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Abstract: The adjustment problem of the so-called combined (hybrid, integrated) 
network created with GNSS vectors and terrestrial observations has been the subject of 
many theoretical and applied works. The network adjustment in various mathematical 
spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and 
on a mapping plane. For practical reasons, it often takes a geodetic coordinate system 
associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are 
converted, for example, into geodesic parameters (azimuth and length) on the ellipsoid, 
but the simple form of converted pseudo-observations are the direct differences of the 
geodetic coordinates. Unfortunately, such an approach may be essentially distorted 
by a systematic error resulting from the position error of the GNSS vector, before its 
projection on the ellipsoid surface. In this paper, an analysis of the impact of this error 
on the determined measures of geometric ellipsoid elements, including the differences of 
geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment 
of a combined network on the ellipsoid shows that the optimal functional approach in 
relation to the satellite observation, is to create the observational equations directly for 
the original GNSS Cartesian vector components, writing them directly as a function 
of the geodetic coordinates (in numerical applications, we use the linearized forms of 
observational equations with explicitly specifi ed coeffi cients). While retaining the original 
character of the Cartesian vector, one avoids any systematic errors that may occur in the 
conversion of the original GNSS vectors to ellipsoid elements, for example the vector of 
the geodesic parameters. The problem is theoretically developed and numerically tested. 
An example of the adjustment of a subnet loaded from the database of reference stations 
of the ASG-EUPOS system was considered for the preferred functional model of the 
GNSS observations.

Key words: combined geodetic network, hybrid geodetic network, GNSS vectors on 
the ellipsoid, network adjustment on the ellipsoid 
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1. Introduction

The combined (hybrid, integrated) geodetic network, composed of satellite and 
terrestrial observations, has been the object of study since the 70’s (e.g. Krakiwsky 
and Thomson, 1974; Thomson 1976; Groten, 1977; Gajderowicz, 1979; 1981; Adam 
et al., 1982; Welsch and Oswald, 1984; Baeumker, 1984; Świątek, 1986, 1988), when, 
Doppler observations were used for satellite positioning. A characteristic element in the 
calculation of such networks was an estimation of the 3D transformation parameters 
between two coordinate systems – satellite and terrestrial. Currently, the relationship 
between the applied systems, satellite and terrestrial are known a’priori and can be 
used to transform or reduce the GNSS vectors (ΔX, ΔY, ΔZ) and terrestrial observations 
into one common space. The GNSS vectors may also be integrated with various 
terrestrial observations creating a combined (hybrid, integrated) geodetic network. 
Such a network can be adjusted and elaborated directly in a Cartesian geocentric 
system, in which the GNSS vectors are expressed. For the functional modeling of 
a combined network, each measured network element should be a function of the 
unknown coordinates (X,Y,Z) of the network points expressed (see. e.g. Hofmann-
Wellenhof et al., 2008).

An alternatively functional modeling of the combined network consists of the 
conversion of the Cartesian GNSS vector (ΔX, ΔY, ΔZ) and another observation to 
some geometric elements in an ellipsoidal geocentric system (B, L, h). The converted 
observations are conventionally referred to pseudo-observations. An example of 
such pseudo-observations, converted from the Cartesian GNSS vector, are the 
components of the vector (s, α, Δh), where s, α – length and azimuth of the geodesic 
and Δh as the difference of ellipsoidal heights. A similar modeling, but in terms of 
2D+1D (the independent adjustment of two-dimensional and heights network), was 
implemented in the adjustment program GeoNet (www.geonet.net.pl). The program 
has been used for the elaboration of national geodetic networks in Poland since 1997 
(Kadaj, 1997, 1998 – Section 3.6.5). The azimuth and length of the geodesic are the 
pseudo-observations in the network, which can be integrated with terrestrial (classic) 
measurements of lengths, angles or directions. The ellipsoidal heights difference is 
a pseudo-observation of the satellite leveling network. The conversion of Cartesian 
vectors is parallel to the conversion of the corresponding covariance sub-matrices 
between two spaces. Even long before the satellite navigation era, Molodensky (1954) 
proposed the network adjustment on the ellipsoid by the use of chords, connecting 
points on the ellipsoid. As Czarnecki (1994) quotes, Molodensky’s theory introduces 
new notions in geodesy, like, for example, the azimuth of the chord.

Another and the simplest kind of pseudo-observations on the ellipsoid, as 
converted GNSS vectors, are the differences of geodetic coordinates (ΔB, ΔL, Δh). 
These pseudo-observations have been used in the integration of Doppler satellite 
observations and terrestrial networks (cf. e.g. Thomson, 1976). The conversion of 
Cartesian vectors directly to the coordinates differences on the mapping plane is also 
used in the tasks of adjustment of the combined geodetic networks, that is vectors 
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(Δx, Δy) and, separately, ellipsoidal height differences, in turn, used to transform 
the normal height; cf. Gajderowicz (1997) and also Gargula (2010). It should be 
emphasized, that Gajderowicz’s concept originates the computer implementation and 
application to the combined network adjustment in the Polish cartographic system 
“1965”. A more universal approach, independent of the mapping system and numerical 
errors of the mapping, is the combined network adjustment on an geocentric ellipsoid. 
For this purpose, Cartesian GNSS vectors are transformed into vectors of geodetic 
coordinate differences. Of course, the conversion to any of the mapping system is 
always possible through the proper conversion of fi nally adjusted geodetic coordinates. 

              

sij Bij 

Lij 

ij 

i 

j 

 

ellipsoid 

-geoid 

topo-surface 

Xij Yij Zij  

Hi Hj 

i 
j 

j i 

hi hj 

 

Fig. 1. a) The GNSS Cartesian vector after antenna reductions in the vertical plane with height 
elements. b) Geodesic parameters (distance and azimuth) or differences of geodetic coordinates as 

results of the projection of the GNSS Cartesian vector on the ellipsoid surface

However, the task of the conversion of Cartesian GNSS vectors into geometric 
elements on the reference ellipsoid or on a mapping plane must be the subject of 
certain restrictions due to the risk of signifi cant systematic errors. It is clear that any 
displacement of the Cartesian vector relative to the ellipsoid, includes a change, for 
example, in the length of the received geodesic or other geometric elements. It is very 
important, therefore, possible, to determine the exact starting point (attachment point) 
of the GNSS vector before its projection on the ellipsoid. This, in turn, is not always 
possible or possible only after the network adjustment. The analysis in this area is 
presented in Section 2.

As we have seen, the conversion of Cartesian GNSS vectors into pseudo-
observations in the ellipsoidal system can cause signifi cant systematic errors. An 
alternative to this approach freed from the infl uence of systematic error may be to 
preserve the original form of the Cartesian GNSS vector and express it as a function 
of the geodetic coordinates (B, L, h). The idea of such a functional model on the 
ellipsoid has some similarity to the concept, expressing the GNSS vector in functions 
of local 3D – Cartesian or cartographic coordinates (x, y) and transformation 
parameters between two systems (see: Strauss and Walter, 1993; Daxinger and Stirling, 
1995; Strehle, 1996). For this purpose, the authors propose a numerical method for 
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calculating the required partial derivatives occurring in the linearized equations of 
observations. Assuming now, that the target system is the ellipsoidal system with 
geodetic coordinates (B, L, h), we set simple formulas for the coeffi cients of linear 
differential equations where the unknowns are the corrections to the approximate 
coordinates (see Section 3). In the functional model, we apply additional modifi cation 
aimed at replacing the angular corrections (dB, dL) by the lengths of the small arcs 
of a meridian and a parallel (db, dl). In this way the vector of unknowns becomes 
homogeneous with respect to measure units, which has positive signifi cance associated 
with the conditioning of numerical tasks. 

The adjustment of the combined network is a nonlinear least squares task usually 
solved by means of the iterative Gauss-Newton algorithm (e.g. Deutsch, 1965). The 
practical result of this publication is a modifi cation of programs in the GeoNet system, 
that was used to perform numerical tests on the topic of this publication (test results 
with comments given in Section 6).

2. Ellipsoidal elements (ΔB , ΔL , Δh ) or (s, α, Δh) as pseudo-observations 

The vector ΔRij = (ΔXij, ΔYij, ΔZij) as a GNSS observation between certain points 
i, j of a geodetic network in Cartesian geocentric system can be converted into 
a corresponding vector of differences of geodetic coordinates ΔEij = (ΔBij , ΔLij , Δhij) 
or the vector composed of geodesic parameters and the ellipsoidal height difference 
Gij = (sij , αij , Δhij) providing that the approximate coordinates of the attachment point 
(Xi , Yi , Zi

 ) of the vector are known (we assume, that is the point with index i). Let 
ΔR = (ΔX, ΔY, ΔZ) denote an error of a near position of the attachment point of the 
GNSS vector. The natural question is: what is the impact on the determined elements 
in the ellipsoid frame having the error ΔR . Of course, any translation (shift) of the 
vector ΔR does not change its Cartesian components, but causes a change of pseudo-
observations created in the ellipsoidal system (differences of geodetic coordinates or 
geodesic parameters). 

2.1. The conversion algorithm ΔR  (ΔB, ΔL, Δh) or ΔR  (s, α, Δh)

The conversion algorithm comprises the following operations:

Step 1. We assume the approximate coordinates of the begin point Ri  =  (Xi, Yi, Zi) of 
the vector ΔRij = (ΔXij, ΔYij, ΔZij) and calculate the corresponding coordinates of the 
end point of this vector,

 Rj = Ri + ΔRij = (Xi + ΔXij, Yi + ΔYij, Zi +ΔZij) = (Xj , Yj , Zj )  (1)

(in this way we determine also the vector in the ellipsoidal geocentric system) 
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Step 2. Using any algorithm for the transformation of geocentric Cartesian coordinates 
into geodetic coordinates, (X, Y, Z)  (B, L, h), we calculate the corresponding 
geodetic (ellipsoidal) coordinates:

 Ri = (Xi , Yi , Zi )  (Bi , Li , hi ) = Ei
 , 

 Rj = (Xi + ΔXij, Yi + ΔYij, Zi +ΔZij) = (Xj , Yj , Zj )  (Bj, Lj, hj ) = Ej (2)

Step 3. We calculate the defi ned elements in the ellipsoidal frame:
a) The vector of geodetic coordinates differences:

  ΔEij = Ej – Ei = (Bj
 – Bi

 , Lj
 – Li

 , hj
 – hi ) = (ΔBij, ΔLij, Δhij ) (3)

b) The vector of geodesic parameters and the ellipsoidal heights difference: 
 

 ( Ei , Ej ) => (sij , αij , Δhij) = Gij  (4)

 sij = G1 (Bi , Li , Bj , Lj ); αij = G2 (Bi , Li , Bj , Lj ); Δhij = hj
 – hi (as in (3)) (5) 

 
where G1, G2 are the functions defi ning the geodesics parameters (length and 
azimuth). In general, the algorithms of the functions are known in higher geodesy 
(e.g.: Warchałowski, 1952; Czarnecki, 1994). 

The calculated pseudo-observation measures may be fl awed due to a systematic 
error, depending on a position error of the GNSS vector in Cartesian geocentric 
system. A detailed analysis is presented in the next Section 2.2 of this paper. 

2.2. Assessment of the impact of a position error of the GNSS vector on the 
geodetic coordinates differences and geodesic parameters

 
2.2.1. Formulating the main issues 

Suppose that the attachment point Ri of the GNSS vector ΔRij is shifted by a vector 
ΔR = (ΔX, ΔY , ΔZ). We want to estimate what will be on that account the resulting 
error (distortion) δΔE = (δΔB, δΔL, δΔh) for the vector components ΔE or an error 
δG = (δs , δα , δΔh) for the geodesic vector G = (s, α, Δh). We will have in general form: 

 δΔE = ΔE’ – ΔE and δG = G’ – G (6)
 (δΔB = ΔB’ – ΔB, δΔL = ΔL’ – ΔL, δΔh = Δh’ – Δh, δs = s’ – s, δα = α’ – α), 

where the vectors ΔE’ = (ΔB’, ΔL’, Δh’ ), G’ = (s’, α’, Δh’ ) are calculated according 
to the algorithm shown in Section 2.1, for shifted (translated) points: Ri’ = Ri + ΔR , 
Rj’ = Rj +ΔR . Naturally, ΔRij’ = Rj’ – Ri’ = Rj – Ri = ΔRij. An example is shown in 
Table 1. 
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Tab. 1. Numerical example: infl uence of an error of GNSS vector position on the differences 
of geodetic coordinates – posterior obtained (data for two points are taken from the ASG-EUPOS 

– network) 
 
Cartesian - -ETRF2000    
    ID      X[m]            Y[m]            Z[m]       Name in ASG-EUPOS   
     1    3486403.5385   1392187.3370   5139218.6640    GIZY      
     2    3878289.7496   1092566.8446   4928217.8516    JLGR    
Cartesian vector    
 ID(i)-ID(j)     X[m]           Y[m]          Z[m] 
     1-2      391886.2111   -299620.4924   -211000.8124   
Geodetic coordinates    
    ID      B[o ’ ”]           L [o ’ ”]       h[m]             

  1  54  2  8.8055411    21 46  3.9623432  166.8254   
  2  50 55 10.0505252    15 43 59.6942273  408.1899       

Vector of  differences of geodetic coordinates and geodesic parameters:   
ID(i)-ID(j)                          

  1-2    B = -11218.7550159” L = -21724.2681159”  h = 241.3645m        
      1-2    s = 536668.1199m       =258.02391082[g]   
The Cartesian coordinates after translation  R =  ( 1, 1, 1 )    
   ID’        X[m]           Y[m]           Z[m]            
    1’    3486404.5385   1392188.3370   5139219.6640    
    2’    3878290.7496   1092567.8446   4928218.8516   
The geodetic coordinates after translation     
   ID’         B[o ’ ”]           L[o ’ ”]        h[m]             
    1’    54  2  8.7905164   21 46  3.9929936  168.3980   
    2’    50 55 10.0399357   15 43 59.7296201  409.7439   
Vector of geodetic coordinates differences and geodesic parameters after translation  
ID’(i)-ID’(j)                        

1’-2’  B’ = -11218.7505807”  L’ = -21724.2633735”  h’ = 241.3459m    
1’-2’  s’ = 536667.9885m      ’ = 258.02391817[g]    

Errors of parameters after translation               
       B = +0.004435”   L = +0.004742”  h = -0.0186m  
                 s = -0.1314m       = 0.0735[cc]             

In order to estimate the size of the propagation of position error of the GNSS vector, 
we will use the simplifi ed differential formulas. 

2.2.2. Distortion of pseudo-observations in the form of geodetic coordinates 
differences

We denote the corresponding change of the output vector as a vector 

 δΔEij = (δΔBij , δΔLij , δΔhij ) = δEj – δEi , (7)

where δEi = (δBi , δLi , δhi ), δEj = (δBj , δLj , δhj ) are the corresponding change of 
points coordinates. Using the matrix notation, we further assume that above defi ned 
vectors will be treated as well as column vectors. Let R = F(E) is the function of 
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a vector expressing the relationship between the vectors E and R, and J(E) = ∂F(E)/ 
∂E – Jacobian as (33) matrix of fi rst derivatives of the function F. We can express 
the linear relationship between errors δE , ΔR of the corresponding vectors E , R as 
follows: 

  ΔR  J(E ) · δE  δE  J–1(E) · ΔR (8)

(the existence of the inversion is guaranteed by the reversibility of the transformation 
between Cartesian and geodetic coordinates). The transformation F : E  R is 
realized by the well-known formulas: 

 
 X = (RN + h) · cos(B) · cos(L) 
 Y = (RN + h) · cos(B) · sin(L)
 Z = [RN · (1– e2) + h] · sin(B) (9)

where

 RN = a / [1– e2 · sin2(B)]1/2 (10)

is the radius of curvature in the prime vertical, a – is the major semi-axis of ellipsoid 
and e2 = ( a2 – b2 ) / a2 – the fi rst eccentricities squared, h – the ellipsoidal height. 
The defi ned Jacobian matrix J(E) can be expressed as (for simplicity we omit the 
argument (vector) E):

 
 J = U · C  (11)
where 
 C = diag [(RM +h) , (RN +h) · cos(B) , 1] (12) 

is a diagonal matrix, where RM is the radius of curvature of the meridian for the 
latitude B,

 RM = a · (1– e2 ) / [1– e2 · sin2(B)]3/2 (13)
and

 
            – sin(B  cos(L – sin(L cos(B  cos(L  
U =       – sin(B  sin(L cos(L cos(B  sin(L
                   cos(B 0             sin(B  

 (14)

has the property of orthonormal matrices: UT · U = I  UT = U–1 , I is the unit matrix. 
The above linear formula (8) with the rotation matrix (14) was used in geodesy in 
many issues (see e.g. Thomson, 1976). 

Let
 C = diag [RM , RN · cos(B), 1].  (15)
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As a result (8) the small changes δE of the geodetic vector, can be converted in the 
vector δe of small arcs of the meridian and parallel δb, δl and not revised component 
of the height change δh : 

 
 δe = [δb, δl, δh ]T = C · δE = C · J–1 (E ) · ΔR = C · C–1 · UT · ΔR ≈ UT · ΔR (16)

 (note that C · C–1 = diag [RM / (RM +h) , RN / (RN +h), 1] ≈ I = unit matrix). In 
particular, it will

 b  = RM   B     l  = RN  cos(B  L  (17)

The equations (8), (11) we use now to evaluate the impact of the position error of the 
GNSS vector on the differences of geodetic coordinates, assuming that end points of 
the vector are projected on the ellipsoid according to the Helmert’s principle, in the 
normal direction to the ellipsoid. If the GNSS vector translates by a vector ΔR then 
projected on the ellipsoid points (with indices i, j) will receive adequate displacements 
(we use the matrix U as the matrix function of E): 

 
 Ei  =  Ci

–1   UT(Ei  Ri    Ej  =  Cj
–1  UT(Ei + Eij  Rj   (18) 

ΔRi = ΔRj = ΔR (equal shift for two points) 

 
Accordingly, the resultant impact on differences of geodetic coordinates is: 

 

 

Eij    =  Ej  –  Ei  = [ Bj– Bi , Lj– Li , hj– hj ]T  

          = [Cj
–1  UT(Ei + Eij – Ci

–1  UT(Ei  R   (19)

where 

 

e    
                      – sin(Bi  cos(Li – sin(Bi  sin(Li cos(Bi  
UT(Ei 

 =        – sin(Li cos(Li                 0              
                        cos(Bi  cos(Li cos(Bi  sin(Li       sin(Bi

 (20)
 
 

                           – sin(Bi+ Bij  cos(Li+ Lij – sin(Bi+ Bij  sin(Li+ Lij cos(Bi+ Bij  
UT(Ei + Eij

 =           – sin(Li+ Lij cos(Li+ Lij 0           
                         cos(Bi+ Bij  cos(Li+ Lij cos(Bi+ Bij  sin(Li+ Lij     sin(Bi+ Bij

  
  (21)

Table 2 shows an example of evaluation of the error, according to the formula (19) 
for data identical as in the Table 1. It can be said that the results estimated in Tables 
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1 and 2 are practically comparable, although the differential formula used in the latter 
case has linearization errors. 

We are looking for a more general formula to estimate the impact of the position 
error of the GNSS vector on the ellipsoidal elements, assuming a continued simplifi ed 
model of the Earth’s surface in the form of a sphere (we assume that output forms 
are only used for estimating the error size with precision to within 2 – 3 signifi cant 
digits).  

For the analysis of the problem on the sphere we can assume any attachment 
point of the GNSS vector. Therefore, we set Bi = 0, Li =0, h =0 and we get after 
ordering (for simplicity we omit points indices): 

 
                                             – sin( B  cos( L –sin( B  sin( L cos( B – 1   
 M =  UT( E – UT(0          – sin( L cos( L – 1                    0     
                                             cos( B  cos( L –1      cos( B  sin( L      sin( B

(0 – . 

 (22)

Tab. 2. Numerical example: the infl uence of a position vector error on the differences of geodetic 
coordinates – an alternative assessment according to the formula (19) 

The impact of the position error of Cartesian vector on the differences of geodetic coordinates   
Quantities Values 
B1        L1 
B2,      L2 

194528.8055411”        78363.9623432” 
183310.0505252”        56639.6942273” 

 
UT(E1) 
(matrix 
elements) 

 
-7.516704E-1   -3.001563E-1   5.872800E-1 
-3.708454E-1    9.286946E-1   0.000000E+0 
 5.454037E-1    2.177901E-1   8.093839E-1 

UT(E2) 
(matrix 
elements) 
 

 
-7.471776E-1   -2.104901E-1   6.304122E-1 
-2.711590E-1    9.625346E-1   0.000000E+0 
 6.067935E-1    1.709420E-1   7.762605E-1 

 
RN  , RM , h  for point 1 
RN  , RM ,  h   for point 2 

 
6392168.8409m   6377345.1035m  166.8254m 
6391040.4428m   6373968.3560m  408.1899m 

 
 
Distortion of coordinate differences using the differential formula (19) after translation of 
the GNSS vector by the vector (1,1,1)                        
 
            B = 0.004429”   L = 0.004766”   h = -0.0186m 
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In case of the sphere we can also assume any azimuth for the GNSS vector, especially 
in the direction of meridian or parallel. In the fi rst case it would be ΔL=0, then 

 
                –sin( B 0      –2  sin2( B /2
 M   =              0                 0               0                
                         –2  sin2( B /2 0            sin( B  

 (23) 

Considering the formulas (17), (18) and denoting: δp – corresponding to a fi xed 
position (B=0, L=0) the local horizontal distortion of the spheric arc, δΔh – the local 
height distortion of the height difference, Δh, Δp – the translation components of the 
GNSS vector, Rs – the radius of the spherical model of the Earth and s – the length 
of the arc corresponding to the angle ΔB, we obtain from (23) the simplifi ed relation: 

 
   p               – s / Rs             –0.5  (s / Rs

2         h    
                                                                                
   h                  –0.5  (s / Rs

2           s / Rs               p    
 (24) 

 

As can be seen, the maximum distortion in length of the arc or in the height difference 
expresses the inequality: 

 
   | p   | h   (½   2]           (25) 

where 

   = s /Rs  | B| sin( B |  (only for a 
  = h p            

                      s – length of the arc section  

A similar result can be obtained directly from the geometrical situation shown in 
Figure 2a, b. Figure 2a shows the impact of the vertical displacement of the GNSS 
vector on the error of the arc length on the sphere. It is similar to the classic length 
reduction due to the height. The relation (24) implies that there is also some impact 
of the vertical movement of the GNSS vector on the heights difference. Assuming 
the displacement vector Δ = [Δh , 0]T according to (24), we obtain the components: 
δp = –s/Rs , δΔh = –Δh · 0.5 · (s/Rs)2. For example, for the vector length s ≈ 537 km, as 
in Table 1, were: δp = –Δh · (537/6385) = –Δh · 0.0843 and δΔh = –Δh · 0.5·0.00711 = 
–Δh · 0.00355. We will have the opposite situation in case of an offset in the direction 
of the GNSS vector. Now we assume Δ = [0 , Δp]T. According to (24), we get now 
δp = –Δp · 0.5 · (s/Rs)2; δΔh = –Δp · s/Rs . As can be observed, the impact of horizontal 
movement to change the arc length on the ellipsoid (sphere) is negligible (situation 
illustrated in Figure 2b), while the ellipsoidal heights difference becomes important. 
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    –    (s / Rs   

  
 

s 

Rs  

 = b – a  
a   ;  b   cos(  
    –  [1–cos(   

    =   –  2  sin2(  
    – ( /2   (s/Rs

2     

a 

b 

 
s 

 

 

 

Fig. 2a, b. The impact of the vertical (a) or horizontal (b) displacement of the GNSS vector 
on the length of the arc on the reference surface, assuming that the beginning and end point 

of the vector are projected according to the principle of Helmert

As can be seen, errors in determining the position of the GNSS vector can signifi cantly 
affect the pseudo-observations in the ellipsoidal system created on the basis of this 
vector. This applies in particular to differences in the geodetic coordinates. The 
size η = s / Rs is the ratio of the maximum propagation of vector position errors on 
the errors of specifi ed pseudo-observations expressed in the lengths of arcs on the 
reference surface. As will be shown in the next section, the above rule concerning the 
propagation of a position error of the GNSS vector will also apply to the geodesic 
parameters. 

2.2.3. Distortion of geodesic parameters

Similarly as in Section 2.2.2, we assume some translation of the GNSS vector and 
use the general relationship (19). Now we apply the differential equations for the 
geodesic length and azimuth (see e.g. Warchałowski, 1952) by exchange of angle 
differentials on the differentials of arcs:

  sij  = – cij  bi  – dij  li  – cji  bj  – dji  lj ,  (26)

  qij  =  ji  sij
  = dij  bi  – cij  li  + dji  bj – cji  lj ,  (27) 

where:
δsij = the differential of the geodesic length sij

 ;
δαji =  the differential of the geodesic azimuth and δqij = the correspond length of 

the small arc; 
δbk = RM (Bk

(0)) · δBk ; δlk = RN (Bk 
(0)) · cos(Bk

(0)) · δLk (k = i, j); 
cij = cos(αij

(0)) ; dij = sin(αij
(0)) ; 

(cji, dji analogically after exchange of indices); 
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Taking (26), (27) and the equation for the height difference we can write in the matrix 
notation: 

 

 

     
   sij

            –cij     –dij      0        bi             –cji     –dji     0         bj      
   qij     =      dij     –cij      0       li      +       dji     –cji      0        lj    
   hij            0        0      –1        hi              0        0       1         hj   

 (28) 
 

or symbolic 
 

 δij = dij · δei + dji · δej  (29)
 

Simplifying, as in (16), C · C–1 ≈ I , we obtain δe ≈ UT · ΔR and
 

 δij = dij · Ui
T · ΔRi + dji · Uj

T· ΔRj = (dij · Ui
T

 + dji · Uj
T) · ΔR  (30)

 
(translation vector is identical for both points ΔRi = ΔRj = ΔR). If the approximated 
reference surface is the sphere with some radius Rs , as in Section 2.2.2, we can 
assume without loss of generality of the solution, that Bi = 0, Li = Lj = 0 , Bj = Bi + 
ΔBij = ΔBij , 

 
 

    
             0       0      1                             –sin( Bij 0     cos( Bij    
Ui

T =     0       1      0     ,          Uj
T =           0               1 0 

           1      0      0                               cos( Bij         0      sin( Bij     
 (31)

 

Taking into account the simplifi cations: sin(ΔB) ≈ s /Rs , dji ≈ –dij , and omitting of 
points indices (i, j), we obtain from (30):

 
 

           – c   (s /Rs        0     – c  (s /Rs 
2  (½            X  

          d   (s /Rs         0       d  (s /Rs 
2  (½            Y     = [*]  R  

            – (s /Rs 
2 (½     0             (s /Rs                    Z      

 (32)

where δ = [δs, δq , δΔh]T and the symbol [*] replaces the corresponding matrix. Given 
that |c|, |d| ≤ 1, we can estimate from (32) the maximum errors: 

 
 

| s q    [ | X |  (½   | Z | ] 
     

     | h     [ | Z |     | X | ] 
 (33)

where η = s/Rs , as in (25). For example: let s = 536.7 km (as in Table 2), Rs ≈ 6385 
km then s/R ≈ 0.08425 and (s/R)2 ≈ 0.007098. Assuming: ΔX = 21/2, ΔY =0, ΔZ =1 with 
the length |ΔR| = 31/2 (as in Table 1) we obtain: |δs |, |δq | ≤ 0.12 m and |δΔh| ≤ 0.09m . 



The combined geodetic network adjusted on the reference ellipsoid – a comparison of three functional... 241

As in the case of the differences of geodetic coordinates as pseudo-observations, the 
parameters of a geodesic also have the same distortions arising from errors of the 
GNSS vector position. The error propagation depends signifi cantly from size η = s/Rs. 
Fallacy in determining the position of the GNSS vectors is a matter of the precision of 
the approximate coordinates of points, as the necessary initial information in solution 
of the nonlinear observational system of a geodetic network. The iterative Gauss-
Newton procedure (e.g. Deutsch, 1965) is usually used for this purpose. If the process 
is convergent, subsequent iterations are followed by an improvement in the accuracy 
of the approximate coordinates, and thus, at some point, the ability to re-verify and 
determine the pseudo-observation.

2.3. Observational equations and covariance matrices 
for used pseudo-observations

2.3.1. Geodetic coordinates differences 

The vector of differences of geodetic coordinates ΔEij = [ΔBij , ΔLij , Δhij]T, created 
by the projection of the Cartesian vector ΔRij = [ΔXij , ΔYij , ΔZij]T on the reference 
ellipsoid is a vectorial pseudo-observation, for which the “observational” equation 
expresses the simple formula: 

 
 ΔEij + vij = Ej – Ei  (34)

or in the differential form
 

 vij = dEj – dEi + wij ; wij = ΔEij
(0) – ΔEij = (Ej

(0)
 – Ei

(0)
 ) – ΔEij  (35) 

 
where: i, j – are the indices of network points; ΔEij = [ΔBij , ΔLij , Δhij]T is the pseudo-
observation (the result of the transformation from Cartesian GNSS vector); Ej

(0), 
Ei

(0)
 – the approximate geodetic coordinates; dEj , dEi – unknown corrections to the 

approximated geodetic coordinates, Ek = Ek
(0)

 + dEk (for k=i, j); vij – observational 
correction; wij – free component of the equation. The scalar equations corresponding 
to (35) are expressed as follows: 

 
 

vij
(B   =  dBj 

  dBi    wij
(B  ,     wij

(B  =  Bij   (Bj
(0  Bi

(0  
vij

(L  =   dLj 
  dLi    wij

(L  wij
(L   =  Lij   (Lj

(0  Li
(0  

vij
(h

   =   dhj 
  dhi     wij

(h wij
(h  =  hij   ( hj

(0  hi
(0     

 (36)

for some (i, j)  π (a plan of pseudo-observations as a set of indices pairs of GNSS 
vectors).
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The sub-vectors of residues vij = [vij
(B), vij

(L), vij
(h)]T create the vector V1 according to 

the accepted order of equations. Similarly, the sub-vectors wij
 = [wij

(B), wij
(L), wij

(h)]T 

create the vector of free components W1 (components of the vector are the differences 
between the pseudo-observations and corresponding measures calculated on the basis 
of approximate coordinates). 

Along with the transformation of ΔR  ΔE done in order to transform the 
corresponding covariance matrices: Cov(ΔR)  Cov(ΔE). This matrix is needed 
as a part of a stochastic model of observational system for its adjustment using the 
least squares method. For this purpose, based on (1), (2), (3), (10) we can write the 
relationship between Cartesian vector components ΔR and differences of geodetic 
coordinates ΔE using points indices (for clarity):

 
Xij =  (RN (j + hi

(0 + hij   cos (Bi
(0 + Bij   cos (Li

(0 + Lij – Xi (0    
Yij =  (RN (j + hi

(0 + hij   cos (Bi
(0 + Bij   sin (Li

(0 + Lij  – Yi
(0    

Zij =  [ RN (j  (1  e2  +  hi
(0 + hij ]  sin (Bi

(0 + Bij – Zi
(0 

               
  (for   RN (j a / [ 1   e2  sin2(Bi

(0 + Bij ]1/2  

 (37) 

Similarly to (19), we can determine the relationship between the random errors ε(ΔR), 
ε(ΔE) of the vectors ΔR and ΔE, and then between the covariance matrices of these 
vectors. We are not interested in this case, however, the impact of the position error 
of the vector ΔR (its shift in Cartesian space) but only to the same errors of its 
components. Therefore, we assume now that the starting point of the vector is correct, 
and the errors coordinates of the end point are equal to the errors of the vector 
components. Considering (19), (37), we determine at fi rst the relationship between 
the errors: 

 
 

   
                  ( B   ( X)                    ( b  
  ( E  ( L  =  C 1  UT      ( Y C 1     ( l C 1  ( l
                  ( h                ( Z                     ( h       

 (38) 
 

where the matrices C and U are defi ned by the formulas (12) – (14), but here for the 
end point of the vector and its geodetic coordinates: 

 
 B = Bi

(0) + ΔBij ; L = Li
 (0) + ΔLij ; h = hi

 (0) + Δhij  (39)

On the basis of the equation (38), we obtain the standard formula for the covariance 
matrix:

 Cov(ΔE) = C–1 · UT · Cov(ΔR) · U · C –1 = C–1 · Cov(Δe) · C–1  (40) 

or taking into account (16): 

Cov(Δe ) = C · Cov(ΔE) · C
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where the vector Δe = [Δb, Δl, Δh]T with respect to ΔE = [ΔB, ΔL, Δh]T is the 
conversion of the increments of the geodetic coordinates on the corresponding arcs 
lengths of the meridian and parallel. 

According to standard rules for unbiased estimators in the least squares method, 
the weight sub-matrix for the vector ΔEij should be the inverse of the covariance 
matrix:

 
P( Eij  = Cov 1( Eij  Cj   Uj

T  Cov 1( Rij  Uj     Cj  

P( eij   =  C j
1  P( Eij    Cj 

1             
 (41)

 

(note that Cj is the diagonal matrix and Uj – the orthonormal matrix, calculated in the 
point j )

2.3.2. Geodesic parameters

Similarly to the formula (35), the observational equation for geodesic elements can 
be written in the form: 

  vij   =   dij  Ci
-1

  dEi + dji  Cj
-1  dEj   wij      wij  = Gij  Gij

(0
  (42) 

where the matrix C is expressed by the formula (12) and

 
 

            –cpq     –dpq    0                             
dpq  =     dpq     –cpq    0          for  (p,q = (i, j  or (j, i   
              0         0     fpq                      

 (43) 
 
 

 cpq = cos(αpq
(0)) ; dpq = sin(αpq

(0)) ; for (p,q) = (i, j) or (j, i); 
 fij = –1, fji =1; 
 Gij = [sij , αij , Δhij]T =  the vector of pseudo-observations with the covariance 

matrix (46) 
 Gij

(0) = [sij
(0), αij

(0), Δhij
(0)]T =  the vector of measures obtained from 

approximated coordinates, 

on the basis known in geodesy scalar functions for geodesics:

sij 
(0) = G1(Bi

(0), Li
(0), Bj

(0), Lj
(0)) =  the length of a geodesic segment (between 

two points), 
α ij 

(0) = G2(Bi
(0)

 , Li
(0), Bj

(0), Lj
(0)) =  azimuth at the beginning point of geodesic 

segment,  
 Δhij

(0) = hj
(0)

 – hi 
(0)

    = the ellipsoidal heights difference. 



Roman Kadaj244

We have taken into account the formulas (26), (27), which express the relationship 
between the errors of the Cartesian coordinates and the corresponding errors of the 
geodesic parameters, i.e. the length and azimuth (expressed as the length of the arc) 
and the error of difference of geodetic heights. As in the formula (38), it can be 
written that the relationship between the errors of the geodetic coordinates and the 
errors of the geodesic parameters, assuming that the starting point of the vector is 
constant:

 
(sij     =  – cji   (bj  – dji  (lj           

 (qij    =   ( ji   sij
  =  dji   (bj  –  cji  (lj  

 ( hij  =   (hj  
 (44)

 
Considering three components we write (44) in the matrix form: 

 
          –c    –d     0      (b    
   =     d    –c     0     (l    =  d    (e  = d  UT   ( R  

            0      0     1      (h)  
 (45)

                c = cos(α(0)) , d = sin(α(0)) , 

where d is an orthonormal matrix (d–1 = dT ). Hence we obtain the following covariance 
matrix: 

 Cov(ε) = d · UT · Cov(ΔR) · U · dT  (46)

3. Original Cartesian vector in ellipsoidal space

The original GNSS vector ΔRij = [ΔXij , ΔYij , ΔZij]T ((i, j) – a pair of indices of network 
points) determines in Cartesian geocentric frame the simple linear observational 
equation (see e.g. Hofmann- Wellenhof et al., 2008): 

 
 ΔRij + vij = Rj – Ri  (47) 

with the covariance matrix cov(ΔRij ) required together with the vector ΔRij within the 
framework of GNSS post-processing. In the equation (47) denoted: vij – sub-vector 
of observational corrections, Rk = [Xk , Yk , Zk ]T (k = i, j) – calculated or defi ned as 
fi xed (reference) points. To convert the equation (47) to the ellipsoidal frame, we 
use approximated coordinates with unknown corrections and the relationship similar 
to (8): 

 Rk = Rk
(0)

 + dRk = Rk
(0)

 + dRk = Rk
(0)

 + J (E k ) · dE k (for k = i, j) (48) 
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Substituting (48) in (47), we obtain vectorial observational equation, where the new 
unknowns are corrections to the approximate value of geodetic coordinates:

 vij = J(E j) · dEj – J(E i) · dEi – wij ; (49) 

 wij = – (ΔRij – ΔRij
(0)) = – [ΔRij – (Rj

(0)
 – Ri

(0)) ]  (50)

Then, after taking into account the equation (12), (13), (15) we get: 

 vij = Uj · Cj · dEj – Ui · Ci · dEi – wij ; (51)
 

In the development to a scalar form, the equations for three components of GNSS 
vector will be:

vij  =      
     sin(Bi  cos(Li  (RM

(i  +hi  dBi  sin(Li  cos(Bi  (RN
(i  +hi  dLi – cos(Li  cos(Bi  dhi  

     – sin(Bj  cos(Lj  (RM
(j  +hj  dBj  – sin(Lj  cos(Bj  (RN

(j  +hj  dLj cos(Lj  cos(Bj  dhj  
     – [ Xij – (Xj  – Xi  =    
=   sin(Bi  cos(Li   i  dbi  sin(Li  i  dli – cos(Li  cos(Bi  dhi  
     – sin(Bj  cos(Lj  j  dbj  – sin(Lj  j dlj cos(Lj  cos(Bj  dhj  
     – [ Xij – (Xj  – Xi                         
vij =       
     sin(Bi  sin(Li  (RM

(i  +hi  dBi  – cos(Li  cos(Bi  (RN
(i  +hi  dLi – sin(Li  cos(Bi  dhi  

     – sin(Bj  sin(Lj  (RM
(j  +hj   dBj   cos(Lj  cos(Bj  (RN

(j  +hj  dLj sin(Lj  cos(Bj  dhj  
     – [ Yij – (Yj  – Yi  
=  sin(Bi  sin(Li  i  dbi  – cos(Li  i dli – sin(Li  cos(Bi  dhi  
     – sin(Bj  sin(Lj  j  dbj  cos(Lj  j  dlj sin(Lj  cos(Bj  dhj  
     – [ Yij – (Yj  – Yi                                     
vij  =    
     – cos(Bi (RM

(i +hi  dBi  –  0  dLi  – sin(Bi  dhi  
      cos(Bj (RM

(j +hj  dBj  0  dLj  sin(Bj  dhj          
     – [ Zij – (Zj  – Zi  =                                                                                        
 =  – cos(Bi i  dbi  –  0  dli  – sin(Bi  dhi   
      cos(Bj  j  dbj    0  dlj  sin(Bj  dhj          
     – [ Zij – (Zj  – Zi      (52)

where 
 μk = 1 + hk / RM

(k) , νk = 1 + hk / RN
(k) for k = i, j (53)

and the radii of curvature RM
 , RN

 are defi ned in the formulas (10), (13). Of course, if 
hk → 0 then μk →1 and νk →1.
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4. Observational equations in the ellipsoidal frame for terrestrial data

The second group of observational equations concerns classic (terrestrial) observations. 
Observational equations for such observations on the ellipsoid can be found in 
textbooks for higher geodesy (see e.g.: Warchałowski, 1952; Szpunar, 1982; Leick, 
2004), as well in many thematic publications in the fi eld of geodetic network on the 
ellipsoid (see e.g .: Thomson, 1976; Gajderowicz, 1979, 1981). In current measuring 
processes, typical terrestrial observations are polar observations, that is, lengths and 
directions. The astronomical azimuths are no longer measured. In addition, in the 
third dimension, we can consider normal or orthometric height differences. Formally, 
we assume that the lengths and directions are reduced to the corresponding elements 
of geodesic. For these terrestrial observations, we give below only the fi nal equations 
of observations, using the notations adopted in this paper.

The observational equation for classic polar observations (distance and direction), 
reduced to the geodesic on the ellipsoid has the following formulas: 

 vij
(s) = – cij · dbi – dij · dli – cji · dbj – dji · dlj + 0 – dsij (54)

 
 vij

(K) = Dij · dbi – Cij · dli + Dji · dbj – Cji · dlj + dzi – dKij  (55) 
where:
cpq =  cos(αpq

(0)), dpq = sin(αpq
(0)), Cpq= cpq /spq

(0), Dpq = dpq /spq
(0), for (p,q) = (i,j) or 

(j, i); 
dsij = sij

(obs.) – sij
(0) – free component of the equation (54) in which: 

sij
(obs.) – the observation as the length of the geodesic segment on the ellipsoid, 

sij
(0 ) –  the approximate measure as the length of the geodesic segment, determined by 

the approximate coordinates (Bi
(0 ), Li

(0 )), (Bj
(0 ), Lj

(0 )); 
αij

(0), αji
(0) –  the azimuth (start and return) the geodesic segment, calculated from 

approximated coordinates (Bi
(0), Li

(0 )), (Bj
(0), Lj

(0)); 
dKij = Kij

(obs.) – Kij
(0 ) – free component of the equation (55), in which:

Kij
(obs.) – directional observation, Kij

(0 ) = αij
(0) – zi

(0 ) , 
zi

(0 ) –  the approximate value of the orientation constant of the directions set on the 
station; 

dzi – the unknown correction for the approximate orientation constant; 
dbk, dlk –  small arcs of a meridian and parallel, replacing the corrections dBk, dLk to 

approximate geodetic coordinates (Bk
(0), Lk

(0)), by the formulas (similarly 
to (17)): dbk = RM(k) · dBk , dlk = RN(k) · cos(Bk) · dLk (for the point index 
k = i, j), RN 

(k), RM 
(k) – principal radii of curvature (for k = i, j) predetermined 

by formulas (10), (13). 

Creating the differences of equations (55) on a single station we obtain the 
observational equations for angles. Thus, the orientation constants of direction are 
eliminated as the parameters, which have no practical signifi cance (so-called nuisance 
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parameter). Various strategies are used in order to preserve the equivalence of the 
angles and directions of observations in terms of the result of a network adjustment 
with the least squares method. One way is to create the set of so-called Schreiber’s 
angles which enable to use the diagonal weighting matrix for created angles (Kadaj, 
2008).

A specifi c problem is the integration of classical leveling with ellipsoidal 
(geometric) height differences, which are the results of use of GNSS vectors. For this 
purpose we use a numeric model of a local quasi-geoid, which gives the relationship 
between ellipsoidal and normal heights. We use the following linear equation:

 vij
(h) = – δhi + δhj – wij ; wij = [(ΔHij +Δζij) – (hj

(0) – hi
(0))]  (56)

where: ΔHij is the normal height difference measured in a terrestrial leveling, 
Δζij = ζj – ζi is the height anomalies difference (we assume, that the point anomalies are 
known from a numerical quasi-geoid model); hi

(0), hj
(0) are the estimated ellipsoidal 

heights; δhi , δhj – the unknown corrections for approximated ellipsoidal heights. 

5. The adjustment models of combined networks on the ellipsoid

Observational equations will be created independently for two integrated 
subsets of observations, a pseudo-observations derived from the GNSS vectors 
and classic observations. The linearized system of observational equations can 
be shown in the matrix notation with the corresponding blocks for the two 
subsets (subnets): 

                V = A · dE – W , with the weighting matrix P (57)
 

                         V1                      W1                    P1                                A1   
               V =             ,    W =               ,    P =                    ,      A  =     ,  
                         V2                      W2                            P2                        A2  

where index 1 refers to GNSS observations, index 2 – refers to classic terrestrial 
observations. In general, the individual sizes denote: V – vector of corrections, 
W – vector of free components, A – matrix of coeffi cients, dE – unknown vector of 
corrections to approximate geodetic coordinates E(0),

 dE = [dB1 , dL1 , dh1 , dB2 , dL2 , dh2 , ... , dBr , dLr , dhr ]T 

(without components for fi xed points, for example with index k = r+1, r+2, ... , p or 
by assuming the alternative equations dBk = 0, dLk = 0, dhk = 0 with large numeric 
weights)
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The matrix A have a similar block structure, as shown in Figure 3 
For the correctly defi ned system, the matrix A, of the dimensions (m  n) 

(m ≥ n) is full rank, rank(A) = n, so the method of least squares, VT· P · V = min., 
theoretically leads to the uniqueness of the solution (57). Such a task, however, has 
the disadvantage that the vector of the system of unknowns dE is not uniform in 
terms of the type of components (angles and lengths) with the result that is obtained 
in solving the equations system, which has a signifi cant disparity between diagonal 
elements of the normal matrix. This may lead to a certain instability of the solution. 
To avoid this situation we can replace the vector dE with the homogeneous vector de 
(small arcs db, dl on the ellipsoid and height corrections dh), adopting the formula 
(16): 

 de = C · dE (58) 

where the diagonal matrix C is defi ned by the formula (15). Substituting this relation 
in the equation (57) we get:

 V = A · C–1 · de – W = a · de – W , with a weight matrix P (59) 
        ( a = A · C–1 ) 

From the normal equations we determine the indirect unknowns but by the relation 
(58) we continue corrections of the original coordinates: 

 de = ( aT · P · a )–1 · aT · P · W (60) 
       dE = C–1 · de 

 

Points of a terrestrial subnet 

Common points of two subnets 

 

 

A1 

A2 

Fig. 3. The structure of the coeffi cient matrix of observational equations for a combined network. 
The rows correspond to the equations, the columns – unknown corrections to the approximate geodetic 

coordinates
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Note that in the task specifi ed in the above matrices, the vector W is included 
depending on the actual approximate coordinates of the network points. In order to 
eliminate possible errors, linearization (rejection of non-linear components in the 
Taylor series expansions) in computer implementations is applied in the iterative 
Gauss-Newton procedure. Denoting by the index k of an iterative cycle, this procedure 
can be written as follows: 

 
Ek+1  = Ek + dEk,k+1   

                    dEk,k+1  = Ck
1  dek,k+1                                                   

                                            dek,k+1  =  ( ak
T   P  ak –1   ak

T   P  Wk 
k = 0, 1, 2 ...   

 (61)

A stopping criterion of the iterative process (61) reduces to control an increment norm 
of the unknown vector in the sense of inequality || dek,k+1 || < ε where ε is a maximal 
numerical error. Such a stopping criterion is suffi cient for the convergence of the 
square type, when the condition “smallness” of growth between successive iterations 
also means the proximity to the border point of the iteration convergence. This type 
of convergence is characterized by the adjustments commonly used in the geodetic 
network, the Gauss-Newton iterative procedure (see e.g. Deutsch, 1965). 

 
6. Numerical tests of the network adjustment for different functional models

Four reference stations from the ASG-EUPOS system were selected, with the 
following names: GIZA (Giżycko), JLGR (Jelenia Gora), KOSZ (Koszalin), 
USDL (Ustrzyki Dolne), see Figure 4. Based on the known geocentric coordinates 
X, Y, Z, in the reference frame PL-ETRF2000 three-dimensional Cartesian vectors were 
generated “artifi cially”, simulating GNSS vectors according to the situation shown in 
Figure 4. Then, the Cartesian vectors were converted to the pseudo-observations in 
two alternative versions:

a) differences in the geodetic coordinates (ΔB, ΔL, Δh)
b) the lengths and azimuths of geodesics and differences of the ellipsoidal heights 

(s, α, Δh) 
Table 3 shows the original Cartesian and geodetic coordinates of the above 

mentioned stations. Table 4 shows the values of the observations (Cartesian vectors) 
and pseudo-observations in two variants, with the precision rounding to the unit in 
the digit at the last position (this data can optionally be helpful to perform related 
control tests). 

According to the type of data, we consider three alternative functional models of 
GNSS observations (pseudo-observations) in the ellipsoidal frame (as indicated in 
Table 4): 
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I –  the original Cartesian model of GNSS vectors expressed as a function of 
geodetic (ellipsoidal) coordinates,

II –  the model of pseudo-observations in the form of differences in geodetic 
coordinates (ΔB, ΔL, Δh) 

III –  model of pseudo-observation as geodesic parameters (s, α, Δh) (the ellipsoid 
heights difference as in model II).

 
Fig. 4. Test network (ASG-EUPOS stations)

Tab. 3. Data coordinates 

Cartesian geocentric coordinates (in PL-ETRF2000) 
Name X Y Z ID

GIZY
JLGR
KOSZ
USDL

3486403.5385
3878289.7496
3590530.4065
3837558.2233

1392187.3370
1092566.8446
1042990.5409
1596303.0315

5139218.6640
4928217.8516
5150117.6518
4822409.6403

1
2
3
4

Geodetic coordinates and ellipsoidal heights 

Name
B L h

ID
[ o ’ ” ] [ o ’ ” ] [m]

GIZY
JLGR
KOSZ
USDL

54 02 08.805541
50 55 10.050525
54 12 12.190732
49 25 58.460097

21 46 03.962343
15 43 59.694227
16 11 51.790188
22 35 08.765000

166.825
408.190
123.162
529.742

1
2
3
4
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Pseudo-observations of type II, III in combined (hybrid) networks were already 
the subject of computer implementations and testing (e.g. in the geodetic system 
GeoNet – www.geonet.net.pl). Therefore, we will refer mainly to the model I and 
presented (in Table 5), the set of coeffi cients and free components of observational 
equations expressed by the formulas (52), and then (in Tables 6 and 7) the coeffi cients 
and free components (three iterations of the Gauss-Newton process) of the system 
of normal equations. In the subset of 4 stations we assumed that the station with 
the index 1 (GIZA) is the constant (reference) point, while the other 3 stations are 
adjusted by the least squares method.

The implementation of the Gauss-Newton algorithm was verifi ed by adopting 
approximate geodetic coordinates for stations 2, 3, 4 rounded to 1”, which means the 
possible maximal error of the initial value of the unknowns approx. 15m is measured 
in the length of the arc of the ellipsoid. Indeed, in the fi rst iteration, the maximum 
corrections to the approximate coordinates are close to the errors of the initial values. 
Table 8 summarizes the consequential corrections to the current geodetic coordinates 
in three iterations of the Gauss-Newton process, after which (with control in the last 
iteration) the geodetic coordinates corresponding to their values were given in ASG-
EUPOS database.

The GeoNet program were used to calculate the network according to the models 
II and III. The obtained fi nal geodetic coordinates of points 2, 3 and 4 were the same 
as in model I. Table 9 summarizes the comparison of three methods, the convergence 
parameters as an increment norm of the unknown vector (similar as for the model 
I – Tab. 8). We can see that in terms of the speed of convergence, the models I and 
II are comparable – with relatively large errors of initial values, accurate coordinates 
achieved after 2–3 iterations. However, the model III requires more iterations, in 
which the pseudo-observations are the lengths and azimuths of geodesics.
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Tab. 7. The components of the vector aT · P· W in the each iteration of the Gauss-Newton procedure

Elements of the vector aT · P · W in iterations:

i 1 2 3

1
2
3
4
5
6
7
8
9

 1.6864553E+05
-1.2324487E+05
-8.2113291E+03
-7.8977780E+03
-1.5229785E+05
 8.1341696E+03
-3.7657707E+05
-1.7894077E+05
-2.9343510E+03

-1.0969105E+01
 1.2123575E+01
 7.6216302E-01
-1.0134767E+01
-1.2157631E+01
-4.1223950E-01
 3.4604647E+01
 2.5758809E+01
-1.4216646E+00

 8.9149308E-04
-6.7426009E-04
-4.9565343E-05
 1.0786275E-03
 1.3372504E-03
 2.6142379E-05
-2.9547127E-03
-2.4728577E-03
 4.2518101E-05

Tab. 8. The Gauss-Newton procedure in the method I: unknown corrections in subsequent iterations

ITERATION ID-POINT db[m] dl[m] dh[m] dB[“] dL[“]
1 2

3
4

 1.5614
 5.8974
14.2154

13.5613
14.3237
15.4151

 0.1899
 0.1620
 0.7421

 0.0505289
 0.1907362
 0.4601356

 0.6942714
 0.7902022
 0.7650612

2 2
3
4

-0.0001
-0.0001
-0.0012

-0.0009
-0.0003
-0.0012

 0.0000 
 0.0000
 0.0000

-0.0000038
-0.0000044
-0.0000390

-0.0000441
-0.0000142
-0.0000614

3 2
3
4

 0.0000
 0.0000
 0.0000

0.0000
0.0000
0.0000

 0.0000
-0.0000
 0.0000

 0.0000000
 0.0000000
 0.0000000

 0.0000000
 0.0000000
 0.0000000

Tab. 9. Comparison of the convergence of the Gauss-Newton procedure in three methods using the 
vector norm of unknown differences in length of arcs.

Absolute maximal coordinate corrections in subsequent iterations [m]
Iteration Index of the metod

I II III
1
2
3
4
5
6

15.4151
0.0012
0.0000

15.4138
0.0001
0.0000
0.0000

14.8418
0.6752
0.0208
0.0006
0.0000
0.0000

Comments: 
 I – original GNSS – vectors (ΔX,ΔY, ΔZ)
 II – differences of geodetic coordinates (ΔB, ΔL)
III – geodesic parameters (s,α) 
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7. Conclusion and remarks

Converting the Cartesian GNSS vectors to geometric elements of the reference 
ellipsoid, such as the differences in geodetic coordinates or the lengths and azimuths 
of geodesics, are popular in computer applications, relating to the adjustment of 
a combined (hybrid) geodetic network in the geodetic (ellipsoidal) coordinate system. 
Unfortunately, as it can be seen from the analysis conducted in Section 2.2, such 
a procedure is risky in terms of systematic errors, which may go signifi cantly beyond 
the level of stochastic observation errors. The maximum size of the systematic 
errors measured by the lengths of the arcs on the ellipsoid, depends on the error of 
determining the position vector in Cartesian space (measured with the length of the 
vector displacement Δ) and also depends on the same vector length (approximately 
on the length s of the arc on the ellipsoid). The maximum impact determines the 
value of the expression δ = Δ · η, where η = s / Rs , Rs – the approximate radius of 
the spherical Earth. For example, if Δ = 1, then for the result precision δ < 0.001 
should be in approximate estimation: s <6.5 km. In practice, by connecting the 
network to reference stations, we will have to deal with lengths measured in tens and 
even hundreds of kilometers. This makes it necessary to increase the accuracy of the 
approximate coordinates, which are the anchor points of the GNSS vectors before 
their projection on the ellipsoid. Then, we usually use the point coordinates of the 
network adjusted at some initial stage.

While adjusting the combined network on the ellipsoid we do not need to transform 
the GNSS vectors to pseudo-observations. We can totally eliminate the problem of 
described systematic errors by creating the observation equations in the ellipsoidal 
frame for the original GNSS vectors. The coeffi cients and the free components of 
the appropriate linearized equations are expressed explicitly by the known formulas 
(cf. description in Section 3). The method was tested on the example of a network 
of 4 points – ASG-EUPOS stations and the results were compared with those of 
alternative algorithms. For this purpose the GeoNet system programs and their special 
modifi cations were used. In each case, we have the solution of the non-linear least 
squares problem using the iterative method (Gauss-Newton procedure). Results with 
descriptions are given in Section 6.
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