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Abstract: The known standard recursion methods of computing the full normalized 
associated Legendre functions do not give the necessary precision due to application of 
IEEE754-2008 standard, that creates a problems of underfl ow and overfl ow. The analysis 
of the problems of the calculation of the Legendre functions shows that the problem 
underfl ow is not dangerous by itself. The main problem that generates the gross errors 
in its calculations is the problem named the effect of “absolute zero”. Once appeared 
in a forward column recursion, “absolute zero” converts to zero all values which are 
multiplied by it, regardless of whether a zero result of multiplication is real or not. Three 
methods of calculating of the Legendre functions, that removed the effect of “absolute 
zero” from the calculations are discussed here. These methods are also of interest because 
they almost have no limit for the maximum degree of Legendre functions. It is shown 
that the numerical accuracy of these three methods is the same. But, the CPU calculation 
time of the Legendre functions with Fukushima method is minimal. Therefore, the 
Fukushima method is the best. Its main advantage is computational speed which is an 
important factor in calculation of such large amount of the Legendre functions as 2 401 
336 for EGM2008.

Keywords: Fully Normalized Associated Legendre Functions, recursion, underfl ow 
problem, overfl ow problem, Fukushima method

1. Introduction

One of the components of the Earth’s gravity fi eld is the gravitational potential V  
which is determined according to the following formula (Heiskanen and Moritz, 
1967):

 mCP
r
a

r
GMV nmnm

nM

n

n

m
cos)((sin1

2 0
)sin mSnm ,  (1)



Elena Novikova, Alexander Dmitrenko284

where GM is the product of the Universal gravitational constant and the mass of 
the Earth; r, ϕ, λ are geocentric spherical coordinates of a point in the space: radius, 
geocentric latitude and longitude respectively; nmnm SC ,  are fully normalized spherical 
harmonic gravitational coeffi cients; nmP  are fully normalized Associated Legendre 
functions (fnALFs).

The value a in Eq. (1) is the equatorial radius of the Earth model. As a rule, 
this value is equated with the semi-major axis of the Earth ellipsoid (Moritz, 1980). 
Integer values n and m are degree and order respectively (Moritz, 1980). According 
to Eq. (1) these values vary from 0 to M which is the maximal degree of the model.

For global gravitational models EGM96 (Nima, 2000) and EGM2008 (Pavlis, 
2012) maximal degrees are:

 36096EGMM ,  21902008EGMM .  

The total number of the fnALFs, necessary for computing the model, can be 
determined according to the formula:

 
2

)2)(1( MMN ALFs .   (2)

Thus, to calculate V using the model EGM96 it is necessary to calculate 65 341 
Legendre functions, using the model EGM2008 – 2 401 336 functions.

Mathematical literature gives a great variety of recurrent formulas for computing 
fnALFs (Abramowitz, 1972; Olver, 2010). For the fi rst global gravitational models 
the value of the maximal degree M did not exceed 30 (http://icgem.gfz-potsdam.
de/ICGEM/ICGEM.html) that corresponded to the set of 496 fnALFs. With such 
comparatively small number of Legendre functions, the choice of a recurrent formula 
did not matter very much. However, gravitational models with the maximal degree 
of 300 and more had appeared, the majority of recurrent formulas proved to be 
unsuitable for computation because of their instability. Instability of the formulas 
becomes apparent when computing a number small in absolute value, intermediate 
calculations appear close to or greater than 10308, that, at the best, results in a loss of 
precision and, at the worst, in overfl ow. The latter case is connected with application 
of IEEE (Institute of Electrical and Electronic Engineers) 754 standard (Kahan, 1996), 
according to which all calculations with double precision numbers with absolute 
values greater than 1,8  10308 are considered equal to infi nity and designated as 
NaN (Not a Number). As shown in (Holmes and Featherstone, 2002) the recurrent 
formulas called forward column recursion and forward row recursion are free from 
the overfl ow problem. But these recursions have the underfl ow problem, that is also 
associated with the standard IEEE754-2008, according to which, the number X, which 
satisfi es the condition in the environment of double-precision:

 308324 102.2109.4 X ,   (3)
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is called subnormal. The smaller absolute value of a subnormal number corresponds to 
less precision. As a result, the precision of fnALFs, the calculation of which involves 
subnormal numbers, also drops sharply. If the numbers in absolute value are smaller 
than the smallest subnormal number, i.e.

 324109.4X ,  (4)

they are equal to zero. Forward column recursion is less susceptible to the underfl ow 
problem. It also completely has no the overfl ow problem. Therefore, it formed the 
basis of all modern methods for the calculation of fnALFs. According to (Holmes and 
Featherstone, 2002a), it can be written as:
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for 2 ≤ n ≤ M, 0 ≤ m ≤ n – 2.
Before using Eq. (5) for forward column recursion, values 1,, mmmm PP   must be 
calculated (Tschering et al., 1983; Holmes and Featherstone, 2002a):
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Analysis of fnALFs, calculated by Eq. (5), shows (Holmes and Featherstone, 
2002a) that with increasing latitude, the accuracy of the formula drops due to the 
underfl ow problem. There is no underfl ow problem at the equator.

To calculate fnALFs at the poles, Eqs. (5–9) with ϕ = ±900 are reduced to the 
following simple form:

 0nmP , when 0m , 120, nPn .   (10)
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There is no underfl ow problem for Eqs. (10). Thus, the underfl ow problem exists 
only for latitudes ϕ ≠ 0 or ϕ ≠ ±900.

2. Problems of Computing the Legendre Functions

2.1. Overfl ow problem

Because (Holmes and Featherstone, 2002a):

 
M

n

n

m
nm MP

0 0

22 )1( ,   (11)

each member of this sum equals to or less than the sum, i.e.

 22 )1(MPnm ,   (12)

or,

 1MPnm .  (13)

Thus, if the Legendre functions are calculated correctly, and if values appearing in 
the recursion formulas for their computation are of the same order as the functions 
themselves, the problem overfl ow appears only when the value M is overfl ow. Now 
there is no such models for which M > 1.8  10308. Therefore, the problem overfl ow 
correctly computed Pnm with Eq. (5) does not appear. 

But this problem appeared in the modifi ed recursion methods (Holmes and 
Featherstone, 2002a), when instead of the Legendre functions, functions depending 
on them, but artifi cially increased many times were calculated. A manifold increase in 
the absolute magnitude of the functions involved in recursion formulas removed the 
underfl ow problem, but created an overfl ow problem. Therefore, modifi ed methods, 
suggested by (Holmes and Featherstone, 2002a), turned out to be impossible to use, 
when M > 2700.

2.2. Underfl ow problem

Figure 1 shows the result of the calculation fnALFs with logarithmic method (Sect. 
3.3) for geodetic latitude φ = 680,which is related to the geocentric latitude ϕ for 
points оn ellipsoid with equation (Jekeli, 2006):

 )1(tantan 2e ,  (14)
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where e2 is the square of the fi rst eccentricity. For WGS84 Ellipsoid this value equals 
(Nima, 2000):

 e2 = 6,69437999014  10-3 

Fig. 1. The result of computation of fnALFs by logarithmic method for φ = 680.
Blue pixels correspond to fnALFs, which are normal values, black pixels

 correspond to fnALFs, which are not normal values

For geodetic latitude φ = 680 geocentric latitude equals: 

 ϕ = 1,18448528345954 (rad). 

Every pixel of Figure 1 with the coordinates n, m corresponds to a specifi c function 
Pnm, computed in the double precision environment. Black color in this fi gure shows 
the pixels representing fnALFs, the values of which satisfy the inequality:

 308102.2nmP .  (15)

The minimum values m, n for which fnALFs satisfy the inequality (15), according 
to Fig. 1, are equal to:

 n = m = 728. 

Blue color in Figure 1 shows the pixels corresponding to fnALFs, the absolute 
value of which does not satisfy the inequality (15). According to the standard 
IEEE754-2008 (Kahan, 1996), they are normal values. As can be seen from the 
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Figure 1, the number of fnALFs, satisfying the inequality (15) increases faster than 
the total number of fnALFs.

According to Figure 1, for M = 3000 and for latitude φ = 680, number of fnALFs, 
that satisfi es the inequalities (15) and in the double-precision environment, practically 
equals to zero, is not less than 26% of the total number of fnALFs. Taking into 
consideration the fact that the number of Legendre functions satisfying the inequality 
(15) with a linear increase of M has non-linear increase, we can assume that at 
a certain value M the total number of fnALFs, that satisfy the inequality (15), reaches 
99% of all fnALFs. However, they do not affect the accuracy of calculation of the 
gravitational potential. To prove this let’s divide the expression by the sum included 
in Eq. (1) for calculating the gravitational potential, in two parts:
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E1 reserves the components with fnALFs, satisfying the condition (15): 
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*

nmP   are the fnALFs, satisfying the inequality (15).
The second part, E2, gets components with fnALFs, not satisfying the condition 

(15). 
According to the IEEE754 standard, in the double-precision environment E1, 

practically equals to zero. 
Since
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Since the sum E1 includes the members with fnALFs, satisfying the condition 
(15), inequality (20) can be written as:
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or with formula (2):
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The sum E2 is about 0.48  10-3, because extreme value of fully normalized 
spherical harmonic gravitational coeffi cients equals (Nima, 2000):

 3
0,2 10854841667749.0C .  

The other fully normalized spherical harmonic gravitational coeffi cients are much 
less.

In the double precision environment in order for E1 was affected E2, E1 in absolute 
value must be more than 10-20. The maximum degree of the gravitational potential 
model, for which the right part of inequality (21) reaches the size of 10-20,, is equal:

 143100.8M .  

Now there are no such models for which M is comparable with the above recorded 
value.

For maximal degree, applied in (Fukushima, 2012a): 

 M = 232 = 4 294 967 296, 

there is the following estimation for the sum of E1

 289
1 109.2E .  

For EGM2008 it is possible to record such an inequality for the sum E1:

 302
1 106.7E .  

So, the value E1 satisfying the condition (21), will not affect the accuracy of total 
sum Eq. (16). Thus, the underfl ow problem itself does not affect the accuracy of the 
gravitational potential calculation.
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2.3. The effect of “absolute zero”

Figure 1 shows the result of fnALFs calculation with the classical method using 
recursions Eqs. (5–9) for φ = 680. In this fi gure blue color pixels correspond to the 
fnALFs, the values of which are normal numbers, dark blue – the values of which 
are subnormal numbers, grey – the values of which are normal numbers, but in their 
calculations a subnormal number was involved. As a result, they were calculated with 
gross errors. The black color pixels correspond to the fnALFs, the values of which 
in calculations are less than the minimum subnormal numbers. That’s why they are 
equal to zero. Figure 3 shows a magnifi ed fragment of Figure 2. 

Fig. 2. The result of calculation the fnALFs by the classical method using recursion formulas (5-9) 
for φ = 680. Blue pixels correspond to the fnALFs, which are the normal numbers, dark blue pixels 

correspond to the fnALFs, which are the subnormal numbers, the gray pixels correspond to the fnALFs 
which are the normal numbers, but subnormal numbers are used in its calculation, and black pixels 

correspond to the fnALFs that are the “absolute zero”

As can be seen from the Figures 2–3, all the fnALFs from m = 763 are equal to zero.
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Fig. 3. The magnifi ed fragment of Figure 2

For φ = 680:

 
7,742ln 763,763P . 

 

At the same time the natural logarithm of the minimal subnormal number equals 
to:
 –744,0 

Therefore the value 763,763P   must be subnormal. The fi rst fnALFs which is valid 
underfl ow and the absolute value of which is less than the minimum subnormal 
number for latitude φ = 680 is a the function 765,765P , the natural logarithm of which 
is equal:

 7,744ln 765,765P .  

So, theoretically, absolute zero (the fi rst black pixel) must be in Figures 1–3 not 
for the fnALFs degree and order of which are equal to the number 763, and for the 
fnALFs, the degree and order of which are equal to the number 765.

However, when calculating the value 763,763P   the effect of “absolute zero” starts 
to work. 

The fi rst part of Eq. (8) for m = 763 gives:

 
m

i i
i

2 2
123 = 2,0665.  
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But the logarithm of the second part of this Eq., i.e. the value cosmϕ, is equal to:

 ln(cosmϕ) = -744,8, for m = 763, (ϕ = 1,18448528345954 (rad)). 

Thus, the value cosmϕ is less than the minimum subnormal number. Therefore, the 
result of its computation in the double-precision environment is equal to zero:

 cosmϕ ≡ 0. 

The result of multiplying any number by zero is zero. So the value 763,763P   is 
equal to absolute zero. Similarly, the function 763,764P , calculated by the formula 
(9), gives the absolute zero. The following function 763,765P , and all subsequent 
functions computed with recursion formula (5), are also zero. Therefore, once 
appeared in calculations of the value mmP  the absolute zero like a virus spreads on all 
values nmP   for which n ≥ m. No matter what values the coeffi cients anm, bnm in Eq. 
(5) take, the result is only zero. This effect can be called as effect of “absolute zero”.

The schematic representation of computing fnALFs using recursions (5–9), that 
shows the extension of absolute zero from one value nmP  to another is given in 
Figure 4. The schematic representation is similar to the ones presented in (Holmes 
and Featherstone, 2002a; Fantino and Casoto, 2005; Šprlák, 2011).

Fig. 4. Schemаtic representation for computing fnALFs with forward column 
recursion by Eqs. (5-9)

According to the standard IEEE754-2008 (Kahan, 1996), the subnormal values 
involved in calculations have the smallest possible exponent and the signifi cand, fi rst 
number of which is 0. The smaller a subnormal number, in absolute value, i.e. the 
closer it is to zero on the numerical axis, the less signifi cant digits/bits are in its 



The problems and methods for calculation the Legendre functions 293

signifi cand. As the result, the subnormal numbers lose accuracy when approaching 
to zero. For double-precision environment the minimal positive subnormal number is 
(IEEE, 2008):

 2-1074 

In binary record its signifi cand has only one non-zero bit. 
Figure 5 shows a fragment of the graph fnALFs depending on the order m for 

n = 2200 and latitude φ = 680. The solid line on the Figure 5 represents the fnALFs, 
computed according to classical recursion formulas (5–9), dashed line represents 
the fnALFs, calculated using the logarithmic method (Sect. 3.3). The gray area of 
the graph represents the effect of subnormal numbers on the result of the fnALFs 
calculation using the classic recursion. As can be seen from Figure 5, initially 
both graphs are almost identical. This means that subnormal values involved in 
the calculation of fnALFs are still quite accurate. However, when approaching to 
m = 763 the accuracy of fnALFs decreases rapidly and for m ≥ 763 the values of all 
the Legendre functions, calculated with Eqs (5-9), become zero.

Fig. 5. Fragment of the graph where the fnALFs, depending on m for n = 2200  
and for geodetic latitude 680, were calculated with the standard column recursion 

(solid line) and the logarithmic method (dashed line)

Therefore, it can be concluded that the use of subnormal numbers does not improve 
situation with the computation of Legendre functions and only moves the problem of 
“absolute zero” for φ = 680 from m = 728 to m = 763.

All above mentioned refers to the geodetic latitude 680. The limit value m0, 
by which 0,0 mmP  is less in absolute value minimum subnormal number, depends on 
latitude. Substitution of the condition

 424
0,0 109.4mmP .  (22)
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in Eq. 8 and taking the logarithm gives
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Inequality (23) is a transcendental in relation to m0. For its solution (Wittwer et 
al., 2007) have introduced the approximate formula. A more accurate value of m0 one 
can get with the program presented by (Dmitrenko, 2012), which uses the method 
of successive approximations. In Figure 6 is a graph of m0 depending on latitude 
obtained using this program.

Fig. 6. Change m0 depending on latitude ϕ

As can be seen from the graph in Figure 6, the effect of “absolute zero” is almost 
absent in areas close to the equator. At the equator the effect of “absolute zero” is 
completely absent. With increasing latitude the value m0 decreases exponentially 
and continuously, reaching a minimum at the points of poles. Therefore, the effect 
of “absolute zero” must increase with increasing latitude. This means that fnALFs 
calculations errors also have to increase continuously with latitude increasing from 
the equator to the poles. However, as proved by (Dmitrenko, 2012), for the forward 
column recursion method the fnALFs calculating errors increase from the equator 
to the geodetic latitude ±680. Further the errors of calculating fnALFs decrease very 
rapidly. The value AN  changing graph calculated according to the formula (62) (see 
Sect. 4) is shown in Figure 7. On the graph there are two maximums at latitude ±680.

This maximum of function errors in the calculation of fnALFs with standard 
method of forward column recursion depending on latitude can be seen on Figure 5 
for M = 2700 (Fukushima, 2012a), Figure 2 for M = 3000 (Fukushima, 2014a) and 
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with Wenzel method on Figure 8 for M = 2160, Figure 8 for M = 2700 (Wittwer et 
al., 2008). 

This extreme behavior of calculation errors of fnALFs is related to behavior 
peculiarities of these functions near the poles. Figure 8 presents two graphs of fnALFs 
depending on m with n = 2200 for two geodetic latitudes: φ = 680 and φ = 890.

Fig. 7. The graph of AN  (Sect. 4), calculated for the standard forward column 
recursion for M = 8000 

Fig. 8. The graphs of fnALFs change depending on m with n = 2200 
for two geodetic latitudes: φ = 680 and φ = 890

Each graph of Figure 8 is based on 2200 points, the fi rst graph – for latitude
φ = 680 and second – for latitude φ = 890. As pointed out by (Jekeli et al., 2007) 
and (Fukushima, 2014a) the graph of the fnALFs can be divided into two parts. The 
fi rst part oscillates and ends with maximum of fnALFs. The second part approaches 
to the axis m (Šprlák, 2011) asymptotically very quickly. As can be seen from the 
graphs on Figure 8, the fi rst part of graph fnALFs is shortened and the second part 
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is lengthened with increasing latitude. This means that with increasing latitude, the 
number of extrema of the fnALFs decreases, but the absolute value of each remaining 
extrema increases. This property of functions nmP  is related to the fact that the sum of 
the squares of a set of variables nmP  with constant n  and variable m does not depend 
on the latitude but only depends on n (see Eq. (58) below). At high latitudes this sum 
concentrates on a small number of variables nmP . At fi rst the effect of “absolute zero” 
destroys the members of the set nmP   with a suffi ciently large value m. Thus at high 
latitudes the members having values close to zero are forcibly nullifi ed and almost 
have no effect to sum of 2

nmP .
C. Jekeli et al. (2007) have used the above property of the Legendre functions 

which depends on latitude and reduced the amount of its computations for 36%.

The underfl ow problem is not dangerous by itself. Dangerous is the effect it 
generates, i.e. the effect of “absolute zero”. Once appeared in the calculation of mmP   
at a certain m, the “absolute zero” resets all nmP , no matter what values they take 
really. The effect of “absolute zero” is completely absent at the equator and increases 
with latitude in absolute value. However, due to the special property of the Legendre 
functions, the effect of “absolute zero” reaches its maximum not at the poles but at 
the latitudes ±680. 

3. Methods of Computing the Legendre Functions

To solve the fnALFs calculations accuracy reduction problem caused by underfl ow, 
H.-G. Wenzel (1998) has suggested to use the scale factor 10200. In the fnALFs 
calculations all of them were multiplied by this factor. The usage of this method 
became possible because the maximum absolute value of fnALFs does not exceed 
(M + 1) (see Eq. (13)). Multiplying by the scale factor 10200 corresponds to increase 
of decimal logarithms of fnALFs by 200. Taking into account the fact that the decimal 
logarithm of the minimum subnormal number is equal -323,31, it can be concluded 
that when using a scale factor of 10200, the calculations will involve the fnALFs, the 
decimal logarithms of which are at least -523,31.

Figure 9 shows a graph of mmP10log   depending of m for geodetic latitude 680. 
The value of m, at which mmP10log  is the minimum number, the decimal logarithm 
of which is greater than the minimum subnormal number, is equal to 764. This is the 
maximum degree of mmP  that theoretically should not be subjected to the effect of 
“absolute zero” (see Figs. 1-3). For the Wenzel method (Fig. 9) the maximum degree 
of the functions mmP  equals M = 1236. Since “absolute zero” destroys at the fi rst place 
the fnALFs which values are close to zero, there is a lag effect in its appearance, due 
to which H.-G. Wenzel has increased the maximum degree to M = 1900, but only for   070 .
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Fig. 9. Dependence of mmP10log  on m for φ = 680

S.A. Holmes and W.E. Featherstone (2002a; 2002b; 2002c) have given a more radical 
solution of the underfl ow problem. Their modifi ed recursion method consists in 
computing not Legendre functions but functions related to Legendre functions with 
simple formulas.

In the fi rst modifi cation these functions are:

 m
nmI

nm

Pp
cos

10 280 ,  (24)

in the second modifi cation–

 
mm

nmII
nm P

P
p 28010 .   (25)

Both I
nmp  and II

nmp  can be calculated according to the recursion equations (5–9) 
by substituting these functions in place of nmP . The method of modifi ed functions 

I
nmp  and II

nmp  S.A. Holmes and W.E. Featherstone (2002a) have been combined with 
the method Clenshaw and Horner’s scheme (Harris and Stocker, 1998), which allows 
not to return to the original Legendre functions in calculations of gravitational 
potential (1).

S.A. Holmes and W.E. Featherstone (2002a) recommend to use the functions I
nmp   

and II
nmp  at M ≤ 2700, as at n > 2814 at points close to the poles the numerical values 

of the functions I
nmp  and II

nmp  become larger than 10308, i.e. the overfl ow problem takes 
place.

The method of S.A. Holmes and W.E. Featherstone (2002a) is widely used to 
compute the disturbing potential (Peng and Xia, 2004), the Bouguer and isostatic 
anomalies (Balmino et al., 2012), the spherical harmonic analysis and synthesis 
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(Blais, 2008; Fantino and Casoto, 2009; Hirt, 2012), the gravitational potential of the 
topographic masses (Wang and Yang, 2013). GrafLab software (Bucha and Janák, 
2013) for spherical harmonic synthesis contains three methods of fnALFs calculation, 
one of which is the method of S.A. Holmes and W.E. Featherstone (2002a).

Method similar to the method of (Holmes and Featherstone, 2002a) with special 
scale factors (Liu et al., 2011) was used to calculate the Legendre functions and its 
fi rst derivatives to degree and order 3600.

D.W. Lozier and J.M. Smith (1981) proposed to calculate Legendre functions 
using the extended-range arithmetic, implemented with the special software which 
is currently part of the SLATEC Common Mathematical Library (http://performance.
netlib.org/slatec). The analysis of accuracy and properties of this arithmetic was 
performed by (Wittwer et al., 2007). They showed that the extended-range arithmetic 
allows to increase the maximal degree of Legendre functions up to 100 000. However, 
the extended-range arithmetic procedures require special software connected to certain 
compilers (Fortran 77) and increase the Legendre functions computation time by 
49 times.

С. Jekeli et al. (2007) in the quadruple precision environment calculated fnALFs 
using the fi rst modifi cation of S.A. Holmes and W.E. Featherstone (2002a) to the 
maximum degree and order M = 23599. A similar result is obtained by (Šprlák, 2011).

The calculation of fi rst modifi ed forward column recursion with Eq. (24) in the 
quadruple precision environment and subsequent determination of the Legendre 
functions and their fi rst derivatives up to degree and order M = 10800 were 
accomplished by (Kwon and Lee, 2007).

According to T. Fukushima (2012a), displacement from the double-precision 
environment to quadruple precision environment does not solve the underfl ow 
problem either. It appears for classical forward column recursion, when M = 21600. 
Simultaneously the Legendre functions calculation time increases by 40–80 times.

Using a non-standard normalization and recursion formulas allowed (Yu et al., 
2015) to calculate the Legendre functions up to degree and order M = 20000.

All of the aforementioned methods of Legendre functions calculation are aimed 
to solve the underfl ow problem. Therefore they have a limit of the maximum degree 
and order related to the overfl ow problem appearance. In 2012 three methods were 
proposed: the fi rst two are based on the idea of Wenzel (1998) (Fukushima, 2012a; 
Balmino et al., 2012), and the third is a logarithmic method (Dmitrenko, 2012). 
These methods remove from calculations not the underfl ow problem but the effect 
of “absolute zero”. Due to this property, they almost have no limit in the fnALFs 
maximum degree. Another property that is common to these methods is that full 
information about the fnALFs is stored in two functions: real and integer. Below there 
is a brief description of these methods. 
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3.1. Fukushima method

The exact theoretical substantiation of the Fukushima method can be found in 
(Fukushima, 2012a). Graphically the procedure for calculating the fnALFs by the 
Fukushima method is presented in Figure 10.

Fig. 10. Schematic representation of the numeric scale for double-precision numbers according 
to the standard IEEE754-2008, divided by intervals according to the Fukushima method

Information about values nmP  in the program, created by T. Fukushima (2012a), is 
stored in two variables: real znm and integer inm. The fi rst values of the function nmP
with small n, m satisfy:

 480480 22 nmP .  (26)

In this condition the functions znm and inm are equal:

 
nmnm Pz ,  0nmi .   (27)

Recursive calculations with Eqs (5-9) in the program, created by T. Fukushima 
(2012a), are not for values nmP  but for values znm. Therefore, each value znm is tested 
with condition such as (26):

 480480 22 nmz .  (28)

If condition (28) stops running for any n, m, then there is a recalculation of the 
values znm, inm in the following formulas:

 If 4802nmz  then 9602: nmnm zz , 1: nmnm ii .  (29) 

 If 4802nmz  then 9602: nmnm zz , 1: nmnm ii .  (30)

The procedure of recalculation can be considered as the process of value znm  
transferring to the interval satisfying the condition (28). This procedure is shown in 
Figure 10 with arrows. When 4802nmz , znm moves from right to left. Likewise, 
when 4802nmz , znm moves from left to right.

As a result of these actions, all values znm, used in the recurrence formulas for the 
calculations are within the interval (28) that gives the possibility to calculate them as 
accurately as possible. 
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Eq. of link the fnALFs with values znm, inm is:

 9602 nmi
nmnm zP .  (31)

According to T. Fukushima (2012a), this method allows to compute Legendre 
functions of extremely high degree up to 4 294 967 296 and increases Legendre 
computation time only by 10%.

This algorithm turned up to be so successful that T. Fukushima has used it for the 
fi nite difference of fnALFs (Fukushima, 2012b), for the fi rst, second and third-order 
derivatives of fnALfs (Fukushima, 2012c; 2013), for defi nite integrals of fnALFs 
(Fukushima, 2014a), and also, with new method of computation the Second Kind 
Legendre functions, for external gravitational fi eld of a general ring-like objects 
(Fukushima, 2014b, 2015, 2016). 

3.2. Balmino method

G. Balmino and co-authors (2012) have proposed the algorithm for calculating fnALFs 
based on the fi rst modifi cation of (Holmes and Featherstone 2002a). Information 
about the fnALFs is stored in two functions: real Hnm and integer Knm. The formulas 
of communication are as follows:

 
m

nmK
nm

PH nm

cos
10 1280 .  (32)

Initially:

 0nmK .  (33)

So the initial calculations of functions Hnm up to n = 2815 completely coincide 
with calculations of modifi ed functions I

nmp . The method of modifi cations (Holmes 
and Featherstone, 2002a) has no underfl ow problem, but has the overfl ow problem. 
Therefore, the condition is testing:

 28010nmH .  (34)

If the condition (34) is satisfi ed, the calculation process of the functions Hnm 
continues. If this condition is not satisfi ed, the value Knm increases by one, i.e.

 1: nmnm KK .  (35)

Simultaneously, such values as Hnm, Hn-1,m are recalculating with Eqs.:

 28010: nmnm HH , 280
,1,1 10: mnmn HH .    (36)
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Further, the process of computing the functions Hnm with recursion formulas, 
similar to (5-9), continues.

For the inverse transform to the fnALFs the function Z is preliminary calculated:

 )1(280log)(cosloglog 101010 nmnmnm KHmPZ .  (37)

If Z < 308, then:

 0nmP ,   (38)

else:

 )sgn(10 nm
Z

nm HP .  (39)

3.3. Logarithmic method

Following (Dmitrenko, 2012), consider the functions:

 nmnm Pp lnln .  (40)

According to Eqs. (3-6), the functions 
nmp ln  are determined for all latitudes except 

the poles and the equator, i.e. at:

 0900  and 0900 .  (41)

When determining functions nmp ln , the sign of functions nmP  is lost. Therefore, 
simultaneously with the introduction of functions nmp ln  it is necessary to determine the 
integer functions knm which are equal to:

 )sgn( nmnm Pk .  (42)

Thus, the relation between functions 
nmP  and functions nmp ln  can be written as:

 )exp( ln
nmnmnm pkP .  (43)

Expressions for the functions ln
1,

ln , mmmm pp  are resulted from taking a logarithm of 
Eqs. (7-9), i.e.

 0ln
0,0p , )ln(cos3ln5.0ln

1,1p ,  (44)

 
m

i
mm iip

2

ln ))2ln()12(ln(3ln5.0 )ln(cosm ,  (45)
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ln

1,1
ln

1, sinln)12ln(5.0 mmmm pmp .   (46)

As the functions mmP  are always positive, and the sign of 1,mmP  is the same as of 
ϕ (see Eqs. (8-9)), the functions kmm and km-1,m are equal:

 1mmk ,  1,mmk  = )sgn( .  (47)

To apply the logarithmic method it is necessary to rewrite Eq. (5) so that the 
value ln

nmp   can be obtained as a sum of several values. To do this, factor out the fi rst 
member of the Eq. (5) to get (Dmitrenko, 2012):

 )1(sin,1 nmmnnmnm DPaP  ,  (48)

where

 
sin,1

,2

mn

mn
nmnm P

P
dD ,  (49)

or, considering Eq. (43),

 
mnmn

mnmn
nmnm kk

pp
dD ,1,2

ln
,1

ln
,2

sin
)exp(

,  (50)

where:

 
)32)(12(

)1)(1(
nn

mnmnd nm .   (51)

Next, the value Dnm should be analyzed. If the inequality

 1nmD , (52)

is satisfi ed, the functions ln
nmp  can be calculated according to the following expression 

resulted from transformation of the Eq. (5),

 )1ln(lnsinln ln
,1

ln
nmmnnmnm Dpap .  (53)

In this case, the functions knm depend on the sign of the product kn-1,m ϕ, i.e.

 )sgn( ,1 mnnm kk  .  (54)

Similarly, if the inequality:
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1nmD , 

(55)

is satisfi ed, in order to determine ln
nmp  the Eq. (5) is rewritten as follows:

 
nm

mnnmnm D
pbp 11lnln ln

,2
ln .   (56)

In this case the sign of the functions knm is opposite to the sign of the functions 
kn-2,m, i.e.

 
mnnm kk ,2 .  (57)

If Dnm = 1 then there is the equality 0nmP . For Dnm = –1 the functions ln
nmp  can 

be calculated either by formula (53), or by formula (56).
The Eqs. (40–57) completely solve the problem of determining fnALFs by the 

logarithmic method with forward column recursion.
Due to the fact that the software of Balmino method (Balmino et al., 2012) is not 

available from the public domain, further analysis is performed on (Fukushima, 2012) 
and logarithmic (Dmitrenko, 2012) methods.

4. Accuracy of Computing the Legendre Functions

To check the accuracy of computation fnALFs the Eq. (11) and the following condition 
(Holmes and Featherstone, 2002) can be used:

 
n

m
nm nP

0

2 12 ,  (58)

To determine the Legendre functions calculations accuracy S.A. Holmes and 
W.E. Featherstone (2002a, 200b) have proposed to use the value named Numerical 
Accuracy that is calculated according to the formula (see Eq. (11)): 

 
2

0 0

22

)1(

)1()(

M

McompP
NA

M

n

n

m
nm

,  (59)

where 
M

n

n

m
nmP

0 0

2
(comp) – the sum of 2

nmP , calculated using one of the methods 
discussed above.
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The logarithmic variation of formula (59) can be found in (Holmes and 
Featherstone, 2002с; Peng and Xia, 2004). 

In the numerator part of the formula (59) there is a difference of two very close 

and very large values. The accuracy of this difference is much less than the accuracy 

of value 
M

n

n

m
nmP

0 0

2
(comp). To increase the accuracy of the calculation NAϕ according 

to (58) the value δn, must be entered:

 
n

m
nmn ncompP

0

2 )12()( .  (60)

Then 

 
M

n

n

m

M

n

n

m

M

n

M

n
nnmnm ncompPMcompP

0 0 0 0 0 0

222 )12()()1()( .  (61)

Substitution Eq. (61) into Eq. (59), gives: 

 
2

0

)1(M
NA

M

n
n

.  (62)

The value δn for the Fukushima and Balmino methods is determined from Eq. 
(60). For the logarithmic method, it is given by:

 
n

m
nmn np

0

ln )12()2exp( .  (63)

where ln
nmp   is calculated using Eqs. (44-46, 53, 56).

The symbol of the absolute value in Eq. (54) ensures that the value NAϕ is always 
positive. However, the analysis of the variables δn shows that they have different 
signs. Figure 11 illustrates a graph of the change δn at the equator (ϕ = 0) for n 
varying from 0 to 8000. Because “absolute zero” effect is completely absent at the 
equator, the values δn were calculated for the fnALFs defi ned by Eqs. (5–9). The 
graph in Figure 11 shows the errors obtained directly from recursion formulas without 
taking into account any additional methods. Although most of the values δn on 
Figure 11 are negative, there are still values with a positive sign. The errors with 
different signs are mutually compensated and the total sum does not give the real 
situation of all errors of the method.
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Fig. 11. Values δn dependence on n for latitude ϕ = 0, determined by the classical 
method of forward columns recursion with Eqs. (5–9)

An even more clear result is shown in Figure 12, the graphs of change δn for the 
latitude ϕ = 600 with Fukushima and logarithmic methods. As can be seen from the 
graphs, some of the quantities δn are positive and some of them are negative.

Fig. 12. Values δn  depending on n for latitude ϕ = 600, determined by the Fukushima 
and logarithmic methods

The value NAϕ for latitude ϕ = 600 is equal to:

 NA60 = 1,570E-13 (Fukushima method), 

 NA60 = 7,253E-14 (Logarithmic method). 
The change of sign of the function δn depending on the latitude for n = 10800 can 

be seen in Figure 3 (Kwon and Lee, 2007).
Eq. (62) gives a real result only if the values δn have the same sign for all values 

n. As signs of the values δn are different, more real result for the estimation the errors 
of calculation the Legendre functions gives Eq.:
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2

0

)1(M
AN

M

n
n

. 
 

(64)

The value AN  for latitude ϕ = 600 is equal to:

 60AN  = 1,570E-13 (Fukushima method), 

 60AN  = 1,03Е-13 (Logarithmic method). 

Numerical accuracy AN   is determined for each latitude separately. Figure 13 
shows graphs of the variation of AN  for M = 8000 built by Fukushima and logarithmic 
methods. The graphics built for the geocentric latitude from -900 to 900 after 5 min. 
are as follows: 

a) 

b) 
Fig. 13. Logarithm of numerical accuracy AN  for M = 8000 for 

a) Fukushima method, b) Logarithmic method

There is no possibility to conclude on the basis of Figure 13, which of the two methods 
under consideration is more accurate. With the exception of the specifi cs, Figure 13 a) 
and 13 b) are almost identical. Therefore, for the analysis of the numerical accuracy 
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calculated for all latitudes from ϕmin to ϕmax with a step Δϕ, the following value can 
be proposed:

 
N

NANA
1minmax

'
)(

' ,  (65)

where Nϕ – the number of values AN  in the computation of NA'.
Figure 14 shows the graphs NA' depending on the maximum degree M from 0 to 

8000 for both methods. A value NA' calculated according to the formula (65) with 
ϕmin = –900, ϕmax = 900, Δϕ = 5' allows to trace the trend of numerical accuracy 
depending on the maximum degree of fnALFs.

Fig. 14. Dependence of the numerical accuracy NA' of the maximum degree M 
of fnALFs for Fukushima and logarithmic methods

The maximum values NA' for M = 8000 for the Fukushima and logarithmic methods 
are equal, respectively:
 NA' = 5.6Е-11 (Fukushima method), 
 NA' = 5.5Е-11 (Logarithmic method). 

Therefore, both methods have the same accuracy of the calculation fnALFs.
Since the method (Balmino et al., 2012) is based on the same recursion formulas 

(5–9) as method (Fukushima, 2012), there is a reason to believe that their accuracy 
is the same.

5. CPU Time of Computing the Legendre Functions

The comparison of the formulas for calculation of the functions znm (Fukushima 
method) with formulas for calculation ln

nmp  (logarithmic method) allows to conclude 
that the logarithmic method should require more computation time than the Fukushima 
method does.
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The functions znm, underlying the Fukushima method, are calculated by using the 
same recursion Eq. (5) that fnALFs does, but with taking into consideration the fact 
whether they satisfy or do not the condition (28). With the increase in the maximum 
degree of Legendre functions the amount of computation by the formula (5) will also 
increase. This formula contains two multiplication operations and one subtraction. 
Additional calculations for the function znm transmission in the interval (28), and 
fi nal computation of fnALFs by the Eqs. (31) increase the time of its calculation, as 
indicated in (Fukushima, 2012a), not more than 10%. 

Functions ln
nmp , underlying the logarithmic method, calculated by Eqs. (50, 53, 

56) that contain the operations of addition, subtraction, multiplication, division, 
and logarithmic and exponential functions. Therefore, the total computation time of 
functions ln

nmp  of the logarithmic method is more than functions znm calculation time of 
the Fukushima method. For maximum degree M = 8000 calculation time of fnALFs 
by logarithmic method is 6 times more than calculation time of these functions by the 
Fukushima method. This result is obtained by using the original programs available in 
(Fukushima, 2012; Dmitrenko, 2012), without any additional techniques to minimize 
the CPU time.

The comparison of the formulas of communication fnALFs with the original 
functions for methods (Balmino et al., 2012) and (Fukushima, 2012) allows to make 
an assumption about the CPU time of both methods. 

When calculating functions nmP  using the Eq. (31) for Fukushima method, the fact 
that the value inm < 2 (see Sect. 2.1) is taken into consideration. Therefore, in program 
presented (Fukushima, 2012), the function 9602 nmi  is replaced with an array containing 
such values:

0 for 1nmi  ( 0nmP ); 
9602  for 1nmi ; 

120  for 0nmi ; 
9602  for 1nmi . 

So, the calculation procedure for functions nmP  in Fukushima method, contains 
one multiplication operation and one call of array with four of the above numbers. 

Eq. (37) of the method (Balmino et al., 2012) for calculation of the value 
Z includes a logarithmic function, two operations of summation, a call of integer-
indexed array (280 · (Knm + 1)) and array of values m · log10 (cosϕ). Final Eq. (39) for 
calculation nmP  contains a power function, operation of multiplication and one call of 
integer-indexed array. Therefore, it can be assumed that the CPU time of the fnALFs 
computation with method of (Balmino et al., 2012) is more than the time needed with 
the method (Fukushima 2012).

Thus, the Fukushima method is the best of all available methods of calculation 
the Legendre functions of arbitrary degree and order. Its main advantage is the 
calculation speed. 
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6. Conclusions 

The fnALFs calculation problems analysis shows that the underfl ow problem is not 
dangerous by itself. The main problem that generates the gross errors in its calculations 
is the problem named as the effect of “absolute zero”.

Due to the fact that forward column recursion (Eq. (5)) calculates nmP  with one 
value m, and with m ≤ n ≤ M, once appeared in the calculation nmP , the “absolute 
zero” spreads to all nmP  from a set with one value m, regardless of whether it is equal 
to zero or not real. The effect of “absolute zero” is completely absent at the equator 
and increases with latitude in absolute value. However, due to the special property 
of the Legendre functions, the effect of absolute zero reaches a maximum not at the 
poles but at latitudes ±680. 

The use of subnormal numbers does not save the situation for the fnALFs, but 
only masks the problem for a time. As a result, the accuracy of the fnALFs with the 
appearance of subnormal numbers in their calculations is continuously decreasing.

Computing methods of the fnALFs with the scale factor usage and modifi ed 
recursion method proposed by S.A Holmes and W.E. Featherstone (2002a) remove 
the underfl ow problem from calculations. As a result, these methods have limitations 
in the maximum degree M because of the appearance of the overfl ow problem. 
Three methods of the fnALFs calculating: (Balmino et al., 2012; Fukushima, 2012; 
Dmitrenko, 2012) removed the effect of “absolute zero” from the calculations. The 
methods are interesting also because they have practically no limit for the maximum 
degree M of the fnALFs.

It is shown that the formula for numerical accuracy NA calculation represented in 
(Holmes and Featherstone, 2002a, 2002b, 2002c) can give an erroneous result because 
of errors with different signs in the calculation nmP  in the set with one value n, and 
with 0 ≤ m ≤ n. A more accurate formula for NA calculation is given here.

It is shown that the numerical accuracy of the Fukushima method and the 
logarithmical method is the same. But the CPU time of the fnALFs calculation with 
logarithmic method was 6 times more (M = 8000) than the time functions calculation 
by the Fukushima method. 

There is an assumption about the CPU time of the fnALFs calculation with method 
Balmino et al. (2012), according to which its calculation time must be greater than the 
CPU time of the calculation the fnALFs with method of Fukushima. Therefore, the 
Fukushima method is the best. Its main advantage is the computational speed, which 
is an important factor in the calculation of such great Legendre functions number as 
2 401 336 for EGM2008. The time difference between this method and other will rise 
with increasing of M.
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