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Abstract 

The integrated Singular Value Decomposition (SVD) and Unscented Kalman Filter (UKF) method can recursively 

estimate the attitude and attitude rates of a nanosatellite. At first, Wahba’s loss function is minimized using the 

SVD and the optimal attitude angles are determined on the basis of the magnetometer and Sun sensor 

measurements. Then, the UKF makes use of the SVD’s attitude estimates as measurement results and provides 

more accurate attitude information as well as the attitude rate estimates. The elements of “Rotation angle error 

covariance matrix” calculated for the SVD estimations are used in the UKF as the measurement noise covariance

values. The algorithm is compared with the SVD and UKF only methods for estimating the attitude from vector 

measurements. Possible algorithm switching ideas are discussed especially for the eclipse period, when the Sun

sensor measurements are not available. 
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1. Introduction 
 

Sun sensors and magnetometers are common attitude sensors for nanosatellite missions; they 
are cheap, simple, light and available as commercial of-the-shelf equipment [1, 2]. However, 

the overall achievable attitude determination accuracy is limited with these sensors mainly as 
a result of their inherent limitations and unavailability of the Sun sensor measurements when 
the satellite is in the eclipse.  

Attitude estimation with magnetometer and Sun sensor measurements has been addressed 
in many research works and various algorithms that intend to improve the estimation accuracy 

have been proposed. A basic solution is using a Kalman filtering algorithm for integrating the 
measurements under the propagation model of the satellite dynamics and estimating the satellite 
attitude possibly along with the sensor biases. For example, in [2] two filtering algorithms are 

proposed, both based on the multiplicative Extended Kalman Filter (EKF). The first algorithm 
is used for estimation of attitude quaternions, gyro biases and Sun sensor calibration parameters, 

whereas the second one estimates only the quaternions and gyro biases excluding the Sun sensor 
calibration parameters. The main drawback of both algorithms is a degradation in the estimation 
results when the satellite is in its eclipse so the Sun sensor data are not available. A similar 

phenomenon can be seen in [1] for the Unscented Kalman Filter (UKF) estimations. Another 
approach to the nanosatellite attitude estimation is to determine the attitude using a single-frame 

attitude estimator. This method is based on computing Sun and magnetic field vectors in the 
reference frame and measuring the same vectors in the body coordinate system. Then, 

a deterministic method such as the TRIAD (two-vector algorithm) or an optimization method 
such as the QUEST can be used for the attitude estimation [3]. A drawback of these methods 
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is that they are based only on measurements; they do not use any knowledge about the satellite 

dynamics. Attitude estimation methods, which take the advantage of the system’s mathematical 
model, may significantly increase the attitude estimation accuracy. In [4], the Sun-eclipse 
phases are considered to use both traditional and non-traditional methods depending on whether 

the Sun sensor is operational or not. In the Sun sensor operational mode, the Gauss-Newton 
method enables to obtain the quaternion estimates for using in EKF. In the eclipse mode, only 

the traditional EKF is used. The measurement covariance values in EKF are not provided by 
the deterministic method to the filter and they are selected. This leads to some jumps in the filter 
even outside of the eclipse. If the variance values of the first method are used as 

the measurement noise covariance ones in EKF, the filter will have to compensate these errors. 
The traditional approaches to designing a Kalman Filter (KF) for the satellite attitude 

estimation use nonlinear measurements of reference directions (e.g.  the Sun direction) [1, 5−7]. 

The measurement models in the filter are based on nonlinear models of the reference directions 
so the measurements and states are related by nonlinear equations. In the approach based on 

linear measurements the attitude angles are found first by using the vector measurements and 
then a suitable single-frame attitude estimation method [3]. Then, these attitude estimates are 
used as the measurement results within the KF. The filter measurement model is linear in this 

case, since the single-frame attitude estimator provides directly the states themselves as 
measurements. We may name such algorithms as “single-frame estimator-aided attitude 

filtering”. 
An earlier study on single-frame estimator-aided attitude filtering was carried out in [8]. 

In this study the authors integrate the algebraic method (TRIAD) and the EKF algorithms to 

estimate the attitude angles and angular velocities. The magnetometers, Sun sensors, and 
horizon scanners/sensors are used as measurement devices and three different two-vector 

algorithms based on the Earth’s magnetic field, Sun, and nadir vectors are proposed. An EKF 
is designed to obtain the satellite’s angular motion parameters with the desired accuracy. 
The measurement inputs for the EKF are the attitude estimates of the two-vector algorithms. 

Interest in “single-frame estimator-aided attitude filtering” is higher in the more recent literature 

[9−11]. The attitude determination concept of the Kyushu University mini-satellite QSAT is 
based on a combination of the Weighted-Least-Square (WLS) and KF [9, 10]. The WLS method 
produces the optimal attitude-angle observations at a single-frame by using the Sun sensor and 
magnetometer measurements. The KF combines the WLS angular observations with the 

attitude rate measured by gyros to produce the optimal attitude solution. In [11], an interlaced 
filtering method is presented for determination of the nanosatellite attitude. In this integrated 

system, the optimal-REQUEST and UKF algorithms are combined to estimate the attitude 
quaternion and gyro drifts. The optimal-REQUEST, which cannot estimate gyroscope drifts, is 
run for the attitude estimation. Then, the UKF is used for the gyro-drift estimation on the basis 

of linear measurement results obtained as the optimal-REQUEST estimates. There are also 
similar applications for the UAV attitude estimation. De Marina et al. introduce an attitude 

heading reference system based on the UKF using the TRIAD algorithm as the observation 
model in [12]. 

Here, we may also refer to the studies where a single-frame attitude estimator is used together 

with an attitude filter but does not provide linear measurements [13, 14]. For linear 
measurements, it is equivalent to first updating the attitude using the single-frame estimator and 

subsequently using this updated portion of the state to updating the remainder of the state as 
if updating the entire state at once. However in [13, 14], the measurement model is a nonlinear 
one. A nonlinear updating the attitude is obtained by solving the Wahba’s problem and 

subsequently updating the non-attitude states using the optimal gain for the linear measurement 
case. Therefore, in these studies, the attitude is updated using a single-frame estimator, whereas 

all remaining non-attitude states are updated using standard nonlinear attitude filters. 
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In this study we examine an SVD-aided UKF (SaUKF) algorithm for the nanosatellite 

attitude estimation. The nanosatellite has magnetometers and Sun sensors as on-board attitude 
sensors. In the first phase, Wahba’s problem is solved by the Singular Value Decomposition 
(SVD) method and quaternion estimations are obtained for the satellite’s attitude. These 

quaternion estimations are then used as the measurement results for an UKF, which forms the 
second phase of the algorithm. The SaUKF provides improved attitude knowledge and attitude 

rate estimates. The whole algorithm runs recursively. The main aim is to propose an easy-to-
apply and accurate nanosatellite attitude estimation algorithm, which is also robust against 
estimation deteriorations when the satellite is in its eclipse. The initial results are presented 

in [15]. In this study we compare the results with those obtained by an UKF that uses nonlinear 
measurements. Besides we propose an algorithm that switches between the UKF with nonlinear 

measurements and the SaUKF to ensure both the accuracy and robustness.    
 
 

2. Satellite equations of motion and measurement models 

 

In this section we briefly review the satellite equations of motion and the measurement 
models for magnetometers and Sun sensors.   

 

2.1. Satellite equations of motion 

 

The satellite’s kinematics equation of motion derived using the quaternion attitude 
representation can be presented as [16]: 

                                                         
1

( ) ( ( )) ( )
2

BR
t t t= Ωɺq ω q .                                              (1) 

In (1), the quaternion q  is composed of four attitude parameters, [ ]
1 2 3 4

.

T

q q q q=q  

Three terms of the quaternion q  are vectors, whereas the last term is a scalar. Then, the 

quaternion can take a form of 
4

T
T

q =  q g , [ ]1 2 3

T

= q q qg . Moreover, in (1), ( )
BR

Ω ω is 

the skew symmetric matrix as: 

                                        

3 2 1

3 1 2

2 1 3

1 2 3

0

0
( )

0

0

BR

ω ω ω

ω ω ω

ω ω ω

ω ω ω

− 
 −
 Ω =

− 
 
− − − 

ω ,                                          (2) 

where the 
BR
ω  vector is composed of 

1
ω , 

2
ω and 

3
ω ; it indicates the angular velocity of the 

body frame with respect to the orbit frame. The angular rate vector should be identified because 
of the sensor usage. Hence, the rate vector in the body frame with respect to the inertial 

coordinate system can be shown as: .

T

BI x y zω ω ω =  ω   
BI
ω and 

BR
ω  can be related 

according to the following equation: 

                                                     [ ]0 0 .
T

BR BI o
A ω= − −ω ω                                          (3) 

The angular velocity of the satellite on its orbit is specified by 
o
ω  with respect to the inertial 

reference, found as ( )
1/2

3
/

o
rω µ= for a circular orbit using µ , which is the product of two 

constants ( )E
GM . Here, G is the gravitational constant, 

E
M  − the mass of the Earth and r  − 

the distance between the satellite and Earth centers of masses. In (3) A is a transformation 

matrix which can be related to the quaternions as follows: 
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                                              [ ]2 2

4 3 3 4
( ) 2 2TA q I q

×
= − + − ×g gg g .                                     (4) 

The unit matrix 
3 3x
I has a dimension of  3 3× and [ ]×g is a skew-symmetric matrix as 

follows: 

                                                [ ]
3 2

3 1

2 1

0

0

0

g g

g g

g g

− 
 × = − 
 − 

g .                                                  (5) 

The satellite’s dynamic equations are necessary to estimate the full state attitude including 

both the attitude and attitude rates. Based on the Euler’s equations the dynamic knowledge can 
be found by:  

                                                   ( ) ,BI

d BI BI
J J

dt
= − ×N

ω

ω ω                                               (6) 

where J  is an inertia matrix composed of ( ), ,

x y z
J diag J J J=  which are the principal 

moments of inertia.  The external torques affecting the satellite can be added in order to find 

the resulting disturbance torque, 
d

N : 

                                                 
d gg ad sp md= + + +N N N N N ,                                             (7) 

where
gg

N  is the gravity gradient torque, 
ad

N is the aerodynamic disturbance torque, 
spN  is the 

solar pressure disturbance torque and  
md

N  is the residual magnetic torque caused by the 

interaction of the satellite’s residual dipole and the Earth’s magnetic field [16]. 

 

2.2. Sensor models 

 
The magnetometer sensor for attitude determination is a very common sensor for small 

satellite missions. A model of the Earth’s magnetic field measurements can be given in (8) (the 

magnetometers are assumed to be calibrated) [17, 18]: 

                                                   

( )

( )

( )

( )

( )

( )

1

2 1

3

,

,

,

x

y

z

B t B t

B t A B t

B t B t

η

   
   

= +   
      

q

q

q

.                                              (8) 

The components of the Earth’s magnetic field, ( )1
B t , ( )2

B t and ( )3
B t , in the orbital 

coordinate frame can be calculated by the common and accurate magnetic field model, 

International Geomagnetic Reference Field (IGRF) [19]. ( ),
x

B tq , ( ),y
B tq  and ( ),

z
B tq  are 

the vector components of magnetic field measured by the magnetometers. Therefore, they are 

presented in the body reference system. Moreover, 
1

η  is the zero mean Gaussian white noise:  

                                                     2

1 1 3 3

T

k j x m kjE Iη η σ δ  =  ,                                                    (9) 

where
m
σ is the standard deviation and 

kjδ  is the Kronecker symbol. 

The Sun direction with respect to the inertial coordinates regarding the Earth center depends 

only on time referred to Julian Day (
TDB
T ). 

TDB
T  can be derived using the satellite’s reference 

epoch and the exact time. The variables  are the mean anomaly (
Sun

M ) and the mean longitude 

(
Sun

M
λ ) of the Sun. Using (10), the ecliptic longitude of the Sun (

eclipticλ ) and its linear model 

(ε ) can be found [20]: 
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                                        0
357.5277233 35999.05034

Sun TDB
M T= + ,                              (10a) 

                        01.914666471 ( ) 0.019994643 (2 )
Sun

ecliptic M Sun Sunsin M sin Mλ λ= + + ,       (10b) 

                                    280.4606184 36000.77005361
Sun

TDBM
Tλ = +

� ,                             (10c) 

                                              0
23.439291 0.0130042

TDB
Tε = − .                                      (10d) 

From those relations (10), the Sun direction vector (
ECI

S ) in the inertial coordinates can be 

found: 

                                                cos

s

cos

sin

in nsi

ecliptic

ECI ecliptic

ecliptic

λ

λ ε

λ ε

 
 

=  
  

S .                                                    (11) 

However, since the satellite is rotating along its trajectory, it is necessary to transform 
the unit Sun direction vector into the orbital frame by using the orbit propagation algorithm. 

Finally, the (12) shows the relation between the Sun sensor measurement vector and the Sun 
direction model vector:  

                                                            
2b o

= A η+S S ,                                                        (12) 

where 
o
S  is the Sun direction vector in the orbit reference system and 

b
S  is the vector of Sun 

sensor measurements in the body reference system having the zero mean Gaussian white noise 

2
η with the characteristic of: 

                                                        2

2 2 3 3

T

k j x s kjE Iη η σ δ  =  ,                                               (13) 

where
s
σ is the standard deviation of Sun sensor error. 

The satellite’s orbital elements and its position on the orbit must be known to model 

the Earth’s magnetic field and Sun vectors in the orbit frame. 
 

 

3. SVD-aided UKF algorithm  

 

The contents of this section include estimation of the satellite’s attitude and the angular 
velocities during the operational mode of the mission. The estimation process is divided into 

two stages: SVD and UKF. Firstly, a single frame method SVD minimizes the Wahba’s loss 
function by using two vectors and finds the coarse attitude angles and variance values for each 
axis. Then, UKF uses the SVD results as the input values in each time step and provides 

the filtered attitude and attitude rates with a higher accuracy.  
 

3.1. SVD method 

 

As a single-frame method, SVD aims to solve the problem formulated by Grace Wahba [21]. 

In every single time frame SVD can estimate the coarse attitude only by using the measurement 

results and the model vectors. In the loss function (see (14)), 
i

b  and 
i
r  are sets of unit vectors 

obtained in two different coordinate systems in every single time interval. From the optimal 

solution for the orthogonal A matrix, the attitude angles can be found [22]:  
 

                                                  
21

( )
2

i i i

i

L A a A= −∑ b r .                                                (14) 
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The unit vectors in the loss function represent  the Sun direction and Earth’s magnetic field 

vectors for the orbit frame (
i
r ) and the body frame (

i
b ), where 

i
a is a non-negative weight. 

The loss can be reduced in (15) as: 

                                                     ( ) ( )0
tr

T
L A ABλ= − ,                                                  (15) 

where:  

                                                              
0 i

aλ = ∑ ,                                                           (16a) 

                                                            T

i i i
B a= ∑ b r .                                                       (16b) 

The SVD method can be used here to maximize the trace function expressed in the (15) by 
using the most robust algorithm from single-frame methods [22]. B matrix has the singular 
value decomposition: 

                                             [ ]11 22 33
diag ,T T T

B U V U V= ∑ = ∑ ∑ ∑                            (17) 

where matrices U and V are orthogonal and the singular values hold 
11 22 33

0∑ ≥ ∑ ≥ ∑ ≥ . Then, 

the optimal attitude matrix can be found: 

                                              diag[1 1 det( )det( )]T

opt
U A V U V= ,                                 (18) 

                                              diag[1 1 det( ) det( )] .T
opt

A U U V V=                                  (19) 

The covariance analysis is an important process in the integrated filtering technique and the 

matrix 
svd
P  can be obtained by defining secondary singular values 

1 11
s = ∑ , 

2 22
s = ∑ , 

( ) ( )3 33
s det U det V= ∑ , as follows: 

                                       1 1 1

2 3 3 1 1 2
diag[(s s ) (s s ) (s s ) ] T

svd
P U U

− − −

= + + + .                     (20) 

The method requires measurements at every single moment to accurately provide the attitude 
angles. Hence, the method fails when either the satellite is in the eclipse or two vectors are 

parallel. 

 
 

3.2. Unscented Kalman Filter 

 

The UKF uses an accurate approximation called the Unscented Transform for solving 

the multidimensional integrals instead of the linear approximation to the nonlinear equations as 
Extended Kalman Filter (EKF) does [23]. The essence is the fact that the approximation 

of a nonlinear distribution is easier than the approximation of a nonlinear function or 
transformation. The conventional algorithm for the UKF is not presented here for brevity and 

the reader may refer to [24], specifically for attitude estimation using the UKF.  
When a quaternion in the kinematic modeling of the satellite’s motion is used, the UKF in 

a standard format cannot be implemented straightforwardly. The reason of such a drawback is 

the constraint of quaternion unity expressed by 1.
T
=q q  If the kinematics (1) is used in the filter 

directly, than there is no guarantee that the predicted quaternion mean of the UKF will satisfy 
this constraint. 

In the reference [24], the authors overcome this problem by using an unconstrained three-
component vector to represent an attitude-error quaternion instead of using all four components 
of the quaternion vector. They represent the local error-quaternion by the vector of Generalized 

Rodrigues Parameters (GRP). In this paper we use the same method. 
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Recall that we represent a quaternion with its vector and scalar parts as 
4

.

T
T

q =  q g  After 

that, when the local error-quaternion is denoted by 
4

T
T

qδ δ δ =  q g , the vector of GRP may 

be given as: 

                                                      [ ]4
/ ( )f a qδ δ δ= +p g ,                                              (21) 

where a is a parameter from 0 to1 and f is the scale factor. When 0a =  and 1f =  then (21) 

gives the Gibbs vector, whereas when 1a =  and 1f =  then (21) gives the standard vector 

of modified Rodrigues parameters. In the paper [24] − as well as in this paper − f  is chosen as

2( 1)f a= + . The inverse transformation from δ p to δq is given by: 

                                        

2 22 2

4 22

(1 )a f f a
q

f

δ δ
δ

δ

− + + −

=

+

p p

p

,                                (22a) 

                                                     1

4
( )f a qδ δ δ

−

= +g p .                                                (22b) 

 
 

3.3. Estimation of attitude and attitude rate using SaUKF 

 
Two methods are integrated and the SaUKF algorithm is proposed for the nanosatellite 

attitude estimation. The main purposes are: 
1. As a standalone technique the SVD works well as long as minimum 2 vector measurements 

are available and not parallel. However, if there is only one vector measurement when the 
satellite is in the eclipse, the SVD fails to provide any attitude estimate.  

2. The SVD method gives attitude estimates as frequent as the sampling rate of the sensor with 

a lower measurement frequency (if there is no propagation). The SaUKF can provide the 
attitude estimate with a higher frequency since it makes use of the attitude dynamics.   

3. The SVD method does not estimate attitude rates. For most of the cases the satellite attitude 

rates have to be estimated − especially for control purposes.  There are deterministic methods 
to estimate the satellite’s attitude rate from the vector measurement results [25], but usually 

a filtering-based method gives more accurate estimates.  
When the SVD method cannot give any estimation results, the covariance for the SVD 

estimations − and so the elements of the R matrix − increase. Therefore, the UKF is robust 

against the failures in the SVD estimations, as we see during the eclipse period.  
As the attitude representation, in SVD algorithm there are used quaternions. However, for 

the SaUKF, the attitude errors regarding GRP are acquired:  

                                                    
1

0
ˆ ( 1 )

obs mes
k kδ

−

= ⊗ +  q q q ,                                        (23) 

where 
mes
q , coming from the SVD method, are quaternion-multiplied with the predicted mean 

quaternion. Then, regarding
4,obs

T
T

obs obs
qδ δ δ =  q g , the measurement result of the attitude 

error is calculated as: 

                                                  
4,

/ ( )
obs obs obs

f a qδ δ δ= +  p g .                                      (24) 

A scheme of the attitude and rate estimation algorithm of the integrated method is given 
in Fig. 1. 
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Fig. 1. A scheme of the attitude and attitude rate estimation using the SaUKF. 

 

4. Simulations for nanosatellite 

 

Several simulations were performed in order to evaluate the attitude estimation algorithm. 
A three-unit cube-sized satellite with about 3 kg mass and J = diag(0.055 0.055 0.017) kg.m2  

inertia matrix is considered for the estimation scheme. The satellite has an almost circular orbit 

with an eccentricity of  e = 6.4 × 10−5 and  i = 74º inclination at 612 km altitude. 
All sensors are assumed to be calibrated against biases, scale factors and so on. Therefore, 

only the sensor noise (zero mean Gaussian white noise) is considered in the algorithm with 

300
m

nTσ =  standard deviation for the magnetometer and 0.002
s
σ =  unit for  the Sun sensor. 

The total orbital time is close to 6000 sec. and the time step is taken as 1 sec.  

Both SaUKF and UKF use the process noise covariance values of 4
1 10

−

×  and 9
1 10

−

×  for 

attitude and rates, respectively, and have an eclipse period between 2000–4000 sec. In Fig. 2, 

the estimation error results for SaUKF, SVD and UKF only can be seen and compared. It is 
clearly seen that the SaUKF estimates the attitude more accurately than both the SVD and UKF 
only methods, with  the exception of the eclipse period. During the eclipse period the SVD 

method fails because no Sun sensor data are obtained. The quaternion measurements for the 
SaUKF deteriorate and the values of R, which are coming from the covariance matrix of SVD 

angle estimation errors (
svd
P ), increase. If the SaUKF gain values become very low  (since R 

values are very high), the correction term of the UKF will become insignificant and 
the contribution of the propagation model to estimation becomes dominant. That enables 
the attitude estimation during the eclipse period, even though there is no measurement input to 

the filter. As it is seen in Fig. 2, the proposed SaUKF method convergences slower than 
the traditional UKF. This is a drawback of the presented SaUKF method. Therefore, it is 

recommended to use the proposed method after the convergence of the nontraditional UKF.  
The process noise covariance Q is a parameter that enables the filter to base mostly on either 

the measurements or the dynamics in the filter. In the filter, 4
1 10

−

×  and 9
1 10

−

×  pair is used as 
medium noise. Here, at the end of the eclipse period, before the Sun sensor data arrival,  the 

attitude angle has an error of 10 degrees. If the Q pair is 3
1 10

−

×  and 7
1 10

−

× , which is higher 

than the selected one, the results are close to the measurement ones and the attitude angles are 

diverging more during the eclipse period. On the other hand, for lower pair values − such as 
9

1 10
−

×  and 13
1 10

−

×  − the SaUKF becomes non-agile, i.e. has a smaller convergence rate at 

the end of the eclipse or the beginning of the orbit (Fig. 3). 
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Fig. 2. The estimation error for quaternion q1; comparison of the UKF and SVD only estimations with those 

of the SaUKF. The subfigure a zooms to the area indicated in the main figure. 

 

 
Fig. 3. The quaternion estimation error for the SaUKF with different values of process noise covariance Q. 

 
 

In the eclipse period, the UKF only method gives the most accurate attitude estimations. 

During that period it works only with the magnetometer measurements. Since the 
magnetometers are coarser sensors comparing with the Sun sensors, there is a clear increase 

in the UKF estimation error in the eclipse but still the estimations are accurate enough for 
a nanosatellite mission with this sensor configuration (less than 0.1 degrees – see Fig. 4 for 
the attitude estimation error norms).  

The angular velocities of the satellite for each axis can be estimated accurately by using the 
SaUKF (see Fig. 5). During the eclipse period the attitude rate estimations are not deteriorated 

as much as the attitude estimates resulting from accurate dynamic knowledge and low process 
noise for dynamics propagation. The rate estimates obtained by the UKF are similar. 

The main disadvantage of the proposed SaUKF method is the requirement of accurate 

measurements − free of any bias, sensor misalignment and other sorts of errors. The sensors 
must be calibrated before using their measurement results as an input to the SaUKF. 

As discussed in several papers [1, 2, 18] particularly for the magnetometers, such a calibration 
should be performed on-orbit for nanosatellite missions. In addition, as it is clearly 
demonstrated by the simulation results, the estimation performance of the SaUKF degrades 

during the eclipse period and the UKF based on the results of nonlinear measurements provides 
more accurate estimations. Regarding these facts, our suggestion is to use an algorithm which 
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switches between several different filters in accordance with the flight mode. An example is 
given in Fig. 6. 

 

 
Fig. 4. The norm of attitude estimation errors. 

 

 
Fig. 5. Estimation of the angular rate along the x axis. 

 
 

In Fig. 7, two methods are switched in/out of the eclipse period for the more accurate attitude 
estimation. As mentioned earlier, the SaUKF estimates the attitude more accurately than both 
SVD and UKF only methods except for the eclipse period; that is why the SaUKF algorithm is 
used only outside the eclipse. When the satellite is on the dark side of the Earth, the SVD 
method fails since it is fed with no Sun sensor measurements. The results of the UKF only 
method are presented in Fig. 7. Also, it should be kept in mind that the switching between the 
algorithms should be managed after the stabilization of the satellite because right after the 
eclipse period tumbling may occur. 

Certainly, for the nanosatellite application we also need to examine the computational load 
of each algorithm. Table.1 gives the running times of the algorithms for 6000 sec. simulation, 
details of which are discussed above. The simulations are performed on a computer with Intel® 
Core™ i7 @2.93 GHz CPU and 3.49 GB RAM.  It shall be noted that all the presented data 
include the computation time required for simulating the real attitude and measurements. We 
see that, for the SaUKF algorithm, the SVD is the computationally heavier part and the SaUKF 
requires a higher load comparing with the UKF based on nonlinear measurements. Yet, the load 
is not so heavy as to prevent a nanosatellite application, especially if we consider the recent 
improvements in microprocessors capacity. 



 

Metrol. Meas. Syst., Vol. 24 (2017), No. 1, pp. 113–125. 

 

 
Fig. 6. A block diagram of attitude and attitude rate estimation for the proposed algorithm. 

 

 
Fig. 7. Estimation of the quaternions by the SaUKF (outside the eclipse period) and UKF  

(in the eclipse period). 

 
Table 1. The computation times for each algorithm. 

 

Computation time (sec) 
for 10 Monte Carlo runs 

SVD SaUKF UKF 

14.30 17.96 10.49 

 

5. Conclusion 

 

In this paper, the Singular Value Decomposition (SVD) method and Unscented Kalman 

Filter (UKF) are integrated to determine the attitude and attitude rate for  a three-unit cube-
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sized satellite. The quaternion representation is used to avoid any singularities based on the 

trigonometric equations. The SVD method fails in the eclipse period because of no Sun 
observation results. On the other hand, the SVD-aided UKF (SaUKF) can estimate the attitude 
even in the eclipse period, although it is a coarse estimate. The simulation results show that also 

the UKF with nonlinear vector measurements ensures a reasonable accuracy of the attitude 
estimation. In the eclipse period the accuracy of the UKF is higher than that of the SaUKF; 

beyond that period the SaUKF is the most accurate estimation method.  
The simulation results show that the proposed SaUKF method convergences slower than the 

traditional UKF. This is  a drawback of the SaUKF method. Therefore, it is recommended to 

use the proposed method after the convergence of a nontraditional UKF. The ideal algorithm 
that we suggest for the examined case is composed of the SaUKF and UKF. The SaUKF is used 

when the Sun sensor measurements are available; in the eclipse period the algorithm switches 
to the UKF.  
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