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Abstract 

The spindle rotational accuracy is one of the important issues in a machine tool which affects the surface 

topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach 

to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. 

In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and 
variations of its position are captured using the camera for evaluating runout of the spindle. The Circular Hough

Transform (CHT) is used to detect variations of the centre position of the master cylinder during spindle rotation 

at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier 

series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. 

The experiments have been carried out on a lathe at different operating speeds and the spindle radial error 

estimation results are presented. The proposed method provides a simpler approach to on-machine estimation 
of the spindle radial error in machine tools. 
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1. Introduction 

 

A spindle is one of the key functional elements in a typical machine tool which provides 
a rotation to a work piece or tool. The rotational accuracy of the spindle is an important issue 
in production of accurate and precise components. Runout of the spindle is caused due to 

an installation error resulting in a misalignment of its rotational axis with either a tool or 
workpiece. It leads to varying a chip load on the cutting tool and machining inaccuracies related 

to tool positioning, causing the surface location error [1]. In early years, spindle runout tests 
were performed for assessing the spindle accuracy by installing a master in the spindle and 

measuring the total indicated runout (TIR) using a mechanical displacement indicator. 
However, the total indicated runout is not the true indicator of spindle accuracy as it is the 
superposition of the form error of the measured surface and the error of the spindle motion. 

Capacitive-sensor-based measurement techniques have been widely applied to meet the high 
accuracy requirement of metrology applications. A capacitive-sensor-based surface parameter 

evaluation method and its application to the surface finish measurement system is presented 
in [2]. The accuracy of spindle error measurement using capacitive sensors is affected by 
inherent error sources, such as a sensor offset, a thermal drift of spindle, the centring error, and 

the form error of the target surface installed in the spindle [3]. These methods require 
a measurement setup consisting of multiple numbers of sensors and instrumentations such as 

an angular index table, fixtures, etc. Hence, there is a need for developing a suitable 
measurement and evaluation technique of spindle runout for understanding the machining 
performance of the machine tool.  
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Laser-based optical measurement techniques have been developed by the researchers for 

evaluation of the spindle accuracy in machine tools. An optical measurement system consisting 
of a laser diode and position-sensitive detectors is used for measuring the spindle error during 
motions in high-speed conditions [4]. A laser interferometer is used for measuring the spindle 

rotation errors such as the radial motion error and axial motion error in a lathe [5]. An optical 
measurement system consisting of a rod lens, a ball lens, a laser beam, and a photodiode is 

developed for measuring rotational errors of a micro-spindle [6]. Fujimaki and Mitsui 
developed an optical measurement system consisting of a laser diode, a quadrant photodetector 
and a beam splitter for measuring the spindle radial runout of a miniaturized machine tool [7]. 

Though the laser-based measurement techniques have a longer working distance, they require 
extensive experimental arrangements and more setup time for aligning the laser path with the 

optics. With the recent advancements in computing and imaging systems, machine vision 
systems have been widely applied for different industrial inspection applications. A vision-
based measurement technique using a CCD camera and a lens arrangement was proposed for 

measuring the radial errors of a cutting tool [8]. A change in position of the cutting tool is 
measured using a thresholding-based edge detection method.  

It was noticed that the accuracy of spindle error measurement using a machine vision system 
was limited by the edge detection algorithms and lighting conditions.  Hence, there is a need 
for developing suitable image processing algorithms to improve the accuracy of edge detection 

for estimation of the spindle runout using a machine vision system. Also, existing methods 
of spindle runout estimation are not suitable for on-machine inspection due to the requirements 

of multiple sensors and measurement setups for removing the contribution of the form error 
of the master cylinder. In order to overcome this difficulty, this work focuses on developing 
an image processing method suitable for online estimation of spindle runout in a lathe using 

a Circular Hough Transform (CHT)-based subpixel circle detection method.  In the proposed 
method, a circle is detected in the images for measuring the radial error of the spindle; hence, 

it does not take into account the contribution of the form error of the master cylinder. 
The experimental results of the proposed method for evaluating the spindle radial error of a 

lathe are presented and discussed in this paper. 
 

2. Development of machine vision system for spindle runout estimation 

 
In the present work, a machine vision system consisting of a CMOS camera, a frame grabber 

and a PC image acquisition system is developed for estimation of the spindle radial error in a 
lathe. A precisely machined master cylinder is mounted on the lathe spindle and used as a target 
to measure the runout of the spindle. It is important to capture high quality images in the 

uniformly illuminated area of interest for machine-vision-based inspection applications. In the 
present work, a front lighting system with a ring arrangement of red LEDs is used to illuminate 

the circular face of the master cylinder. This lighting arrangement provides a shadow-free 
illumination and the red LED light is intensive enough to block the ambient light on the master 
cylinder. A lighting intensity is manually adjusted and controlled to provide uniform 

illumination on the circular face of the master cylinder using a regulated power supply. Details 
of the experimental arrangement for the spindle radial error estimation in a lathe are explained 

in this Section. 
 

2.1. Experimental arrangement for image acquisition 

 

The machine vision system used for measurement of the spindle radial error consists 

of a monochrome CMOS camera (AVT Marlin F-131b), a frame grabber (IEEE-1394A) and 
a PC with the LABVIEW software (Version.8.0) for storing images of the spindle as shown 
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in Fig. 1a. General specifications of the CMOS camera used in the present work are listed 

in Table 1.  
 

Table. 1 Specifications of the camera used for measurement of the spindle radial error.  
 

Items Description 

Camera Model AVT Marlin F-131b 

Image device Type 2/3 (diag. 11 mm) global shutter CMOS sensor 

Effective picture elements 1280 (H) x 1024 (V) 

Cell size 6.7 µm x 6.7 µm 

Resolution depth 8 bit; 10 bit (ADC) 

Lens mount C-Mount 

Digital interface IEEE 1394 IIDC v. 1.3 

Power consumption Less than 3 watt (@ 12 V DC) 

Dimensions 72 mm x 44 mm x 29 mm (L x W x H); w/o tripod and lens 

  

In order to measure the radial error of the spindle, a cylindrical master cylinder of 13 mm 
diameter is mounted on the lathe spindle and the CMOS camera is placed firmly on the tool 
post of the lathe to focus on the circular face of master cylinder. A distance between the camera 

and the master cylinder was measured using a standard scale and it was found to be 40 cm. 
The horizontal and vertical tilts of the camera in relation to the base of the tool post was checked 

using a spirit level, as shown in Fig. 1c. Screws in the tool post were manually adjusted until 
the bubble in the spirit level remained in the centre position, thus eliminating the misalignment 
of the camera.  

              
                   a) 

 

                                  b)                                                          c) 

        

Fig. 1. The experimental arrangement for spindle radial error measurement using the vision system in a lathe. 
Important elements of the machine vision system for spindle radial error measurement (a);  

an image of the master cylinder (b); verification of alignment of the camera using a spirit level. 
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Further, the effect of misalignment of camera was analysed by calculating an aspect ratio 

of the circular face of the master cylinder in the image. The aspect ratio is defined as a ratio 
of the width of minimum enclosing rectangle of an object and the length of that object [9], as 
given below:  

                                                                     � =
�

�
.                                                                                 (1) 

Figure 1b shows the minimum enclosing rectangle for the master cylinder and the value 
of aspect ratio is calculated to be 1, which ensures the proper alignment of the camera. After 
verifying the alignment of the camera, a sequence of images of the master cylinder are captured 

with a resolution of 800 pixels x 600 pixels for different spindle speeds and stored using 
the LABVIEW Image acquisition software in the PC. As the maximum frame rate of the camera 

is 30 fps, the spindle radial error measurements were carried out at lower spindle speeds. Fig. 2 
shows sample images acquired for a spindle speed of 25 rpm.  
 

 

 
 

Fig. 2. A sequence of master cylinder images acquired at a spindle speed of 25 rpm. 

 
Evaluation of radial error of the spindle using the digital images requires a suitable edge 

detection algorithm for detecting the change in position of the master cylinder, and calibration 

of the camera for specifying the measured values in the real world units.  
 

 

2.2. Camera calibration 

 

The camera calibration is an essential step in machine vision inspection applications 
to obtain metric information from the images. In this work, the camera calibration is carried out 

using a standard slip gauge at a known distance [10]. Back lighting is used for acquiring the 
exact boundary of the slip gauge, as shown in Fig. 3. The number of pixels in x and y directions 
was counted in the image of the slip gauge and the scale factor for converting the pixel values 

into the real world units is determined using the dimension of the slip gauge in x, y directions, 
as given below:  

Figure 3a shows the arrangement for acquiring the image of the slip gauge using a 
backlighting system. In this work, a slip gauge of dimension 30 mm x 4 mm is used, as shown 
in Fig. 3b; the numbers of pixels in x, y directions are found to be 361 pixels x 48 pixels, 

respectively. Hence, the conversion factor for obtaining measurements in the real world unit is 
calculated as 0.083 mm/pixel. 
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               a)                                                  b) 

 
 

Fig. 3. Calibration of the camera using a slip gauge. 
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2.3. Edge detection using canny edge detection method 

 

The canny edge detection is a popular method for identifying the edge pixels of objects in the 

acquired images [11]. Commonly, edges in the digital images are detected based on significant 
changes in the grey level of pixels using first derivatives in respective directions. In the canny 

edge detection method, a magnitude of gradient and a direction of pixels are calculated for 
detecting changes in the grey level of pixels. The magnitude and direction of a gradient G are 
given by: 
 

                                                         |�I| � � � ���� � �	�,																																																															�4� 
 

                                                         					� � atan
		��, ��� ,																																																																				 �5� 
 

where Gx, Gy are partial derivatives of the image I along x and y, respectively. The pixels with 
the gradient value above a threshold have been grouped and identified as edge pixels, and the 

remaining gradients below the threshold are lumped into the background with no information. 
Fig. 4 shows the results of edge detection using the canny edge detection method for the 

acquired image. 
 
               a)                                                                                 b) 

                      
 
 

Fig. 4. Application of the canny edge detection for identifying edge pixels. 

A grey scale image of the master cylinder (a); detected edge pixels using gradient (b). 

Gradient 

Direction (θ) 
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In the presence of noise, the edge pixels identified by the canny edge detecting algorithm 

using gradients cannot define the boundary of the master cylinder accurately [10]. Hence, in the 
present work, the CHT is applied to the images for the accurate edge detection of the master 
cylinder and for evaluating the radial error of the spindle.  

 

3. Circle detection using Circular Hough Transform 

 
In the present work, the Circular Hough Transform is applied to the edge detection of master 

cylinder at a subpixel level to find the radial error of the spindle. The major advantage of this 

transform is its robustness towards irregularities in detected objects and disturbances like noise 
under varying illumination [12]. In the proposed method, the contribution of the form error 

of master cylinder is not taken into account,  assuming the shape of the master cylinder to be 
a circle, for improving the accuracy of spindle radial error evaluation. The CHT is used to 
determine the circle parameters when the edge pixels are known.  The steps involved in the CHT 

for the spindle runout estimation are shown in Fig. 5 and are explained in the subsequent 
Sections: 

 

                           

   

 

 

          

 

 
 

Fig. 5. The proposed method for spindle radial error evaluation. 

 

 

3.1. Transformation of edge pixels for circle detection in Hough plane 

 

The key idea of the CHT is computation of the circle parameters [13], such as a circle centre 
and its radius (Xc, Yc, R)  in images by mapping the edge pixels in the image space onto the 

parameter space or the Hough space. The characteristic equation of a circle with a radius R and 
centre (Xc, Yc) is given below: 
                                                  (� − ��)� + (� − ��)� = ��.                                                                 (6) 
 

Here, the unknown parameters are the centre point’s coordinates (Xc, Yc) and the radius R. 

(x, y) is the edge location of a circle obtained by finding the maximum gradient above 
a predefined threshold value. Fig. 6 shows the transformation of an edge point in the image 

plane as the centre point of a circle with an unknown arbitrary radius R in the Hough space. 
 

 
Fig. 6. Transformation of an edge point of a circle [14]. 
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Each edge pixel of the image plane (x, y) is transformed onto  the centre coordinates of a 

circle and the circle is drawn with the fixed radius (R) in the Hough plane using the gradient 
direction of the edge pixels, as given in [14]:  

                                                             �� = � − � ∗ cos��� ,                                                                 (7) 
 

                                                              �� = � − � ∗ sin��� ,                                                                 (8) 

where (x, y) are the locations of edge pixels obtained from the gradient and θ are the directions 
of the gradients of edge pixels. When this transformation is applied to all the edge pixels, 

it corresponds to the number of circles with a given arbitrary radius R in the Hough plane, 
as shown in Fig. 7. 
 

 
 

Fig. 7. Intersection of circles and centre estimation [14]. 

 

It is found that the edge pixels in the image plane form full circles with a desired radius R in 
the Hough plane, where their intersection is identified as the centre point (Xc, Yc) of the detected 
circle in the image plane.  

 

3.2. Discretization of circle parameters and accumulator array computation  

 
The most important parameter while detecting a circle is its radius. It determines the size 

of circles plotted in the parameter space. In order to find the unknown radius of the circle in the 
image plane, a range of values (Rmax, Rmin) is chosen arbitrarily using the following constraint:  
 

                                          � = �
���
� < ��� + ��� < �

���
� .                                                (9) 

 

An accumulator array is initialized to count and store values of centre coordinates of the 

circles for all edge pixels and a given value of radius in the range of values (Rmax, Rmin), as 
below:  
                                                   �� = � − 	���� :����
 ∗ cos��� ,                                                     (10) 

 
                                                    �� = � − 	����:����
 ∗ sin��� .                                                     (11) 

For a given edge point in the circle of the image plane, if the circle is drawn with the desired 
radius in the Hough plane, the accumulator stores corresponding coordinates of the circle centre 

and radius. This count is increased for all the edge pixels in the accumulator array every time 
the circle is drawn with the desired radius of the circle. The accumulator array which provides 

the maximum count for coordinates of the circle centre and its radius is identified by a search 
method to find the circle centre and radius in the image plane at a subpixel level. The location 
of circle centre defines the location of datum axis of the master cylinder and detecting the edges 

of the master cylinder in the image plane.  
 

3.3. Fourier series analysis of circle centre coordinates 
 

The estimated circle centres contain the contribution of the centring error of the spindle 

which is periodic in nature for every revolution of the spindle [3]. In the present work, 
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the periodic components of the circle centre coordinates are extracted using the Fourier curve 

fitting method in the time domain. The proposed mathematical model for interpreting the time 
sampled centre coordinates of the master cylinder is given by the following Fourier series 
formula:     

                                 ��� = �� + ∑ (�
��� �� cos�� ∗ ℎ ∗ ��� + 	� sin�� ∗ ℎ ∗ ���),                            (12) 

where i = 1,2,3…m; and m = the number of samples of centre coordinates considered for 

analysis; H is the number of harmonics; h = 1,2,…H; and (ah, bh) are Fourier coefficients which 
describe the repeatable components of the measurement data, such as the centring error, the 

form error of the target object, and the synchronous radial error of the spindle. ��� are the centre 
coordinates of master cylinder along x-axis, ��� = [���,���, …��	]
. The sampling time is 

calculated based on the frame rate of image acquisition and it is given by �� = [��, ��, … �	]
 . 
In the present work, the time taken for acquisition of an image frame is 1/30 of a second.  
The time taken to complete one revolution is calculated from the time sampled circle centre 

data and it is denoted as T: 

                                                                     � = 2 ∗
�



 .                                                                       (13) 

A linear least square method is used to estimate the unknown Fourier coefficients 

by minimizing the sum of squares of deviations of measured data [15]:  
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The above equation can be simplified to: 
 

� =



�
�
�
�
�1 cos�� ∗ ��� sin�� ∗ ��� . cos�� ∗ � ∗ ��� sin�� ∗ � ∗ ���
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� = [��, ��, 	� … �� , 	�]
 
Therefore:   

                                                                  �

′ = ��.                                                                                (15) 

The Equation (14) leads to an over-determined system of simultaneous linear equations (i.e. 

m > 2H + 1). In this case, there exist residuals between the measurement data and the fitted 
curve, given by:   
                                                                           �� = ����

� − ���.                                                                        (16) 
 

Assuming the residuals follow a normal probability distribution, the solution for the 
unknown model parameters can be obtained by minimizing the sum of squared residuals using 

a linear least square approach, as given by (17): 
 

                                                    �� = [���
�����
����

� = ��̂�,���, 	��, … ��� ,	���.                                        (17) 
 

Here, H represents the number of harmonics considered for evaluating the radial error of the 
spindle. The centring error of the master cylinder represents the first harmonic (h = 1) and it 
can be removed from the measurement data, which is given as:  

                                                    ���_��� = ��� cos�� ∗ ��� + 	�� sin�� ∗ ���.                                          �18� 



 

Metrol. Meas. Syst., Vol. 24 (2017), No. 1, pp. 201–219. 

 

 

The remaining harmonic components (H > 2) contribute to the synchronous radial error 

of the spindle and they can be extracted using the following formula:   

                                                       ���_��� = ���� cos�� ∗ � ∗ 	�
 +

�

��	

��� sin�� ∗ � ∗ 	�
.                        (19) 

This value is further analysed in a polar plot for evaluating the synchronous radial error 

of the spindle. The residuals of the measurement data for the fitted curve represent the 
asynchronous radial error of the spindle which is calculated using (16). It is further analysed in 

the polar plot for evaluating the asynchronous radial error of the spindle. 

 

3.4. Estimation of radial error of spindle in polar plot 
 

A polar plot is commonly used for displaying the spindle error evaluation results with a base 

circle [3] and it requires the angular position of the spindle. The angular position of the spindle 
for a given time ti can be calculated using the following formula: 

                                                                      �� = � ∗ ��.                                                                       (20) 

Here, the value of w is calculated using (13). The above equation is useful in plotting the 
synchronous and asynchronous radial error values of the spindle in a polar plot. 

In accordance with the ANSI/ASME B89.3M standard, the least squares circle centre is 
calculated from the periodic components used for evaluating the synchronous radial error of the 
spindle after removing the contribution of the centring error of the spindle[16]. 

The asynchronous radial error is calculated from the aperiodic components of circle centre as 
the maximum deviation for a given spindle speed.  

 

4. Results and discussions 

 

The CHT-based circle detection approach is applied to a sequence images for estimation 
of the master cylinder centre. The results for estimated values of circle centres are presented for 

the sequence of images obtained for a spindle speed of 25 rpm. Further, the centre coordinates 
of the master cylinder are analysed using the least squares curve fitting technique to separate 

the contribution of the centring error of the master cylinder and the synchronous and 
asynchronous errors of the spindle. As the least squares curve fitting method provides an 
approximation of the ideal curve assuming the residuals follow a normal distribution, the error 
of the estimation obtained by the least squares curve fitting method is evaluated using the 
simulated circle centre data. The simulation and experimental results of the least squares curve 

fitting method are presented. Further, the spindle radial error values are evaluated for different 
spindle speeds and the results are presented. 

 

4.1. Estimation circle centre using CHT  

 

In order to reduce the computation time and complexity of the transform, a range of radii 
of the master cylinder has been fixed manually. Fig. 8 shows the accumulator array computation 

results in the Hough space in 2D and 3D views for different ranges of radii. When a broader 

radius range of 15 pixels (Rmax − Rmin = 15) is fixed, the maximum votes for the centre of the 
circle accumulate at (386, 214), as shown in Fig. 8a.  

To further reduce the computation time, a finer range of 6 pixels is fixed and the computed 
accumulator array is shown in Fig. 8b. In this case, the circle centre estimation is also found 
to be (386,214). This proves the robustness of the CHT method in detecting the circle centre 

coordinates in the image plane for a change of the search radius in the image plane. 
The estimated centre coordinates of circle in the Hough plane are located in the image plane 
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and they are used in identifying the edge of the master cylinder at a subpixel level, as shown 

in Fig. 9. The subpixel level identification of circle edge is shown in Fig. 9b as compared with 
the pixel level edge detection using a canny edge detector. This result confirms an improved 

edge detection at a subpixel level for the master cylinder in given images as compared with the 
conventional  canny edge detection method. The estimated values of circle centre require further 

analysis in the time domain for evaluation of the radial error of the spindle. 
 
              a)                                                                           b) 

  

  

 

Fig. 8. 2D and 3D views of the accumulator array for the computation of circle centre. 

A larger width of radius range (15 pixels) (a); a smaller width of radius range (6 pixels) (b). 

    
                                          a)                                                 b) 

       
 

                                           c)                                               d) 

      
 

Fig. 9. Pixel and Subpixel level edge refinement. Input image (a); canny edge (b);  

Hough circle fitting (c);  subpixel edge (d).  

        Pixel 

       Subpixel 
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4.2. Time domain analysis of circle centre data 
 

The CHT is applied and estimated The values of circle centre estimated with applying CHT 

to a sequence of images for different spindle speeds are shown in Fig. 10. They  indicate that 
a change in position of the master cylinder in the Cartesian plane is found to remain within 

a range of 212.5–214.5 pixels in Y direction and 385−387.5 pixels in X direction. 
 

         a)                                                                                  b)  

          
 

            c)                                                                               d) 

       
 

Fig. 10. The values of circle centre coordinates estimated using CHT. 

25 rpm (a); 50 rpm (b); 75 rpm (c); 100 rpm (d). 

 
Evaluation of radial error of the spindle requires further analysis of the circle centre values 

in the time domain. As the frame rate of camera is 30 frames/sec, a time stamp is attached to 
the circle centre coordinates for a given image frame. Table 2 shows samples of the circle centre 

coordinates and the sampling time for a spindle speed of 25 rpm.   
 

Table 2. Samples of the circle centre coordinates estimated using the CHT method.  
 

Frame 
number 

 

Time  
(Sec) 

Coordinates of circle centre (pixels) 
 

Xc Yc 

Frame 1 0.00 386.2496 213.3237 

Frame 2  1/30 385.7641 213.182 

Frame 3 2/30 385.9357 212.6999 

Frame 4 3/30 386.0461 212.8709 

Frame 5 4/30 386.0446 212.7411 

Frame 6  5/30 385.5476 212.9786 

Frame 7 6/30 385.4458 212.8686 

Frame 8 7/30 385.5866 212.8536 

Frame 9 8/30 385.3831 212.9457 

Frame 10  9/30 385.2956 213.0832 
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The mean value of the circle centre along X direction is calculated and subtracted from each 

centre coordinate to provide a reference in the time domain.  Further, the units of the centre 
coordinates in the images are converted from pixels to microns using a calibration value 
of 83 micron/pixel. Fig. 11 shows samples of corrected and calibrated mean values of the circle 

centre for a spindle speed of 25 rpm.  
 

 
 

Fig. 11. The  corrected and calibrated mean coordinates of circle centre  

of the master cylinder for a spindle speed of 25 rpm. 

 

A periodically varying sinusoidal trend is observed in the circle centre data in the time 
domain and it is due to the combined contribution of centring of master cylinder and errors in 
the axis of rotation of the spindle. The centring error of the master cylinder is considered as a 

systematic error since it is due to inaccurate mounting of the master cylinder in the spindle [3]. 
Hence, to evaluate the radial error of the spindle, its contribution needs to be removed. In the 

present work, to remove the contribution of centring error of the master cylinder, the Fourier 
curve fitting method is applied to the circle centre data.  

 

 

4.3. Simulation of circle centre data and application of least squares curve fitting method 

 
A Fourier harmonic series given by the equation (12) is used for generating the periodic 

components of circle centre data for typical values of model coefficients. Table 3 shows the 
assumed model coefficients applied to characterizing the periodic components of circle centre 
data using the first 5 harmonics. Here, the number of harmonics is limited to 5 and a magnitude 

of the first harmonic is assumed to be higher following thesinusoidal trend in the experimental 
data and it contributes the centring error of the master cylinder. Magnitudes of other harmonics 

(H > 2) are assumed based on typical values obtained in the experimental data. Further, the 
asynchronous components of circle centre data are assumed to follow a normal probability 
distribution with a given standard deviation of 0.5 pixels. The synchronous and asynchronous 

values of circle centre data are combined to provide the simulated circle centre data. 
The least squares curve fitting method is applied to the simulated circle centre data to 

decompose the periodic and aperiodic components. Fig. 12 shows the curve fitted to the 
simulated data and following the general sinusoidal trend.  

The values of harmonic components estimated using the least square curve fitting method 

are shown in Table 3. It can be seen that deviations between the estimated and simulated values 
are found to be less than 2.47%. This proves the effectiveness of the least squares curve fitting 

method for analysing the circle centre data. 
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Table 3. Comparison between the simulated and estimated values of model coefficients  

using the curve fitting method. 
 

Model 
Coefficients 

Simulated 
values 

Estimated 
values Error (%) 

a1 5.5729 5.635 1.102 

b1 47.3218 47.32 0.0038 

a2 4.1323 4.115 0.4204 

b2 2.991 2.989 0.0669 

a3 4.0132 3.965 1.2156 

b3 2.8978 2.94 1.4354 

a4 1.0267 0.9513 7.926 

b4 3.5621 3.697 3.6489 

a5 2.0014 2.003 0.0799 

b5 1.0745 1.065 0.892 

r0 0.0405 0.04121 1.7229 
 

 
Fig. 12. Application of the least squares curve fitting method for the simulated circle centre data. 

 

4.4. Experimental results of least squares curve fitting method 

 

In order to separate the contribution of the centring error and to evaluate the radial error 
of the spindle, the coordinates of the circle centre in X direction are further analysed in the time 

domain using the least squares curve fitting method. The estimated coordinates of circle centre 
are plotted in the time domain based on a frame rate of image acquisition.  

Figure 12 shows the corrected and calibrated mean coordinates of circle centre of the  master 
cylinder and they exhibit a sinusoidal trend which is due to the contribution of the centring error 
of the master cylinder. In order to remove this contribution and extract the radial error values 

of the spindle, a least square curve fitting algorithm is applied to circle centre data. Here, 
a harmonic cut-off value is selected as 15. It can be seen that the fitted curve closely follows 

the periodic trend of the circle centre data, as shown in Fig.13a. It is also noticed that the 
periodic trend is repetitive for each revolution of the spindle and the time taken for completion 
of one revolution is also computed using the periodic trend. The total indicated runout of the 

spindle is calculated as 142 microns. As shown in Fig. 13b, the residuals show random 
variations as the periodic components are extracted by the Fourier curve, and they represent the 

contribution of the asynchronous radial error of the spindle [17]. 
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                                       a) 
 

         
                                              b) 

 
 

Fig. 13. Fourier series analysis of the circle centre data in X direction. 

Extraction of periodic components using the least squares fitting of the Fourier curve (a); residuals (b). 

 

The Fourier coefficients estimated by using the least squares curve fitting method is shown 
in Table 4 for the first five harmonic components. It can be noticed that the first hamonic 

components are dominant and they represent the contibution of the centering error of the master 
cylinder. Magnitudes of other harmonic components are found to be less than the first harmonic 

component one and they represent the combined contribution of the synchronous radial error 
of the spindle which is due to imperfections in the bearing surface of the spindle.  

 

 
Fig. 14. A histogram of residuals. 
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Table 4. The values of model parameters of the Fourier curve estimated 

using the least square method. 
 

Model  
Coefficients 

Estimated values of model 
coefficients using the 
proposed method 

a1   32.3702 

b1 −39.4984 

a2     8.4089 

b2    1.5164 

a3     6.7610 

b3 −3.7970 

a4 −2.1307 

b4 −2.5259 

a5 −2.8483 

b5    2.2809 

r0    0.0512 

 
 

The residuals of the fitted curve from the circle centre data are analysed in a histogram 
to understand the nature of variation and they are showed in Fig. 14. It can be noticed that most 

of the residuals are centred around the zero mean which indicates that the distribution is 
represented by a bell curve. Also, these results validate the assumption about the residuals 
which follow a normal distribution for the least squares fitting of the Fourier curve.  

 
 

4.5. Evaluation of spindle radial error 

 
In the present work, a basic circle radius of 5 units is used for displaying the separated 

components of circle centre data. It is shown in Fig. 15. These plots are obtained for the 
estimated angular position of the spindle using (20). It can be seen from Fig. 15a that the polar 

profile of the circle centre data deviates from the base circle, which is due to the contribution 
of the centring error of the master cylinder.  The contribution of the centring error of the master 
cylinder is separated by using the first harmonic component of the fitted Fourier curve [18] 

using (18); it is shown in Fig. 15b. It indicates a clear deviation from the base circle and the 
polar chart centre, which is due to a misalignment of the master cylinder in the axis of rotation 

of the spindle.  
The periodic components of the circle centre data after separation of the centring error is 

calculated using (19); it is given in Fig. 15c. As the synchronous components of radial error are 
periodic and repeatable, a magnitude of variation is significantly smaller for every revolution 
and its value obtained by using the least squares circle centre is 10.660 microns. This error 

provides a limiting value for the roundness error of the cylindrical components using the 
spindle. 

The aperiodic components of circle centre data are analysed for evaluating the asynchronous 
radial error of the spindle; it is shown in Fig. 15d. The asynchronous error of the spindle 
includes the contribution from structural motion of the machine structure and it is found to be 

non-repeatable for every revolution. It is evaluated as the maximum deviation of aperiodic 
components and it is found to be 85.521 microns. This error value provides the baseline value 

for the surface finish of the components using the spindle. 
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                   a)                                                                    b) 

   
 

                          c)                                                                          d) 
  

         
 

             Fig. 15. Separation of the centring error and the spindle radial error for a spindle speed of 25 rpm. 

Coordinates of circle centre in X direction (a); centring error (b); the synchronous radial error (c);  

the asynchronous radial error (d). 

 
The estimated values of synchronous and asynchronous radial errors provide a limiting value 

for the roundness error and surface finish of the components using the spindle. It can be noticed 
that the synchronous radial error is found to be decreasing with the increase in spindle speed 
due to a change in spindle contact during spindle rotation at the form variations in the bearing 

surfaces for a given spindle speed [15]. It can be noticed from Fig. 10 that the coordinates 
of circle centre move closer towards the average position of the master cylinder for the increase 

in spindle speed, hence there is a decrease in the synchronous radial error of the spindle. 
However, the asynchronous radial error value is found to vary randomly as it is aperiodic and 
also it includes the contribution from structural motion and vibration of the spindle which varies 

for different spindle speeds.  
 

4.6. Repeatability of spindle radial evaluation using proposed method 

 
In order to understand the repeatability of the spindle radial error measurements using 

the proposed method, the experiments have been repeated for four times and standard 
deviations of the estimated values were calculated and are listed in Table 5 and Table 6. It can 

be noticed that there is no much deviation in magnitudes of the evaluated values of synchronous 
and asynchronous radial errors for different experiments and they are of a similar order at 

various spindle speeds.  
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Table 5. Evaluation of the synchronous spindle radial error at different spindle speeds. 
 

Speed  
(rpm) 

Evaluation of Synchronous Error (µm) 
Mean 
(µm) 

Standard 
deviation 

(µm) 
 Experiments 

I II III IV 

25 10.66 10.67 10.75 10.54 10.655 ± 0.086603 

50 13.164 13.152 13.162 13.158 13.159 ± 0.005292 

75 10.198 10.194 10.189 10.183 10.191 ± 0.006481 

100 7.542 7.538 7.541 7.537 7.5395 ± 0.002380 

 

 
Table 6. Evaluation of the asynchronous spindle radial error at different spindle speeds. 

 

Speed  
(rpm) 

Evaluation of asynchronous Error (µm) 
Mean 
(µm) 

Standard 
deviation 

 (µm) 
Experiments  

I II III IV 

25 85.521 85.517 85.429 85.642 85.52725 ± 0.087492 

50 63.523 63.537 63.523 63.53 63.52825 ± 0.006702 

75 56.234 56.241 56.242 56.246 56.24075 ± 0.004992 

100 65.021 65.023 65.021 65.028 65.02325 ± 0.003304 

 

The maximum standard deviations of the evaluated synchronous and asynchronous radial 
errors are found to be ± 0.086603 μm and ± 0.087492 μm, respectively. These results prove the 

repeatability of the proposed method for evaluation of the spindle radial error at a submicron 
level.  

 
4.7. Comparison with runout estimation using dial indicator 

 

A dial indicator is used to measure the runout of the master cylinder in a lathe, as shown 
in Fig. 16. The peak-to-peak variation in the dial was calculated as 150 microns for one 

revolution of the spindle. The proposed machine vision system provides estimation of total 
indicated runout of the spindle as 142 microns, as shown in Fig. 13a. 
 

 
 

Fig. 16. Runout measurement using a dial indicator. 

 

Since the runout estimation using a dial indicator includes the contribution from the centring 
error of the master cylinder, the form error of the master cylinder and the spindle radial error, 

its magnitude is found to be higher than the value estimated by the proposed machine vision 
system. That is because in the proposed method the contribution of the centring error and 
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the form error of the master cylinder is removed. Also, the synchronous and asynchronous 

radial errors are separately calculated using the curve fitting method at different spindle speeds. 
 

5. Conclusions 

 
Spindle radial error evaluation is an important task in understanding the machining 

capability of a machine tool’s spindle. This paper demonstrates application of a machine vision 
system and  a CHT-based image processing technique  to evaluating the radial error of a lathe 
spindle at different spindle speeds. Application of CHT to detecting a circle in the image 

is found to be robust in estimating the circle parameters. Also, the circle detection method 
provides a simpler approach to eliminating the contribution of the form error of the master 

cylinder. In order to extract the contribution of the centring error and the radial error of the 
spindle, the periodic and aperiodic components of circle centre are analysed using the Fourier 
series curve fitting method.  The synchronous radial error of a lathe spindle is found to vary 

between 7.542 microns and 13.164 microns for different spindle speeds and it showed 
a decreasing trend with the increase of the spindle speed. However, the asynchronous radial 

error value is found to vary randomly within a range of 56.234 microns – 85.521 microns, as it 
includes the contribution from structural motion of the spindle which varies for different spindle 
speeds. The repeatability of the spindle radial error evaluation using the proposed method is 

found to be at a submicron level. The proposed method can be extended to the online monitoring 
and estimating the spindle radial errors using a high-speed camera. 
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