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Abstract

Local geometric deviations of free-formrfaces are determined as normal deviations of measant point
from the nominal surface. Different sources of exrin the manufacturing process result in deviatiof
different character, deterministic and random. d@iiferent nature of geometric detions may be the basis
decomposing the random and deterministic comporierasder to compute deterministic geometric deoie
and further to introduce corrections to the proicgsprogram. Local geometric deviations constitaitepatic
process.The article suggests applying the methods of abatatistics to research on geometric deviatidi
freeform surfaces in order to test the existence otiapautocorrelation. Identifying spatial corretati of
measurement data proves the existerfca systematic, repetitive processing error. Inhsaccase, the spat
modelling methods may be applied to fitting a stefaregression model representing the determi
deviations. The first step in model diagnosingoi®xamine the model residudts the probability distributio
and then the existence of spatial autocorrelation.

Keywords: geometric deviations, free-form surfaceordinate measurements, spatial modellingdtiap
autocorrelation.
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1. Introduction

Machine parts composed of free-form 3D surfacesmavee and more often designed. In
designing, producing and measuring such surfacAf/CAM techniques are applied. The
accuracy inspection consists in digitalizing therkpiece under research, followed by
comparing the obtained coordinates of the measurepmnts with the CAD design (model)
[1, 2]. There are generally two types of measurdntata acquisition methods: contact
measurement using a coordinate measuring machikMjGind non-contact measurement
by using an optical/laser scanner. Numerically-culegd CMMs equipped with a ball-end
touch trigger or scanning probes, are mainly usedvbrkpiece validation in manufacturing.
As a result of the measurement, a set of discieieid obtained in the form of the coordinates
of the measurement points. The values of geomd&wations of the free-form surface, or
normal deviations of measurement points from theminal surface, are performed
automatically in software of coordinate measurenneathines for each measurement point in
the UV scanning option.

Measurements of real surfaces produce only thgircegmate views. The approximation
degree depends on the accuracy of the applied megsnethod. Among numerous factors,
which have influence on the accuracy, connected wulite tool and the measurement
environment, there are factors which can be rallipnadjusted — such measurement
parameters as the sampling interval and the diamétbe measuring tip. Both these factors
have a strictly specific impact on the ranganédrmation included in measurement data,
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determine the least boundary length of elementaegularities represented in measurement
data, because they cause a geometric-mechanitraltidih of surface irregularities. The
parameter which has a decisive influence is thevdmeh causes a longer wave to be passed.
Literature sources suggest different principlessefecting the appropriate tip radius in
relation to the sampling interval, most often ie titios of 1:2, 1:1 and 2:1 [3, 4, 5].

Contact measurements take into consideration dengabf specific wavelengths, which
have not been filtered by the ball tip because lh# tip functions as a mechanical-
geometrical low-pass filter. Thus, the scope obiinfation included in measurement data
depends on the ball tip diameter. In measuremamninghg, the choice of the diameteof the
ball tip should be made first, according to the sueament purpose and the range of
information required on the characteristics of tmeasured surface [4]. Adopting for
measurement the principle suggested in the litexrakources pertaining to measuring
roundness deviations [3, 6], which states thatbinendary wavelength is comparable to the
tip radius value, means that in the case of usirgjylus tip ofd = 1 mm in diameter,
irregularities of the length values greater thanrm are passed; in the case of a stylus tip of
d = 2 mm in diameter, irregularities of the lengtlues greater than 1 mm are passtd,
The second important factor which influences messent results is the sampling interval
in the case of scanning a free-form surface witivéM along a regular grid, which is directly
connected to the number of measurement points.hbogsing the sampling interval, the
principles used in tests on measurement signals/ediefrom Nyquist theory should be taken
into account [7]. The theorem connected with thisoty states that the sampling frequency,
which is defined as the reciprocal of the sampiimgrval T, needs to be at least twice as high
as the spectrum limit frequency. This particularaswwement parameter also results in a
mechanical-geometrical filtration, adopting theeimval value of 1 mm means that the
obtained measurement data contain information ehehtary surface irregularities of more
than 2 mm in length. Adopting the principles citedliterature [3, 8] to the selection of
parameters of contact measurement, at the samatimegjual to 2:1, choosing a ball efg
2 mm in diameter, and the 1 mm sampling interaé boundary length of elementary
irregularities represented in measurement data atedo 2 mm.

Geometric deviations of surfaces are attributednmy phenomena that occur during
machining, both deterministic and random in chamaciThese phenomena with their
consequent machining errors can be described in sip@ce domain. In coordinate
measurements of free-form surfaces, spatial datdtsined which provides information on
the processing and on geometric deviations in plagia aspect. Deterministic deviations are
spatially correlated, however lack of spatial clatien indicates their spatial randomness.
Calculating solely the values of geometric deviagialoes not provide much information,
neither with regard to the surface properties mothe course of the machining process.
Deviations of random values may be spatially catezl which is reflected in their
deterministic distribution on a surface and is tative of the existence of a systematic source
in the course of processing. The different natdrgeometric deviations may be the basis for
decomposing the random and deterministic compongf}s Information concerning
deterministic deviations might be used for diagnggihe course of objects processing and
subsequently for correcting the processing program.

To research on geometric deviations of free-fornfases, the methods of analyzing
spatial data may be applied [9]. These methods nigkassible to quantitatively qualify the
spatial interdependence of the given data. Idantifyspatial autocorrelation of geometric
deviations proves the existence of a systematmetiteve processing error. In such a case, the
theoretical spatial modelling methods [10, 11] nbayapplied to fitting a surface regression
model representing the deterministic deviations.ehgineering practice advanced CAD
software may be applied for surface modelling.He article the patch surface interpolation
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and the shape modification were performed withube of Rhinoceros software, which is a
geometric modeller based on the NURBS method [2R, The first step in model diagnosing
is to examine the model residuals for the probighbdistribution and the existence of spatial
autocorrelation. The computations were made inRkh@ui program, which is a software
environment for statistical computing and graphildse described tests were carried out on a
free-form surface obtained in the milling process.

2. Measuring spatial autocorrelation

Spatial autocorrelation refers to systematic spatbhanges. In general, positive
autocorrelation means that the observed featurgesah a selected area are more similar to
the features of the contiguous areas than it woeddlIt from the random distribution of these
values. In the case of negative spatial autocdioglathe values in the contiguous areas are
more different than it would result from their rama distribution. Lack of spatial
autocorrelation means spatial randomness.

In order to test the existence of spatial depeneledioran’s statistic for a given variable is
applied; it can be used to analyzing spatial détdath normal and unknown probability
distribution [10, 11]. The spatial effects rangeynb@ researched by means of analyzing the
structure of spatial dependence — by testing ardctsgy weighting matrices defined
according to different criteria. Structure of wetigis described in [10, 11].

To research on geometric deviationgand model residualg), the following need to be

determined [9]:€, — geometric deviation at each measurement p&in%,arithmetic mean of

geometric deviations at — measurement pointg; — weighting coefficients, elements of
weighting matrices reflecting spatial relationswtne, and ¢, .

A spatial weighting matrix defines the structuretlod spatial neighbourhood. The matrix
measures spatial connections and is constructedar to specify spatial dependence. One of
the possible dependence structures is assuegdjeighbourhood along a common border,
neighbourhood within the adopted radius or withie inverse of distance. In research on
geometric deviations, it is most suitable to make s$patial interrelations dependent on the
distance between the measurement points, in pkmti@n the inverse of the minimum
straight-line distance.

As a result of scanning, the coordinates of thenfgodistributed on the surface along a
regularuxv grid are obtained. The distance betweeniitieandj-th point, according to the
Euclidean metric, is as follows:

dij:\/(x_>§>2+(y_ Y)z’ 1)

where:
- X, Y —i-th point coordinates;
- X, ¥ —J-th point coordinates;
dj — distance between th¢h andj-th measurement point.
If it is assumed that the dependence between tiaevdhues at theand points decreases
when the distance increases, this relation careberitbed in the following way:

G = qj -, (2)
where:
- ¢j =0fori =j;
- f—constantf(> 1).
The spatial autocorrelation coefficient has théofeing form:
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Zﬂlicu (fi _EXSi ‘E)
Ni=j=1 n ' (3)
S 2(5i _E)z

i=1

where:s, =iicn (i),

i=1j=1
- & —geometric deviation at the measurement point;

— & —arithmetic mean of geometric deviationsiat measurement points.

While examining residuals of a model, tlae geometric deviation values in the (3)
dependency should be replaced with the valueseafibdel residualg at these points.

After having determined the coefficientthe null hypothesis of no spatial autocorrelation
at the assumed significance level needs to beie@riexamples were shown in [11]. The
distribution moments can be determined both atagsimption that the data come from the
normal distribution population and at the assunmptiwat they come from the population of an
unknown probability distribution. When the numbéracalities is large, it is reasonable to
use the normal approximation. Assuming a normabgodity distribution for geometric
deviations, the expected valugl) and the variance var)(are calculated using the
appropriate formulae from [10, 14]. Verifying thgpothesis of no spatial autocorrelation in

the data set under research, the test statigtids, -E(1)/4/var(l) needs to be determined,

— the coefficient evaluated from the experimentahgle (Eq. (3)), and compared with the
limit z, value for the adopted significance level [14]z K z,, there is no reason for rejecting

the null hypothesis, and in that case the null tiypsis is accepted. In tests on geometric
deviations, accepting the null hypothesis means tiha tested deviation set is spatially
random.

3. Spatial modelling

In order to create a surface model representingrah@istic deviations of the surface, the
NURBS method was applied. The NURBS surface opttegree in the direction and the
degree in the direction is a vector function of two variablesie form of [15, 16]:

3 5w N (U (IR
Suy) =200 . @)
2 2W N S(UN (V)

i=0j=0

PointsP;; make up a two-direction control points grid (Fig.oh which the surface patch is
lofted (h, m are the numbers of control points in theandv directions respectivelyyy;; are
the weights, whileN; ,(u) andN, 4(v) are the Bspline basis functions defined on knot vectors
in the form of:

U :{O,...,O,upﬂ,...,ur_p_1 ,&;,1}, (5)
p+1 p+l

V =30,...0,Vguy 5o, Vg L,’l , (6)
g+l g+l

where:xr = n+p+1 ands = m+q+1.
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Fig. 1. A NURBS surface patch.

The input data in surface interpolation is a sepoihtsgxs(k = 0, .., r, s =0, .., 1),
forming a spatial grid ofr¢ 1)x(t+1) points. In the case under concern, the data were
obtained from coordinate measurements during whidtvo-direction grid of measurement
points was obtained (Fig. 2a).
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Fig. 2. Surface approximation: a) grid of approxi@sbpoints; b) isoparametric curves;
c) surface patch.

In developing the geometric model, the method obgl surface approximation was used.
The process is carried out in two stages [13, 17]:

— in the first stage, a series of curves locatethersurface patch (isoparametric curves) are
created. These curves are approximated on the qudasierows of the pre-set points of
one of the parameterization directionsor v. A spatial grid of control points is obtained
this way, with the points defining the isoparantetuirves described above (Fig. 2b);

— in the second stage, coordinates of surface aopdints are determined. It is performed
by approximating curves through the control poirds the curves which were
approximated earlier. The approximation is madée other parameterization direction.
The surface is lofted on the series of curves, Wwhas determined earlier. The obtained
control points define unambiguously the surfacelpéfFig. 2c).

After the approximation stage was completed, shape modificateration of the created
surface patch was applied in the subsequent stdgese operations aimed at obtaining an
adequate model of the regression surface, whichldvapresent deterministic deviations.
The model adequacy was tested with the use of mstbbanalyzing spatial data in research
on spatial autocorrelation of the model residudlee residuals of an adequate model,
determined at measurement points, formed a searafom local deviations. In this case,
popular procedures were applied of changing the BERurface shape, namely [12, 18]:

— rebuilding the knot vectors, which influencesharmge in the number of control points in

theu andv directions);

— changing the degrees of B-spline base functions.
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O - control points + - approximated points

Fig. 3. Curve shape modification through rebuildihg knot vector: a) 35 control points, 31 interkabts;
b) 20 control points, 16 internal knots; c) 15 cohpoints, 11 internal knots.

The effects of changing the shape of the modellggtecwith the use of the process of
rebuilding the knot vector are illustrated in F&.In the first case (Fig. 3a), the curve goes
exactly through all the pre-set points (interpalatdf the -degree curve through 33 points).
Reducing the number of knots results in reducimgriiimber of control points of the curve. A
less-complex shape can be obtained this way (Figsd@ 3c). The surface shape modification
is performed according to the same rules whiclappied to change the shape of the curve.

4. Experimental investigations

The experiments were performed on a free-form sarfaf a workpiece made of
aluminium alloy with the base measuring 50 x 50 (&ig. 4), obtained in the milling process
using a ball-end mill 6 mm in diameter, rotatiospeed equal to 7500 rev/min, working feed
300 mm/min and zig-zag cutting path in tK¥ plane. The measurements were carried out
under laboratory conditions on Global Performant&MC(PC-DMIS software, MPE= 1.5 +
L/333 um, equipped with a Renishaw SP25M probe, 20 mnustyith ball tips of 2 mm and
4 mm in diameter).

¢

Fig. 4. CAD model of the surface.

The surface was scanned in two stages (withoutyaqgpradius compensation) with the
UV scanning option (the option built in PC-DMIS seére). In the first stage 2500 uniformly
distributed measurement points were scanned franstinface (50 rows x 50 columns) with
the use of a ball end tip of 2 mm in diameter.h@ $econd stage 625 points were scanned (25
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rows x 25 columns) using a ball tip of 4 mm in deder. In both cases the process of fitting
the data to the nominal surface was then carriedrowhich the least square method was
applied and all the measurement points were ubkedneasurement process was subsequently
repeated and geometric deviatiangere computed [19]. In this way the position ddvizs
were minimized. All the measurements were repetitimes; the tables and plots present
mean values of the obtained results.

The amount of information included in measurementadiepends on the ball tip diameter
and sampling interval (grid size). Both these fextwause in fact a geometrical-mechanical
filtration of surface irregularities (Section 1n the first case the observed data include
information on surface geometric deviations of kegths exceeding 2 mm, in the second
case — deviations of lengths exceeding 4 mm.

4.1. Measurement results

The obtained measurement data are presented mphigal form. Fig. 5a shows a spatial
plot of the £ deviations with reference to theandy nominal coordinates and Fig. 5b the
probability plot of deviations for 2500 measuremguints. Fig. 6 shows the maps of
deviations for both cases. The statistical pararaetis sets are compiled in Table 1.

a) b)

Histogram

600
500 r
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300
200

numb. obs.

0\\‘;\“‘ N
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© 0036 -0025 -0014 -0003 0,007
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Fig. 5. Plots of geometric deviations for 2500 nieament points: a) spatial plot versus ¥¥plane;
b) probability distribution.

Table 1. Statistical parameters gf geometric deviation sets.

Number of meas. pts. 2 500 625
Sampling grid 0.00x0.01v | 0.02ux0.02
Sampling intervall [mm] ~1 mm ~2mm
Tip diameterd [mm] 2 4

Std. deviation [mm] 0.011 0.009
Mean [mm] -0.012 -0.010
Minimum £ [mm] -0.037 -0.035
Maximum £ [mm] 0.020 0.013
Form/waviness dev. [mm] 0. 057 0.048

The deviation plots indicate that the measuremeimitg contain both the deterministic and
the random component and that the contributionhef deterministic component is greater
(Fig. 5, Fig. 6). Comparing the maps for differeatnpling parameters, significant differences
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in irregularity shapes and the numbers of obsedetdils can be seen. The values of the
observed shape/waviness deviations also vary amactyother (Table 1).

20
X [mm]

20

X [mm]

Fig. 6. Maps of geometric deviations: for 2500 nueasient points (left)
and for 625 measurement points (right).

For the tip end ofl = 2 mm in diameter, the mean and minimum valuethefobserved
local geometrical deviations were smaller. Thisvignt deep into the surface irregularities
and reached surface points which were located Ithger the points established with the use
of the tip end ofl = 4 mm. Moreover, the scatter of the values ofdbgerved deviations was
greater. The form/waviness deviation determinesh@asurements with the use of the tip end
of d = 2 mm was greater by approx. 0.009 mm.

For both data sets tests on spatial autocorrelabbngeometric deviations were
subsequently carried out [9]. The relationshipsveen the deviations were made dependent
on the reciprocal distances determined from theniba (2). The elements of weight matrices
defining the dependencies between deviations attgoandj were calculated from formula
(2) assuming the value of the constant as3. A fragment of the weight matrix is shown in
Fig. 7a. The spatial autocorrelation coefficierwas determined and the null hypothesis on
the lack of geometric deviations autocorrelationsweerified, assuming a randomized
probability distribution, with the significance lelva = 0.01 (the upper point of a standard
normal distributiore, = 2.34). The computations were performed in th&Rprogram. Fig.
7b presents the print screen image with the contiputaesults for the case of 2500
measurement points

a) b)
Moran's I test under randomisation
I? Data Editor
T ~|data: deviations
coll col2 colld col4 cols : .
weights: weights2500

1|0 0.09412259 |0.01182043 |0.003521325 |0.001495178

0 A tEa s 10 0.09500525 |0.01154429 10.003563636 | |poran I statistic standard deviate = 77.6964, p-value < 2.2e-16

3 [0.01182043 |0.09500525 |0 0.09610543 |0.01210366 alternative hypothesis: greater

4 [0.003521325 |0.01194429 |0.09610543 |0 0.09755839 sample estimates:

5 [0.001495178 |0.003563636 |0.01210366 |0.09755839 |0 vMoran I statistic Expectation Variance
Sl b3 0.85449805459 -0.0004001601 0.0001183867

Fig. 7. a) The top left corner of th matrix. b) Print screen image with computatioruhes
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The null hypothesis of the lack of spatial autoetation was rejected,= 0.84;z = 77.69;
Z,= 2.34;z > z,. The computation results show a clear positiveo@telation of local
geometrical deviations, as well as the results6&s measurement points. In both cases it is
possible to predict the values in the neighboupgamts on the basis of the deviation value at

any point.

The test results indicate the existence of systerpabcessing errors. Further, the spatial
model of deterministic geometric deviations neenld¢ determined and their sources of

influence minimized, and/or the processing progree®ds to be corrected.

4.2. Fitting models of geometric deviations

In both cases the regression surfaces which rapredeterministic deviations, were
modelled. In the subsequently constructed modéks, mumber of control points and the
surface degrees in both directions (Section 3).mMbdel residuals were examined each time,
and the maximum and minimum values, arithmetic mésrould be~ 0), probability
distribution (the distribution normality was vee&tl with the Kolmogorov-Smirnov test), and
the | spatial autocorrelation coefficient (3) were deteed. In all statistical tests a
confidence leveP = 0.99 was adopted. The model with the smallesthar of control points
and the lowest surface degrees in ¥handY directions, for which the model residuals met
the criteria of a normal distribution and of spatendomness, was adopted as an adequate
one. In the case of 2500 measurement points, ttezion was met for the number of control
points amounting to 31x31, the number of surfacgreles being 3x3. In the case of 625
measurement points, the criterion was met for thenber of control points amounting to
16x16. Fig. 8 presents the probability distribuiai model residuals.

a)

b)

Histogram
K-S d=,031

500 |
400 |
300 |
200 |
100

0
-0,008

numb obs.

0,004

-0,004
-0,006

0,000

-0,002 0,002 0,006

e [mm]

Histogram
K-S d=,090

250
200
150
100
50
0

numb. obs.

-0,009

-0,003
-0,006

0,003
0,000

e [mm]

0,009
0,006

0,012

Fig. 8. Probability distributions of model residstah) for 2500 points; b) for 625 points.

Table 2. Modelling and computation results.

Number of meas. pts. 2500 625
Control points number 31x31 16x16

of deterministic surface

Surface degrees 3x3 3x3
Deterministic deviations [mm] -0.035 + +0.0120.035 + +0.010
Autocorrela‘uc_)n coefficient 0.04 0.04

for model residuals

Test statlstlcs_i 291 1.86

for model residuals

Random deviations [mm] -0.008 + +0.00§ -0.010 + +0.07
Mean of random dee [mm] 0.000 0.000
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The spatial autocorrelation coefficieht®or model residuals were determined, and the null
hypotheses on the lack of geometric deviations cautelation were verified, assuming a
normal probability distribution, with the significee levela = 0.01. The computation and
modelling results for both cases are compiled ibl@&. The computation results show a lack
of spatial autocorrelation of model residuals. Te¢ermined models represent deterministic
deviations, whereas the residuals of the modelstitate the random deviations.

a) b)

0,01 X [mm]
N 0,01

Fig. 9. Maps of the deterministic deviations: &) 2500; b) for 625 measurement points.

Fig. 9 presents maps of the deterministic deviatidhe maps and spatial plots for the
random deviations are shown in Fig. 10 and Fig. 11.

Fig. 10. The map and the spatial model of the remdeviations for 2500 measurement points.
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Fig. 11. The map and the spatial model of the remdeviations for 625 measurement points.

Observing the maps of the deterministic deviatighg. 9), the effect of rejecting random
deviations is visible. The surface modelled usiB@points contains surface irregularities of
visibly shorter lengths and is more complex thaa sbrface modelled with 625 points. The
value of the deterministic component is greater tfar first surface, whereas the random
component, i.e. the scatter of model residualsimialler for this surface (Fig. 9, Table 2). The
complexity of the modelled surfaces depends omtimeber of control points, connected in
fact with the number and distribution of measurenhpaints.

Random deviations (Fig. 10 and Fig. 11) of botresadiffer significantly in the lengths of
irregularities. This is strictly connected with maeement parameters, the number of
measurement points and the ball tip diameter. BEffe effects of surface irregularity
decomposition are clearly visible.

5. Conclusions

On the basis of the results of measuring geoméatures of surfaces, it is possible to
infer the course of the machining process. The releslegeometric deviations are caused by
machining inaccuracies. Phenomena of a systenusierministic character result in forming
geometric deviations of the same character on tjecb surface. These deviations can be
minimized by removing their sources from the praecasd/or, in the case of numerically
controlled machining, by correcting the machinimggramme, using the data obtained from
measurements. Free surfaces are produced withsth@fumultiaxis machining centres, and
most often measured with NC CMMs. Geometric dewratiof free-form surfaces, evaluated
by coordinate measurements, are of a spatial desyand it is the same with the character of
the sources of these deviations in the machinimggss. The article suggests a method of
creating a model of a surface representing deteundeviations, applying spatial statistics
and geometric spatial modelling. The method cossisiterative modelling of the surface of
the determined deviations and in testing the spatredomness of the model residuals at the
consecutive iteration stages. The method makesssiple to reject deviations of a random
character from the measurement data set. The ebtauarface model might be a basis for
correcting the machining programme. The result ofleling depends, among others, on the
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adopted measurement parameters such as the diasheber measuring tip, and, above all,
the sampling interval (and thus the number of mesmsant points).

The results of the research carried out with the ofthe developed method for the
measurement data of a milled surface showed thadrate random geometric deviations
comprised between Y4 and %2 of the deviations obdaasea result of measurement, depending
on the sampling parameters used in measuring.
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