.9)

odd N=5I,-1,=2l_sin@)sin@) (35)
I, +1,—2l,=2l,cos@ )[cos(2.0) —1]

l,+1,—=2l,=2l,cosg )[cos@) 1]

In a different approach, for unambiguous deternmnmadf the wrapped phase values, it is
necessary to test four valugs-@ ¢ - mand-@+ rrusing values ofly and to solve small
nonlinear systems (Newton-Raphson methods). Fdr @agleg -@ ¢- mand-@+ 7, solve
the nonlinear system by Newton-Raphson in Eq. @&Y}ing the values df,, |, andd.
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l,-|1,+1,cog ¢*+(2'1_TN_1JJD=O

I,-| 1. +1 cos g* +(2'2‘TN_1J5D=0 (36)

l,—|1,+I,c0s ¢*+(2'3_TN_1J5D:O

With the values of, |, andd, test the Eq. (37) and find the correct anglé/[-77 7.

3 —(I ot |aCo{(ﬂ* +[24‘2N‘1J5D
)

9. Testing and analysis of error

0
(37)

The phaseg* obtained from the phase shifting algorithm ab@va wrapped phase which

varies from-772 to 772. The relationship between the wrapped phasetla@dinwrapped
phase may thus be stated as:

WX y)=¢*(x Y +2m (X Y), (38)

wherej is an integer numbeyf is a wrapped phase agds an unwrapped phase.

The next step is to unwrap the wrapped phase mapnWnwrapping, several of the phase
values should be shifted by an integer multiple 2af Unwrapping is thus adding or
subtracting 2r offsets at each discontinuity encountered in phda&. The unwrapping
procedure consists of finding the correct field t@mfor each phase measurement-113).

The modulation phaseés obtained by unwrapping physically represents ttaetional
fringe order numbers in the Moiré images. The slagpebe determined by applying the out-
of-plane equation for Shadow Moiré:

p(LP(x, y) j
2ir

206y) = (tana +tanp) ’

93

where:Z(x, y) = elevation difference between two points locabedthe body surface to be
analyzed;p = frame periodg = light angle;5 = observation angle.

The experiments are carried out using square weating with 1 mm frame grid period,
light source is common white of 300 watts withostng plane waves, light angle)(and
observation anglef) are 45 degrees, the object surface is white andoth and the
resolution of photo is one megapixel. The phagepstg is made by displacing the grid in the
horizontal direction in fractions of millimetersi¢F5).

To test the new equations for phase calculatioay there used with the technique of
Shadow Moiré [13] for an object with known dimenmsaand to evaluate the error median by
Eq. (40). This process was started with four imagegeated with five, then six and so on.
The idea was to show that with increasing numbemaiges the average error tends to
decrease. Fig. 6 shows this procedure.
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Axis perpendicular to the grid

Light Obser\?

o B

Grid

Object - Distance=Z

Fig. 5. Layout of experiment.

Fig. 6. One set of photos of 1 Megabyte (with laasfilter and Gaussian filter). Original Shadowitdo
images. 16-frame phase-shifting algorithapaWrapped phase g. Result in 3D r. (Semi-cylirafex motor with
diameter 6 cm, length 12 cm and with frame peribgrol equals tol mm).

Error Median (E) :ﬁé‘zf —Zi‘, (40)

whereM is the number of pixels of the imagg is the exact value of the size of the object
being measured arf is value measured by the new equation.

To compare the new equations for calculating thesph21 sets of 16 photos each were
selected. Each set was computed using the avemage & 4 to 16 images and using
equations to evaluate the number of images. Anagreeof errors was estimated, then 21 sets
were evaluated using 4 to 16 images in eachigetk, (s, ..., the). The hypothesis of testing
on the difference in the meapg—/46 of two normal populations is being consideredhat t
moment. A more powerful experimental procedurevisdllect the data in pairs that is, to
make two hardness readings on each specimen, dhesagh tip. The test procedure would



then consist of analyzing the differences betwéenhiardness readings on each specimen. If
there is no difference between tips, the mean efdifferences should be zero. This test

procedure is called the paired t-test [14]. Speally, testingHo: tn—s= 0 againsty: pa—Ls
# 0. Test statistics ig = D/(S, /v/21) whereD is the sample average of the differences &nd

is the sample standard deviation of these diffesen€he rejection region i8> ty/2.20 Or t, <
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—tas2,20 The data are shown below in Table 2.

Table 2. Error median error jom versus number of frameN)(for a semi-cylinder with diameter of 6 cm

and length of 12 cm (frame period of grid with 1 jnfhused 21 different sets of 16 images
of Shadow Moiré (Fig. 6).

Error
Median Sets of Images
(um)
Number
of 1 2 3 4 5 6 7 8 9110|1112 |13|14 15|16 |17 1819|2021
Images
4 125]127125]128|129]1128| 126125128127 |127]127|129|127]127|127]|127|127]126|126]127
5 121]1221122]123|123]1124|1231123|1241121]122]121]123|124]1122|124]125|122]121|123]121
6 118]118(118]119|1201120|119{120(120{120]121{119]119|117]117|118]|121|118]119|121]119
7 113]113|116]117|115)113|116]113|115/115]113|116]115|113]115|116]/116(113]113|116]114
8 109|110{111}110|1109111|122/109{112]110}111{212}109|112]110|111]111|112]112|110}110
9 107]105|107]106|106]107|106|107|105/107]104]107]106|108]104|107]104|104]105|105]105
10 103]1041103]102|104]1103|102]101}102]102]1041103]103|102]100|101]104}100{103|101]100
11 99 1100 98199 | 98 [100] 97 | 961 98 | 98 |100{100] 98 | 98 199199991 99| 99| 96 | 100
12 94194 19519392193 ]95|95]195|96]95[195]195]92]193]93[92]93]|92]95] 92
13 89189]191188]90[189]90|88]192|91]190|88]|88|88]91]88|88]89|90]89]|89
14 84184871878 ]87]|8|8 186|87|84|87]18|87]184]|84|85]87|85]|84]|87
15 82181|183]84]81]181]85|83]83|8[82|183]18[81]183]82|8]85|84]|85]83
16 7918178 77|78 78|78]181|80]|78|79]179]|78|80]80|80]|78|78]|77|81]78

Table 3. Testing hypotheses about the differentedmn two means with paired t-teldt; 44— = 0 against
H:: ua—tis# 0. TheP-value is the smallest level of significance thaulddead to rejection of the null

hypothesid, with the given data.
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On performing the statistical testif zn— = 0 againsHi: 1a—us # 0) it was noticed that
one cannot reject the zero hypothesis when usiifgreint equations with the same number of
images. Also, the null hypothesis can be rejectdenwvusing different equations with
different number of images with level of significan(@ = 0.05). It was concluded that the
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equations for phase calculation with a greater remolbimages are more accurate than those
with a smaller number of images. The tests are showable 3.

10. Conclusion

This paper deals with the equations for phase [lon in measurement with images
method using the phase shifting technique. It dessrseveral multistep phase shifting
equations with the constant, but unknown phase Ist@épeen the captured intensity frames.
The new equations are shown to be capable of mimgethe optical signal of Moiré images.
These techniques are very precise, easy to usénargensive. The results show that new
equations are precise and accurate. On the bagdlsegberformed error analysis it can be
concluded that the new equations are very goodeptalsulation algorithms. These equations
also seem to be very accurate and stable phagaglafgorithms with the unknown phase
step for a wide range of phase step values. Theiaretalysis of the considered system
demonstrated that its uncertainties of measurenrgnd on the frame period of the grid, on
the resolution of photos in pixel and on the numifeirames. However, the uncertainties of
measurement of the geometric parameters and ttse [gltifl require attention. In theory, if we
have many frames, the measurement errors bhellvery small. The measurement results
obtained by the optical system demonstrate its sttdd and engineering applications in
experimental mechanics.
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