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Abstract 

The present work offers new equations for phase evaluation in measurements. Several phase-shifting equations 
with an arbitrary but constant phase-shift between captured intensity signs are proposed. The equations are 
similarly derived as the so called Carré equation. The idea is to develop a generalization of the Carré equation 
that is not restricted to four images. Errors and random noise in the images cannot be eliminated, but the 
uncertainty due to their effects can be reduced by increasing the number of observations. An experimental 
analysis of the errors of the technique was made, as well as a detailed analysis of errors of the measurement. The 
advantages of the proposed equation are its precision in the measures taken, speed of processing and the 
immunity to noise in signs and images. 
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1. Introduction 
 

Phase shifting is an important technique in experimental mechanics [1−3]. Conventional 
phase shifting equations require phase shift amounts to be known; however, errors in phase 
shifts are common for the phase shift modulators in real applications, and such errors can 
further cause substantial errors in the determination of phase distributions. There are many 
potential error sources which may affect the accuracy of the practical measurement, e.g. the 
phase shifting errors, detector nonlinearities, quantization errors, source stability, vibrations 
and air turbulence, and so on [4]. 

Currently, the phase shifting technique is the most widely used technique for evaluation of 
interference fields in many areas of science and engineering. Its principle is based on the 
evaluation of the phase values from several phase modulated measurements of the intensity of 
the interference field. It is necessary to carry out at least three phase-shifted intensity 
measurements to determine the phase unambiguously and very accurately, at every point of 
the detector plane. The phase shifting technique offers fully automatic calculation of the phase 
difference between two coherent wave fields that interfere in the process. There are various 
phase shifting equations for phase calculation that differ on the number of phase steps, on 
phase shift values between captured intensity frames, and on their sensitivity to the 
influencing factors during practical measurements [4].  

The general principle of most interferometric measurements is as follows. Two light beams 
(reference and object) interfere after an interaction of the object beam with the measured 
object, i.e. the beam is transmitted or reflected by the object. The distribution of the intensity 
of the interference field is then detected, e.g. using a photographic film, CCD camera. The 
phase difference between the reference and the object beam can be determined using the 
mentioned phase calculation technique. The phase shifting technique is based on an 
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evaluation of the phase of the interference signal using phase modulation of this interference 
signal [5]. 
 
2. Theory of phase shifting technique  
 

The fringe pattern is assumed to be a sinusoidal function and it is represented by intensity  
distribution I (x, y). This function can be written in general form as: 
 

                                          ( , ) ( , ) ( , )cos[ ( , ) ],m aI x y I x y I x y x yϕ δ= + +                                  (1) 
 

where Im is the background intensity variation, Ia is the modulation strength, φ(x, y) is the 
phase at origin and δ is the phase shift related to the origin [6]. 

The general theory of synchronous detection can be applied to discrete sampling procedure,  
with only a few sample points. There must be at least four signal measurements needed to 
determine the phase φ and the term δ. Phase Shifting is the preferred technique whenever the 
external turbulence and mechanical conditions of the images remain constant over the time 
required to obtain the four phase-shifted frames. Typically, the technique used in this 
experiment is called Carré equation [7]. By solving Eq. (1), the phase φ can be determined. 
The intensity distribution of fringe pattern in a pixel may be represented by gray level, which 
varies from 0 to 255. With Carré equation, the phase shift (δ) is treated as an unknown 
parameter. The equation uses four phase-shifted images expressed as: 
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Assuming the phase shift is linear and does not change during the measurements, the phase 
at each point is determined: 
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Expanding Eq. (3), we obtain the Carré equation: 
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or emphasizing only the matrix of coefficients of the numerator and the denominator:  
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Almost all the existing phase-shifting equations are based on the assumption that the 
phase-shift at all pixels of the intensity frame is equal and known. However, it may be very 
difficult to achieve this in practice. Phase measuring equations are more or less sensitive to 
some types of errors that can occur during measurements with images. The phase-shift value 
is assumed to be unknown but constant in phase calculation equations, which are derived in 
this article. Consider now the constant but unknown phase shift δ between recorded images of 
the intensity of the observed interference field. 

Considering N phase-shifted intensity measurements, we can write for the intensity 
distribution Ik at every point of k recorded phase-shifted interference patterns. 
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where k = 1,.., N and  N is the number of frames. 
In Novak [4], several five-step phase-shifting equations insensitive to phase shift 

calibration are described and a complex error analysis of these phase calculation equations is 
performed. The best five-step equation, Eq. (7), seems to be a very accurate and stable phase-
shifting equation with the unknown phase step for a wide range of phase step values. 
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Expanding Eq. (7), we obtain the Novak equation: 
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or emphasizing only the matrix of coefficients of the numerator and the denominator:  
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3. Uncertainty analysis  
  

Following the model of uncertainty analysis presented in [8], these new equations have 
excellent results with the application of Monte Carlo-based technique of uncertainty 
propagation. The Monte Carlo-based technique requires assigning probability density 
functions (PDFs) to each input quantity. A computer algorithm is set up to generate an input 
vector P = (p1…pn)

T; each element pj of this vector is generated according to the specific PDF 
assigned to the corresponding quantity pj. By applying the generated vector P to the model Q 
= M(P), the corresponding output value Q can be computed. If the simulating process is 
repeated n times (n >> 1), the outcome is a series of indications (q1…qn) whose frequency 
distribution allows us to identify the PDF of Q. Then, irrespective of the form of this PDF, the 
estimate qe and its associated standard uncertainty u(qe) can be calculated by: 
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The influence of the error sources affecting the phase values is considered in these models 
through the values of the intensity Ik. This is done by modifying Eq. (6): 
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Comparing Eqs (6) and (12), it can be observed that three input quantities (θ, εk, ξk) were 
included. θ allows us to consider in the uncertainty propagation the systematic error used to 
induce the phase shift, is not adequately calibrated. The error bound allowed us to assign to θ 
a rectangular PDF over the interval [−π/10 rad, +π/10 rad]. εk allows us to account for the 
influence of environmental perturbations. The error bound allowed us to assign to εk a 
rectangular PDF over the interval [−π/20 rad, +π/20 rad]. ξk allows us to account for the 
nearly random effect of the optical noise [8]. The rectangular PDFs assigned to ξk should be 
in the interval [−10, +10]. 

The values of φ were considered given in the range [0, π/2]. A computer algorithm was set 
up to generate single values of (θ, εk, ξk) according to the corresponding PDFs. With the 
generated values of the input quantities, we evaluated the phase φ´ by using the new 
equations. Since this simulating process and the corresponding phase evaluation were 
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repeated n = 104 = 10000 times, we were able to form the series (φ´1…φ´10000) with the 
outcomes [8]. 
 
4. Proposed equations  
 

Here is proposed a general equation for calculating the phase for any number, N, of images 
where: 
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where N is the number of images, nr,s are coefficients of the numerator, dr are coefficients of 
the denominator, r and s are indexes of the sum. Or, expanding the summations and allowing 
an arbitrary number of lines obtains: 
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Emphasizing only the matrix of coefficients of the numerator and the denominator: 
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The display of the phase calculation equation in this way permits the viewing of 
symmetries and plans of sparse matrix. The use of the absolute value in the numerator and the 
denominator restricts the angle between 0 and π/2 rad, but avoids negative roots and also 
eliminates finding false angles. Subsequent considerations will later remove this restriction 
[4−6]. 

In the tested practical applications, an increase of 20% in processing time was noticed 
when using 16 images instead of 4, while processing the standard  Carré equation, due to 
many zero coefficients. But if one changes the coefficients from integer type to real numbers, 
the processing time for the evaluation of phase is almost doubled, because real numbers 
require more memory and more processing time to evaluate floating point additions and 
multiplications, which are many in the equations with large number of images.  
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The shift on the problem focus of obtaining equations for calculating the phase of an 
analytical problem of a numerical vision is a great innovation. It breaks a paradigm that was 
hitherto used by several authors. After several attempts in numerical modeling of the problem, 
the following mathematical problem was identified (16 − 19): 
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where for each v: 
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where for each t:  
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The coefficients of the matrices of the numerator (nr,s) and the denominator (dr) must be 
integers to increase the performance of the computer algorithm, as the values of the intensity 
of the images (Ik) are also integers ranging from 0 to 255. Modern computers perform integer 
computations (additions and multiplications) much faster than floating point ones. It should 
be noted that the modern commercial digital cameras already present graphics resolution 
above 12 Mega pixels and that the evaluation of phase (φ) should be done pixel by pixel. 
Another motivation is the memory usage: integer values can be represented by a single byte 
while real values use at least 4 bytes. The present scheme uses real numbers only in the square 
root of the numerator, in the division by denominator and in the arc-tangent over the entire 
operation. 

The idea is to obtain the values of the coefficients of matrices of the numerator (nr,s) and 
denominator (dr) with the minimum standard uncertainty the phase values u(φ´) in Eq. (11). It 
comes from the attempt to force these factors to zero, for computational speed-up and for 
reducing the amount of the memory required, since zero terms in sparse matrices do not need 
to be stored. It is also important that those ratios are not very large so that the sum of the 
numerator and the denominator does not have a very high value to fit into an integer variable. 
For a precise phase evaluation, these factors will increase the values of the intensity of the 
image (Ik) that contains errors due to noise in the image, in its discretization in pixels and in 
shades of gray. 

The first restriction of the problem (16 − 19) is the Eq. (13), which is squared to form the 
relation that one is seeking. It should be noted that the results obtained by solving the 
mathematical problem of the coefficients are in the form of matrices for the numerator (nr,s) 
and the denominator (dr), so the number of unknowns is given by ν. To ensure that one has a 
hyper-restricted problem, the number of restrictions must be greater than or at least equal to 
the number of variables. The ν restrictions of the model are obtained through random choice 
of values for Im, Ia, φ and δ and by using the Eq. (6) to compute Ik. Tests showed that even for 
low numbers for other values of ν, the mathematical problem leads to only one optimal 
solution though it becomes more time-consuming. Indeed the values of Im, Ia, φ and δ can be 
any real number, but to maintain compatibility with the problem images, it was decided to 
limit Im between 0 to 128 and Ia between 0 and 127 so that Ik would be between 0 and 255. 

The restrictions ii and iii of the problem are based on the idea that all image luminous 
intensities, Ik, must be present in the equation. It increases the amounts of samples to reduce 
the noise of random images. This requires that all of the sampling images enter the equation 
for phase calculation. This is achieved by imposing that the sum of the absolute values of the 
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coefficients of each row or column of the matrix of each of the numerator (nr,s), plus the 
module at the rate corresponding to that image in the denominator (dr), is greater than or equal 
to 1. Thus the coefficients on an equation to calculate the phase for a given image Ik will not 
be all zeros, ensuring their participation in the equation.  
 

Table 1. Matrix of Coefficient for N = 4,5,6,...,16. 
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Restrictions iv and v of the problem are used to accelerate the solution of this mathematical 
model. This limitation in the value of the coefficients of matrices of the numerator (nr,s) and 
denominator (dr) presents a significant reduction in the search universe and in the search of a 
solution for model optimization. Restriction viii of the problem (16 − 19) is the Eq. (12). 

The following multi-step equation for phase calculation uses well known trigonometric 
relations and branch-and-bound algorithm [9] for pure integer nonlinear programming with 
the mathematic problem (16 − 19). Table 1 shows equations. 
 
5. Tests of uncertainty analysis 
 

The objectives are equations of phase calculation, better, more accurate, more robust and 
more stable for the random noise. The tests show that the optimum phase-shift interval with 
which the equation gives minimum uncertainty for the noise is in the vicinity of π/2 rad (Fig. 
1). 
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Fig. 1. Standard uncertainty of the phase values u(φ´) using new equations with variation of 
phase shift (δ). Note that the uncertainty is smaller near δ = π/2 radian and decreases with 

increasing number of images. 
  

Fig. 2 shows the relationship between the standard uncertainty and the phase values φ in 
the range [−π, π]. This relationship expresses the accuracy and stability of the proposed phase 
shifting equations. Further, there were studied the properties of the equations with respect to 
the change of parameters simulating the real nonlinearities of the phase shifting device and 
detector. 

Fig. 3 shows the average of the standard uncertainty u(φ´) generated with values φ in the 
range [0, π/2] by using new equations. It can be observed that the uncertainty by new 
equations diminishes as the number of images increases. 
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Fig. 2. Standard uncertainty of the phase values u(φ´) using new equations with variation of 
phase (φ). Note that the uncertainty is smaller near the multiples of φ = π/4 radian and 

decreases with an increasing number of images. 
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Fig. 3. Average of the standard uncertainty u(φ´) by using new equations. Note that the 
uncertainty decreases with an increasing number of images. 

 
6. Symmetry and sparse matrix of coefficients 
 

To solve the problem of increasing the processing time to obtain new equations for phase 
calculation with the increased number of variables for high values of N uses up an important 
data; the equations showed symmetries in the matrix of coefficients of numerator and the 
denominator (Fig. 4). Let h = (N div 2) + (N mod 2), where the value of x div y is the value of 
x/y down rounded to the nearest integer (integer division) and the mod operator returns the 
remainder obtained by dividing its operands (in other words, x mod y = x – (x div y) * y). The 
symmetries are: 
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Fig. 4. Symmetries in the coefficients of the numerator and denominator. 
 

So as the matrix for N also was: 
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As well the matrix for odd N was: 
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Therefore, using symmetry to the numerator coefficients can be represented with only its 
first quarter and the denominator coefficients can be represented only with the first half, as 
shown below: 
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In the previous Eqs (23), most of the coefficients of the numerator and the denominator are 
zero. And even more for the first quarter of the coefficients of the numerator, the terms are 
different from zero in the main diagonal and closer to the three diagonals, so only the first 
four coefficients of each line are different from zero. In the first half of the coefficients of the 
denominator, only the first four and the last term are different from zero. A matrix where most 
of the terms are zeros is usually called sparse matrix. 
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In order, the matrix is: 
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An important fact is that the resolution of the mathematical model generates new and 
efficient equations for calculating the phase. As most of the coefficients of both the numerator 
and the denominator is zero, the implementation of these new equations is very fast and the 
volume of mathematical operations is reduced, because the terms are zero as there is no need 
for a multiplier to the values of luminous intensity Ik for these factors, as any number 
multiplied by zero will be zero. 
 
7. Equations for phase calculation of many images 
 

Analyzing the equations deducted, it was attempted to get a rule for training for them or an 
algorithm to provide valid values of coefficients of the numerator and the denominator of the 
equations for phase calculation of large quantities of images (N > 15). The concept of 
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symmetry and sparse matrix of the previous section was used to look for a rule of training for 
the first four terms of each line of the fourth of the coefficients of the numerator, and for the 
four words which may be different from zero to half the denominator. The first thing that was 
done was to reset all the coefficients of the numerator and the denominator. 

The rule that established training is divided into eight cases depending on the value of the 
number of images (N). For each case there was training with the rule shown below. 

For case 1, when N is even, N is divisible by 4 and N is also divisible by 8: 
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For case 2, when N is even, N is divisible by 4 but N is not divisible by 8: 
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For case 3, when N is even, N +2 is divisible by 4 and N +2 is divisible by 8: 
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For case 4, when N is even, N +2 is divisible by 4 but N +2 is not divisible by 8: 
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For case 5, when N is odd, N − 1 is divisible by 4 and N − 1 is divisible by 8: 
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For case 6, when N is odd, N − 1 is divisible by 4 but N − 1 is not divisible by 8: 
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For case 7, when N is odd, N +1 is divisible by 4 and N +1 is divisible by 8: 
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For case 8, when N is odd, N +1 is divisible by 4 but N +1 is not divisible by 8:   
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As the new equations were developed from the algorithms, numerical calculation, instead 

of analytical demonstrations of trigonometric relations, is necessary to check them. It is 
believed that a large number of numerical tests can validate or verify these new equations, or 
at least reduce to a minimum the chance of these equations being wrong or false. The goal 
here is to verify that the new equations really calculate the tangent of the phase tan(φ). For 
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that reason, real figures are attributed to random Im that ranges from 0 to 128 that are assigned 
at random to real values, Ia that ranges from 0 to 127, and the cosine of −1 varies by 1 to the 
values of luminous intensity Ik will be between 0 and 255 that is the range of pixel amplitude  
for a monochrome digital photo. It is interesting to notice that the digital images and values 
are intact here to further enlarge the test in which they are made real. They are also assigned 
values to real random φ´ that varies from −π to π, tracking common algorithms used on the 
main unwrapped. Real values are assigned and the random δ  that ranges from −10π to 10π, a 
very wide range of possible values of step-phase. The values of Ik (image luminosity) are 
calculated with k ranging from 1 to N. The new equations with the values of Ik are applied, 
giving a tan (φ) that must be compared to the value of phase randomly assigned (φ´). This 
comparison is the accuracy through a very small value because the number of rounding errors 
that can occur in the calculations, say, precision |φ’  − φ| ≤ 10-6. This was done thousands of 
times (at least 10000 times) for each equation for phase calculation. It generated and made up 
of at least 99.9% of the time with an accuracy of 10-6. Thus, it was believed that the chances 
for the equations to be wrong or false have become minimal or remote.  
 
8. Before unwrapping, change φφφφ ∈∈∈∈ [0, ππππ/2] to φφφφ * ∈∈∈∈ [−−−−ππππ, ππππ] 
 

Because of the character of the evaluation equations, only phase values φ ∈ [0, π/2] were 
calculated. For unequivocal determination of the wrapped phase values φ   it was necessary to 
test four values φ, −φ, φ − π and −φ + π using values of Ik and small systems. With this, the 
value φ * ∈ [−π, π] was obtained [3−6]. In case N=5, with I1, I2, I3, I4 and I5, δ was found in 
first equation and the values φ, −φ, φ − π and −φ + π  were attributed to φ* to test the other 
equation and Ia was found using a second equation. As an example, for each (x, y) it was 
tested for the four values φ, −φ, φ − π and −φ + π in (Addition and subtraction of first, last and 
middle frames, the Ik): 
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In a different approach, for unambiguous determination of the wrapped phase values, it is 
necessary to test four values φ, −φ, φ − π and −φ + π using values of  Ik and to solve small 
nonlinear systems (Newton-Raphson methods). For each angle φ, −φ, φ − π and −φ +π , solve 
the nonlinear system by Newton-Raphson in Eq. (36), getting the values of Im, Ia and δ. 
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With the values of Im, Ia and δ, test the Eq. (37) and find the correct angle φ* ∈ [−π, π]. 
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9. Testing and analysis of error 
 

The phase φ * obtained from the phase shifting algorithm above is a wrapped phase which 

varies from −π/2 to π/2. The relationship between the wrapped phase and the unwrapped 
phase may thus be stated as: 
 

                                                     ( , ) *( , ) 2 ( , ),x y x y j x yϕ πΨ = +                                         (38) 
 

where j is an integer number, φ*  is a wrapped phase and ψ is an unwrapped phase. 
The next step is to unwrap the wrapped phase map. When unwrapping, several of the phase 

values should be shifted by an integer multiple of 2π. Unwrapping is thus adding or 
subtracting 2π offsets at each discontinuity encountered in phase data. The unwrapping 
procedure consists of finding the correct field number for each phase measurement [10−13].  

The modulation phase ψ obtained by unwrapping physically represents the fractional 
fringe order numbers in the Moiré images. The shape can be determined by applying the out-
of-plane equation for Shadow Moiré: 

                                                      
)tan(tan

2
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π

+






Ψ

=

yxp
yxZ ,                                                (39) 

 

where: Z(x, y) = elevation difference between two points located on the body surface to be 
analyzed;  p = frame period; α = light angle; β = observation angle. 

The experiments are carried out using square wave grating with 1 mm frame grid period, 
light source is common white of 300 watts without using plane waves, light angle (α) and 
observation angle (β) are 45 degrees, the object surface is white and smooth and the 
resolution of photo is one megapixel. The phase stepping is made by displacing the grid in the 
horizontal direction in fractions of millimeters (Fig. 5). 

To test the new equations for phase calculation, they were used with the technique of 
Shadow Moiré [13] for an object with known dimensions and to evaluate the error median by  
Eq. (40). This process was started with four images, repeated with five, then six and so on. 
The idea was to show that with increasing number of images the average error tends to 
decrease. Fig. 6 shows this procedure. 
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Fig. 5. Layout of experiment. 
 
 

a)  b)  c)  d)  

e)  f)  g)  h)  

i)  j)  k)  l)  

m)  n)  o)  p)  

q)  
r)  

 

Fig. 6. One set of photos of 1 Megabyte (with low pass filter and Gaussian filter). Original Shadow Moiré 
images. 16-frame phase-shifting algorithm a−p. Wrapped phase q. Result in 3D r. (Semi-cylinder of a motor with 

diameter 6 cm, length 12 cm and with frame period of grid equals to1 mm). 
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where M is the number of pixels of the image, Zi
e is the exact value of the size of the object 

being measured and Zi is value measured by the new equation. 
To compare the new equations for calculating the phase, 21 sets of 16 photos each were 

selected. Each set was computed using the average error of 4 to 16 images and using 
equations to evaluate the number of images. An average of errors was estimated, then 21 sets 
were evaluated using 4 to 16 images in each set (µ4, µ5, µ6, …, µ16). The hypothesis of testing 
on the difference in the means µA−µB of two normal populations is being considered at the 
moment. A more powerful experimental procedure is to collect the data in pairs − that is, to 
make two hardness readings on each specimen, one with each tip. The test procedure would 
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then consist of analyzing the differences between the hardness readings on each specimen. If 
there is no difference between tips, the mean of the differences should be zero. This test 
procedure is called the paired t-test [14]. Specifically, testing H0: µA−µB = 0 against H1: µA−µB 

≠ 0. Test statistics is ( )210 DSDt =  where D is the sample average of the differences and SD 

is the sample standard deviation of these differences. The rejection region is t0 > tα/2,20 or t0 < 
−tα/2,20. The data are shown below in Table 2. 
 

Table 2. Error median error in µm versus number of frames (N) for a semi-cylinder with diameter of 6 cm 
and length of 12 cm (frame period of grid with 1 mm). It used 21 different sets of 16 images 

of Shadow Moiré (Fig. 6). 

Number 
of

Images
4 125 127 125 128 129 128 126 125 128 127 127 127 129 127 127 127 127 127 126 126 127
5 121 122 122 123 123 124 123 123 124 121 122 121 123 124 122 124 125 122 121 123 121
6 118 118 118 119 120 120 119 120 120 120 121 119 119 117 117 118 121 118 119 121 119
7 113 113 116 117 115 113 116 113 115 115 113 116 115 113 115 116 116 113 113 116 114
8 109 110 111 110 110 111 111 109 112 110 111 112 109 112 110 111 111 112 112 110 110
9 107 105 107 106 106 107 106 107 105 107 104 107 106 108 104 107 104 104 105 105 105
10 103 104 103 102 104 103 102 101 102 102 104 103 103 102 100 101 104 100 103 101 100
11 99 100 98 99 98 100 97 96 98 98 100 100 98 98 99 99 99 99 99 96 100
12 94 94 95 93 92 93 95 95 95 96 95 95 95 92 93 93 92 93 92 95 92
13 89 89 91 88 90 89 90 88 92 91 90 88 88 88 91 88 88 89 90 89 89
14 84 84 87 87 85 87 85 86 86 87 84 87 86 87 84 84 85 87 85 84 87
15 82 81 83 84 81 81 85 83 83 85 82 83 85 81 83 82 85 85 84 85 83
16 79 81 78 77 78 78 78 81 80 78 79 79 78 80 80 80 78 78 77 81 78

Error 
Median 

(µm)

6 7 209 15 17

Sets of Images

1 2 3 4 5 18 198 16 2110 11 12 13 14

 
 

Table 3. Testing hypotheses about the difference between two means with paired t-test, H0:µA−µB = 0 against 
H1: µA−µB ≠ 0. The P−value is the smallest level of significance that would lead to rejection of the null 

hypothesis H0 with the given data. 

Number of 
Image 

N = 4
N = 5 0%
N = 6 0% 0%
N = 7 0% 0% 0%
N = 8 0% 0% 0% 0%
N = 9 0% 0% 0% 0% 0%
N = 10 0% 0% 0% 0% 0% 0%
N = 11 0% 0% 0% 0% 0% 0% 0%
N = 12 0% 0% 0% 0% 0% 0% 0% 0%
N = 13 0% 0% 0% 0% 0% 0% 0% 0% 0%
N = 14 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
N = 15 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
N = 16 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

N = 15

Number of Images 

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

P-Value

N = 10 N = 11 N = 12 N = 13 N = 14

 
 
On performing the statistical test (H0:µA−µB = 0 against H1: µA−µB ≠ 0) it was noticed that 

one cannot reject the zero hypothesis when using different equations with the same number of 
images. Also, the null hypothesis can be rejected when using different equations with 
different number of images with level of significance (α = 0.05). It was concluded that the 
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equations for phase calculation with a greater number of images are more accurate than those 
with a smaller number of images. The tests are shown in Table 3. 
 
10. Conclusion 
 

This paper deals with the equations for phase calculation in measurement with images 
method using the phase shifting technique. It describes several multistep phase shifting 
equations with the constant, but unknown phase step between the captured intensity frames. 
The new equations are shown to be capable of processing the optical signal of Moiré images. 
These techniques are very precise, easy to use and inexpensive. The results show that new 
equations are precise and accurate. On the basis of the performed error analysis it can be 
concluded that the new equations are very good phase calculation algorithms. These equations 
also seem to be very accurate and stable phase shifting algorithms with the unknown phase 
step for a wide range of phase step values. The metric analysis of the considered system 
demonstrated that its uncertainties of measurement depend on the frame period of the grid, on 
the resolution of photos in pixel and on the number of frames. However, the uncertainties of 
measurement of the geometric parameters and the phase still require attention. In theory, if we 
have many frames, the measurement errors will be very small. The measurement results 
obtained by the optical system demonstrate its industrial and engineering applications in 
experimental mechanics. 
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