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Abstract. In this article, we investigate the convective heat transfer of the two-dimensional unsteady squeezing flow past a Riga plate. To examine 
the heat transfer, Cattaneo-Christov heat flux model is used. Influence of entropy generation on heat transfer has been investigated numerically. 
With the help of suitable similarity transformation, the governing partial differential equations (PDEs) are converted into ordinary differential 
equations (ODEs). The obtained system of non-linear ordinary differential equations subject to the convective boundary conditions is solved by 
the shooting method using the computational software MATLAB. To strengthen the reliability of the results obtained by the shooting method, 
the MATLAB built-in function bvp4c has been used. The graphs show the effect of different physical parameters for velocity, temperature, 
concentration and tables are presented to observe the behaviour of skin friction and sherwood number under the influence of certain physical 
parameters. It is observed that for increasing values of thermal relaxation parameter, the temperature profile increases and an opposite behaviour 
is shown for the concentration profile. Moreover, with an increase in the Brinkman number, the entropy generation increases.

Key words: squeezing flow, Riga plate, nanofluids, convective boundary conditions, Cattaneo-Christov heat flux, entropy generation.
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number and shear stress increase as the free stream velocity 
of squeezing increases. For unsteady flow Siddiqui et al. [5] 
extended the idea of Khaled and Vafai. Dib et al. [6] used the 
Duan-Rauch approach for unsteady squeezing nanofluid flow 
and obtained the solutions by using the differential transform 
method. Hayat et al. [7] solved mixed convection unsteady 
squeezing flow of three dimensional fluid by using the homo-
topy analysis method. MHD Squeezeing flow in the presence of 
fractionalized nanofluid over a sensor surface was investigated 
by Haq et al. [8]. Later on, active and zero flux of nanoparticles 
between a squeezing channel presented by Atlas et al. [9]. More 
studies on squeezing flow can be found in [10–12].

To control the flow of an electrically conducting fluid over 
a flat plate, Gailitis and Lielausis [13] presented the idea to use 
Lorentz force. The flow control device named Riga plate con-
sists of a spanewise aligned array of alternating electrodes and 
permanent magnets. It is an electromagnetic actuator. Pantokra-
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	 B	 –	 dimensionless constants
	 C	 –	 concentration of fluid
	 Cf 	 –	 convective fluid concentration
	 Ch 	 –	 ambient concentration
	 cp 	 –	 specific heat
	 DB 	 –	 Brownian diffusion coefficient
	 Be	 –	 Bejan number
	 ρ f 	 –	 fluid density
	 M0	 –	 magnetization
	 k	 –	 thermal conductivity
	 βe 	 –	 relaxation time of heat transfer
	 δe 	 –	 Stefan Boltzman
	 Z	 –	 modified Hartman number
	 Pr	 –	 Prandtl number

	 Bi1	 –	 Biot number for temperature
	 Re	 –	 Reynolds number
	 χ	 –	 constant parameter
	 Cf 	 –	 skin friction cofficient
	 φ	 –	 dimensionless concentration
	 λ1	 –	 constant parameter
	 Shx	 –	 Sherwood number
	 T	 –	 temperature of fluid
	 Th	 –	 ambient temperature
	 (u, v)	 –	 velocity components
	 Tf 	 –	 convective fluid temperature
	 π	 –	 component of deformation
	 Vf 	 –	 fluid velocity
	 j0	 –	 applied current density

	 b	 –	 width of magnets and electrodes
	 α	 –	 thermal diffusivity
	 βR 	 –	 mean observation constant
	 S	 –	 squeezing parameter
	 Rd	 –	 radiation parameter
	 Sc	 –	 Schmidt number
	 Kr	 –	 chemical reaction
	 Br	 –	 Brinkman number
	 Ω	 –	� dimensionless temperature 

difference
	 Bi2	 –	 Biot number for concentration
	 η	 –	 dimensionless variable
	 λE	 –	 thermal radiation time

1.	 Introduction

The flow between two parallel plates or the flow in which the 
two boundaries approach each others is called the squeezing 
flow. Stefan [1] introduced the idea of squeezing flow by uti-
lizing a lubrication conjecture. Squeezing flow has many ap-
plications not only in conventional engineering disciplines, 
but also in the modern and emerging areas of bio-engineering 
[2], chemical techonology and pharmaceutical manufacturing 
[3], etc. Khaled and Vafai [4] studied the heat transfer and hy-
dromagnetics effects of externally squeezed free stream over 
a horizontal surface. They concluded that both the local Nusselt 
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toras and Magyari [14] scrutinized the boundary layer flow of 
an electrically conducting fluid across a horizontal Riga plate. 
Sakiadis and Blasius flows for Riga plate were investigated by 
Pantokratoras [15] in 2011. In the existence of strong suction, 
mixed convection flow of a nanofluid past through a Riga plate 
was investigated by Ahmad et al. [16]. Hayat et al. [17] calcu-
lated the variable thickness originated by the nanofluid by using 
the homotopy analysis method. Ahmad et al. [18] studied the 
convective heat transfer of nanofluid flow past a vertical Riga 
plate. The shooting method was used to obtain the solution and 
it was found that the highest heat transfer rate is achieved in the 
absence of thermophoretic effect.

In many physical situations heat transfer occurring from one 
body to another is a natural process. Moving bodies are heated 
due to some external forces. The motion of bodies against other 
surfaces may also produce fractional heat which is of great 
interest. For example in highly efficient assembling machines, 
heat transfer analysis is very important. Heat transfer has many 
applications in biomedical, cooling of electronic devices and 
energy production. Heat transfer analyses are found in litera-
ture [19–24]. Recently, heat transfer analysis of MHD three di-
mensional flow in porous and deforming bodies are performed 
by Turkyilmazoglu [25]. In the first law of heat conduction, 
Fourier [26] analyzed the properties of heat transfer in 1822. 
Fourier’s law leads to a parabolic equation for the tempera-
ture field, though it is inadequate to express the features of 
heat transfer entirely. In every part of a material, any initial 
distraction is detected immediately. In practical terms, there is 
no such object or material that satisfies the Fourier law. The 
main shortcomings of the Fourier’s model were resolved by 
Cattaneo [27] by adding the partial time derivative in the con-
stitutive relationship between the heat flux and temperature. The 
Cattaneo model introduced the time required to establish the 
steady heat conduction once a temperature gradient is imposed. 
This model is the hyperbolic energy equation and allows the 
transport of heat similar to the propagation of thermal waves 
having normal speed. Later on, Christov [28] presented the 
material invariant formulation of the Cattaneo՚s model by in-
troducing the Oldroyd’s upper-convected derivatives. Christov 
showed that without the convective derivative the Cattaneo 
model leads to a paradoxical evaluation of thermal waves in 
a moving frame. Ciarletta and Straughan theory [29] expressed 
the uniquness and stability structure of the Cattaneo-Christov 
law. Han et al. [30] proposed the stretched flow of Maxwell 
fluid with Cattaneo-Christov model. Mustafa [31] examined 
the Cattaneo-Christov heat flux in the rotating flow of Maxwell 
nanofluid. Shah et al. [32] used shooting method to investigate 
Cattaneo-Christov heat flux in MHD flow of Maxwell fluid 
with Joule heating. Recently, Muhammad et al. [33] included 
the Cattaneo-Christov heat and mass flux in the squeezing flow.

Entropy generation has great importance due to its exten-
sive involvement in heat exchangers, electronic cooling, turbo 
machinery, porous media and solar collectors. In many studies, 
first law of thermodynamics is the efficient way for the calcula-
tion of heat. In thermodynamics, diffusion, chemical reaction, 
friction force between solid surface and fluid viscosity within 
the system give rise to energy loss, which results in entropy gen-

eration in the system. Minimization of entropy generation was 
comprehensively covered by Bejan [34]. To modify the thermal 
engineering devices for higher thermal energy capacity, entropy 
generation minimization method has been used. Rashidi et al. 
[35] examined the MHD flow of nanofluid through a porous 
rotating disk and presented the results for entropy generation 
by utilizing the second law of thermodynamics. Butt and Ali 
[36] investigated analytically and numerically the effect of en-
tropy generation on unsteady three dimensional squeezing flow. 
Entropy generation and mixed convection in a partially heated 
square cavity was numerically investigated by Hussain et al. 
[37]. Qing et al. [38] investigated the entropy generation on 
Casson nanofluid with MHD over a porous stretching/shrinking 
surface by using the successive linearization method and Che-
byshev spectral collocation method.

In the present article, we discuss the unsteady two-dimen-
sional squeezing flow between two Riga plates with the con-
vective boundary conditions by using the Cattaneo-Christov 
heat flux model. The effect on entropy generation has also been 
discussed. Here, the governing partial differential equations of 
the model are converted to the ordinary differential equations 
by using the suitable similarity transformation. The approximate 
solution of resulting nonlinear coupled ODEs of such type of 
problems can be obtained using analytical techniques such as 
homotopy perturbation method [39], homotopy analysis method 
[40], optimal homotopy asymptotic method [41], differential 
transform method [42] and Adomian decomposition method 
[43] and some numerical techniques such as shooting method 
[23], etc. In [43], it was also discussed how to determine the 
correct range of physical parameters involved in the problem. 
For the proposed problem, we utilized the well-known shooting 
technique to obtain the solution of the reduced system of non-
linear ODEs together with the boundary conditions. The results 
are compared with those computed by the MATLAB built-in 
function bvp4c to the results obtained by the shooting method. 
Graphical and numerical results in the tabular form are shown 
for various values of the emerging parameters.

2.	 Problem formulation

We examine the squeezing flow of unsteady, viscous, incom-
pressible two dimensional electromagnetohydrodynamic fluid 
flow between two Riga plates (see Fig. 1). The lower plate lo-
cated at y = 0 has the stretching velocity Uw =  ax

1 ¡ γ t  whereas 

the upper Riga plate is situated at y = h(t) =  vf (1 ¡ γ t)
a . Fluid is 

squeezing with the velocity vh = dh
dt . Heat flux through Catta-

neo-Christov model [28] has been considered instead of heat 
flux in Fourier law of heat conduction. Here Tf  and Th denote 
the convective fluid and ambient temperature respectively. Vari-
able temperature Tf  = T0 + d1x and Th  = T0 + d2x at the plate 
and away from the plate, respectively, has been examined. Heat 
flux q is taken as [33]

	 q + δE 

∂q
∂t

 + V.∇q + (∇.V)q ¡ q.∇V


 = –k∇T .� (1)
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Here V, δE, and k denote the velocity, relaxation time of heat 
flux and thermal conductivity of the fluid respectively. Clas-
sical Fourier’s law is obtained from Eq. (1) when δE = 0. Using 
the mass continuity equation ∇.V = 0, the Eq. 1 reduces to the 
following form

	 q + δE 

∂q
∂t

 + V.∇q ¡ q.∇V


 = –k∇T .� (2)

In the absence of viscous dissipation, the governing partial dif-
ferential equations for velocity, temperature and concentration 
are given as follows [44]

	 ∂u
∂x

 + ∂v
∂y

 = 0,� (3)

	

∂u
∂t

 + u ∂u
∂x

 + v ∂u
∂y

 =  1
ρf

∂p
∂x

 + vf(∂
2v

∂x2  +  ∂
2v

∂y2) +

 + u  + v  + 
π j0 M0Exp(–π

b y)
8ρf

,

� (4)

	 ∂v
∂t

 + u ∂v
∂x

 + v ∂v
∂y

 =  1
ρf

∂p
∂y

 + vf(∂
2v

∂x2  +  ∂
2v

∂y2),� (5)

	

∂T
∂t

 + u ∂T
∂x

 + v ∂T
∂y

 + λEΩE = α(∂
2T
∂x2  +  ∂

2T
∂y2 ) ¡

 + u  + v  + λEΩE ¡  1
(ρcp)f

∂qr
∂y ) ,

� (6)

	∂C
∂t

 + u ∂C
∂x

 + v ∂C
∂y

 = DB(∂
2C
∂x2  +  ∂

2C
∂y2 ) ¡ K1(C ¡ Ch).� (7)

subject to the boundary conditions

	

y = 0 : u(x, y, t) =  ax
1 ¡ γ t

, v(x, y, t) = 0,

–k ∂T
∂y

 = h1(Tf ¡ T), –D ∂C
∂y

 = h2(Cf ¡ C),

y = h(t) : u(x, y, t) = 0, v(x, y, t) = vh = dh
dt

,

T = Th, C = Ch. 




� (8)

The boundary conditions describe that the lower plate is placed at  
y = 0 and stretched in the x-direction with the velocity Uw =  ax

1 ¡ γ t  
and in the y-direction with the velocity v = 0 [44]. We establish 
the convective boundary conditions at the lower surface for 
temperature and concentration [45]. The convective boundary 
conditions described the energy balance at the fluid-solid in-
terface. At the upper plate the velocity in the x-direction is 
zero and the velocity in the y-direction is the squeezing time 
dependent velocity of fluid. The Dirichlet boundary conditions 
are used for temperature and concentration at the upper plate. 
In (6) ΩE is formulated as [33]

	

ΩE = ∂
2T
∂t2  + u ∂u

∂x
∂T
∂x

 + v ∂v
∂y

∂T
∂y

 + u2 ∂
2T
∂x2  + 

ΩE + v2 ∂
2T
∂y2  + ∂u

∂t
∂T
∂x

 + 2uv ∂2T
∂x∂y

 + 2u ∂2T
∂x∂t

 +

ΩE + u ∂v
∂x

∂T
∂y

 +  ∂v
∂t

∂T
∂y

 + v ∂u
∂y

∂T
∂x

 + 2v ∂2T
∂y∂t

.

� (9)

According to the Rosseland approximation [9] the thermal ra-
diation heat flux considered as

	 qr = 
–4δe

3βR

∂T 4

∂y
,� (10)

where δe  is the Stefan Boltzman constant and βR  the mean 
observation constant. We expand T 4 by using the Taylor series 
about temperature Th to have

	 T 4 = 4Th
3 ¡ Th

4.� (11)

The following local similarity transformations [44] have 
been introduced to convert (3–7) into nondimensional form:
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Following local similarity transformations [44] have been in-
troduced to convert the Eqs. (3)-(7) into nondimensional form:

Ψ =

√
aν f

1− γt
x f (η) , θ(η) =

T −Tf

Th −Tf
,u =

∂ψ
∂y

=Uw f ′(η)

v =−∂ψ
∂x

=−
√

aν f

1− γt
f (η) , η =

y
h(t)

, φ(η) =
C−Cf

Ch −Cf
.

(12)

Eq. (3) is identically satisfied and the other Eqs. (4)-(7) get the
following form

f ′′′′+ f f ′′′ − f ′ f ′′ − S
2
(
3 f ′′+η f ′′′

)
−ZBe−Bη = 0, (13)

(1+Rd)θ ′′+Pr( f θ ′ − η
2

Sθ ′)−Prβe( f f ′θ ′+ f 2θ ′′

−Sη f θ ′′)− Pr
4

βeS2 (3ηθ ′+η2θ ′′)

+
Pr
2

Sβe
(
η f ′θ ′+3 f θ ′)= 0, (14)

φ ′′+Sc
(

f φ ′ − S
2

ηφ ′ −Krφ
)
= 0. (15)

By using the similarity transformation (12) into Eq. (8) the
boundary conditions get the following form:

η = 0 : f (η) = 0, f ′(η) = 1,θ ′(η) =−Bi1 (1−θ(η)) ,

φ ′(η) =−Bi2 (1−φ(η)) ,

η = 1 : f (η) =
S
2
, f ′(η) = 1,θ(η) = 0,φ(η) = 0.



(16)

Different dimensionless parameters appearing in Eqs.(13)-(16)
are defined as

S =
γ
a
, B =

πh(t)
b

, Z =
π jM0x
8ρ fU2

w
, Rd =

16T 3
h σe

3βRk
,

Pr =
ν
α
, Kr =

k1(1− γt)
a

, Sc =
ν

DB
,

Bi1 =
−h1

k

√
ν f (1− γt)

a
, Bi2 =

−h2

k

√
ν f (1− γt)

a
.

The important physical parameters of interest, skin friction co-
efficient and Sherwood number, are formulated follows.

C f =
τw

ρ fU2
w
, Shx =

xqm

D(Cf −Ch)
,

where τw is the skin friction or shear stress and qm the concen-
tration flux from the surface and are given by

τw = µ f

(
∂u
∂y

)

y=h(t)
,qm =−D

(
∂C
∂y

)

y=h(t)
.

Dimensionless forms of skin friction, and Sherwood number
are

C f Re1/2
x =− f ′′(1), ShxRe−1/2

x =−φ ′ (1) .

The entropy generation of the nanofluid is given by [46]

S′′′gen =
k

T 2
∞

[(
∂T
∂y

)2

+
16σ3

T
3k

(
∂T
∂y

)2
]
+

µ
T∞

(
∂u
∂y

)2

+
RD

C∞

(
∂C
∂y

)
+

RD

T∞

(
∂T
∂y

∂C
∂y

)
.

In the above equation, the first term is due to heat transfer (also
known as heat transfer irreversibility HTI), second term is due
to fluid friction ( also known that fluid friction irreversibility
FFI) and third term is due to mass transfer (also known as the
mass transfer irreversibility MTI). The characteristic entropy
generation is defined as

S′′′0 =
k (∇T )2

L2T 2
∞

. (17)

By using the similarity transformation, the entropy generation
in the dimensionless form, can be written as

NG =
S′′′gen

S′′′0
= Re (1+Rd)θ ′2 (η)+

ReBr

Ω
f ′′2 (η)

+Reλ1

( χ
Ω

)2
φ ′2 (η)+Reλ1

( χ
Ω

)
θ ′ (η)φ ′ (η) ,

where

Re =
µLL2

ν
,Br =

µUw
2

k∆T
,Ω =

∆T
T∞

,χ =
∆C
C∞

,λ1 =
RDC∞

k
Another dimensionless parameter is considered which is the
Bejan number [47]. It is the ratio of the entropy generation
due to heat and mass transfer irreversibility to the total entropy
generation given by

Be =
HT I +MT I

NG
.

3. Solution methodology
The system of non-linear ordinary differential equations (13)-
(15) subject to the boundary conditions (16) has been solved
numerically by the shooting method [48] for different values
of governing parameters. We denote f → f1, f ′1 → f2, f ′2 →
f3, f ′3 → f4, θ → f5, θ ′ → f6, φ → f7 and φ ′ → f8 . The
boundary value problem (13)-(17) are converted to 8 first order
differential equations of the initial value problem.

f ′1 = f2,

f ′2 = f3,

f ′3 = f4,

f ′4 = f2 f3 − f1 f4 +
S
2
(3 f3 +η f4)+ZBe−Bη ,

f ′5 = f6,

f ′6 =

Pr

[ ( S
2 η f6 − f1 f6

)

−βe
( 3

4 S2η f6 + f1 f2 f6 +
S
2 η f2 f6 +

3
2 S f1 f6

)
]

1+Rd − 1
4 PrβeS2η2 −Pr f 2

1 βe +PrSβeη f1

f ′7 = f8,

f ′8 =−Sc
[

f1 f8 −
S
2

η f8 +Kr f7

]
.

subject to the initial conditions

f1 (0) = 0, f2 (0) = 1, f3 (0) = p,

f4 (0) = q, f5 (0) = r,

f6 (0) =−Bi1 (1− f5 (0)) , f7 (0) = t,

f8 (0) =−Bi2 (1− f7 (0)) . (18)
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f3, f ′3 → f4, θ → f5, θ ′ → f6, φ → f7 and φ ′ → f8 . The
boundary value problem (13)-(17) are converted to 8 first order
differential equations of the initial value problem.

f ′1 = f2,

f ′2 = f3,

f ′3 = f4,

f ′4 = f2 f3 − f1 f4 +
S
2
(3 f3 +η f4)+ZBe−Bη ,

f ′5 = f6,

f ′6 =

Pr

[ ( S
2 η f6 − f1 f6

)

−βe
( 3

4 S2η f6 + f1 f2 f6 +
S
2 η f2 f6 +

3
2 S f1 f6

)
]

1+Rd − 1
4 PrβeS2η2 −Pr f 2

1 βe +PrSβeη f1

f ′7 = f8,

f ′8 =−Sc
[

f1 f8 −
S
2

η f8 +Kr f7

]
.

subject to the initial conditions

f1 (0) = 0, f2 (0) = 1, f3 (0) = p,

f4 (0) = q, f5 (0) = r,

f6 (0) =−Bi1 (1− f5 (0)) , f7 (0) = t,

f8 (0) =−Bi2 (1− f7 (0)) . (18)
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Following local similarity transformations [44] have been in-
troduced to convert the Eqs. (3)-(7) into nondimensional form:

Ψ =

√
aν f

1− γt
x f (η) , θ(η) =

T −Tf

Th −Tf
,u =

∂ψ
∂y

=Uw f ′(η)

v =−∂ψ
∂x

=−
√

aν f

1− γt
f (η) , η =

y
h(t)

, φ(η) =
C−Cf

Ch −Cf
.

(12)

Eq. (3) is identically satisfied and the other Eqs. (4)-(7) get the
following form
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2

Sβe
(
η f ′θ ′+3 f θ ′)= 0, (14)

φ ′′+Sc
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f φ ′ − S
2

ηφ ′ −Krφ
)
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By using the similarity transformation (12) into Eq. (8) the
boundary conditions get the following form:

η = 0 : f (η) = 0, f ′(η) = 1,θ ′(η) =−Bi1 (1−θ(η)) ,

φ ′(η) =−Bi2 (1−φ(η)) ,

η = 1 : f (η) =
S
2
, f ′(η) = 1,θ(η) = 0,φ(η) = 0.



(16)

Different dimensionless parameters appearing in Eqs.(13)-(16)
are defined as

S =
γ
a
, B =

πh(t)
b

, Z =
π jM0x
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√
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a
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The important physical parameters of interest, skin friction co-
efficient and Sherwood number, are formulated follows.

C f =
τw

ρ fU2
w
, Shx =

xqm

D(Cf −Ch)
,

where τw is the skin friction or shear stress and qm the concen-
tration flux from the surface and are given by

τw = µ f

(
∂u
∂y

)

y=h(t)
,qm =−D

(
∂C
∂y

)

y=h(t)
.

Dimensionless forms of skin friction, and Sherwood number
are
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In the above equation, the first term is due to heat transfer (also
known as heat transfer irreversibility HTI), second term is due
to fluid friction ( also known that fluid friction irreversibility
FFI) and third term is due to mass transfer (also known as the
mass transfer irreversibility MTI). The characteristic entropy
generation is defined as
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k (∇T )2

L2T 2
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. (17)
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k
Another dimensionless parameter is considered which is the
Bejan number [47]. It is the ratio of the entropy generation
due to heat and mass transfer irreversibility to the total entropy
generation given by

Be =
HT I +MT I

NG
.

3. Solution methodology
The system of non-linear ordinary differential equations (13)-
(15) subject to the boundary conditions (16) has been solved
numerically by the shooting method [48] for different values
of governing parameters. We denote f → f1, f ′1 → f2, f ′2 →
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The important physical parameters of interest, skin friction co-
efficient and Sherwood number, are formulated follows.

C f =
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, Shx =
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where τw is the skin friction or shear stress and qm the concen-
tration flux from the surface and are given by

τw = µ f

(
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In the above equation, the first term is due to heat transfer (also
known as heat transfer irreversibility HTI), second term is due
to fluid friction ( also known that fluid friction irreversibility
FFI) and third term is due to mass transfer (also known as the
mass transfer irreversibility MTI). The characteristic entropy
generation is defined as
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By using the similarity transformation, the entropy generation
in the dimensionless form, can be written as

NG =
S′′′gen

S′′′0
= Re (1+Rd)θ ′2 (η)+

ReBr

Ω
f ′′2 (η)

+Reλ1

( χ
Ω

)2
φ ′2 (η)+Reλ1

( χ
Ω

)
θ ′ (η)φ ′ (η) ,

where

Re =
µLL2

ν
,Br =

µUw
2

k∆T
,Ω =

∆T
T∞

,χ =
∆C
C∞

,λ1 =
RDC∞

k
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Bejan number [47]. It is the ratio of the entropy generation
due to heat and mass transfer irreversibility to the total entropy
generation given by

Be =
HT I +MT I
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3. Solution methodology
The system of non-linear ordinary differential equations (13)-
(15) subject to the boundary conditions (16) has been solved
numerically by the shooting method [48] for different values
of governing parameters. We denote f → f1, f ′1 → f2, f ′2 →
f3, f ′3 → f4, θ → f5, θ ′ → f6, φ → f7 and φ ′ → f8 . The
boundary value problem (13)-(17) are converted to 8 first order
differential equations of the initial value problem.
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Fig. 1. Schematic diagram of the flow model
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Eq. (3) is identically satisfied and (4–7) get the following form

	 f 0000 + f f 000 ¡ f 0f 00 ¡ S
2 (3f 00 + η f 000) ¡ ZBe–Bη = 0,� (13)

	

(1 + Rd)θ 00 + Pr( fθ 0 + η
2

 Sθ 0) ¡ Prβe( f f 0θ 0 +

+ f 2θ 00 ¡ Sη fθ 00) ¡  Pr
4
βeS2(3ηθ 0 + η2θ 00) +

+ Pr
2

Sβe(η f 0θ 0 + 3fθ 0) = 0,

� (14)

	 φ 00 + Sc(fφ 0 ¡  S
2
ηφ 0 ¡ Krφ) = 0.� (15)

By applying the similarity transformation (12) to (8) the 
boundary conditions get the following form:

	

η = 0 : f (η) = 0,  f 0(η) = 1, θ 0(η) = –Bi1(1 ¡ θ(η)),

φ 0(η) = –Bi2(1 ¡ φ(η)),

η = 1 : f (η) =  S
2

,  f 0(η) = 1, θ(η) = 0, φ(η) = 0.





� (16)

Different dimensionless parameters appearing in (13–16) are 
defined as

S = 
γ
a

,  B = 
πh(t)

b
,  Z = 

π jM0x
8ρf Uw

2 ,  Rd = 
16Th

3σe

3βRk
,

Pr =  v
α

,  Kr =  k1(1 ¡ γ t)
a

,  Sc =  v
DB

,

Bi1 = 
–h1

k
vf (1 ¡ γ t)

a
,  Bi2 = 

–h2

k
vf (1 ¡ γ t)

a
.

The important physical parameters of interest, skin friction 
coefficient and Sherwood number, are formulated as follows.

Cf  = 
τw

ρf Uw
2 ,  Shx = 

xqm

D(Cf  ¡ Ch)
,

where τw is the skin friction or shear stress and qm the concen-
tration flux from the surface and are given by

τw = µ f(∂u
∂y)y = h(t)

,  qm = –D(∂C
∂y )

y = h(t)
.

Dimensionless forms of skin friction, and Sherwood number are

Cf Rex
1/2 = – f 00(1),  ShxRex

–1/2 = –φ 0(1).

The entropy generation of the nanofluid is given by [46]

S 000
gen =  k

T1
2 

(∂T
∂y )

2
 + 16σT

3

T1
2 (∂T

∂y )
2




 +  µ

T1
(∂u
∂y)

2
 +

S m
gen +  RD

C1
(∂C
∂y ) + RD

T1
(∂T
∂y

∂C
∂y ).

In the above equation, the first term is due to heat transfer (also 
known as heat transfer irreversibility HTI), second term is due 
to fluid friction (also known that fluid friction irreversibility 
FFI) and third term is due to mass transfer (also known as the 
mass transfer irreversibility MTI). The characteristic entropy 
generation is defined as

	 S0
000 =  k(∇T)2

L2T12
.� (17)

By using the similarity transformation, the entropy generation 
in the dimensionless form can be written as

NG = 
S 000

gen

S0
000  = Re(1 + Rd)θ 02(η) + 

ReBr
Ω

f 002(η) +

NG + Reλ1( χΩ)
2
φ 02(η) + Reλ1( χΩ)

2
θ 0(η)φ 0(η),

where

Re = 
µLL2

v
,  Br = 

µUw
2

k∆T
,  Ω = 

∆T
T1

,  χ = 
∆C
C1

,  λ1 = 
RDC1

k
.

Another dimensionless parameter is considered which is the 
Bejan number [47]. It is the ratio of the entropy generation due 
to heat and mass transfer irreversibility to the total entropy 
generation given by

Be = 
HTI + MTI

NG
.

3.	 Solution methodology

The system of non-linear ordinary differential equations (13–15) 
subject to the boundary conditions (16) has been solved nu-
merically by the shooting method [48] for different values 
of governing parameters. We denote f ! f1, f 1

0 ! f2, f 2
0 ! f3, 

f 3
0 ! f4, θ  ! f5, θ 0 ! f6, φ ! f7 and φ 0 ! f8. The boundary 

value problem (13–17) are converted to 8 first order differential 
equations of the initial value problem.

f1
0 = f2,

f2
0 = f3,

f3
0 = f4,

f4
0 = f2 f3 ¡ f1 f4 +  S

2
(3f3 + η f4) + ZBe–Bη,

f5
0 = f6,

f6
0 = 

Pr



 (S

2η f6 ¡ f1 f6)
–βe(3

4 S2η f6 + f1 f2 f6 + S
2η f2 f6 + 3

2 S f1 f6) 



1 + Rd ¡ 1
4 PrβeS2η2 ¡ Prf 1

2βe + PrSβeη f1

f7
0 = f8,

f8
0 = – Sc



 f1 f8 ¡  S

2
η f8 + Kr f7 


.
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subject to the initial conditions

	

f1(0) = 0, f2(0) = 1, f3(0) = p, 
f4(0) = q, f5(0) = r, 
f6(0) = –Bi1(1 ¡ f5(0)), f7(0) = t, 
f8(0) = –Bi2(1 ¡ f7(0)). 

� (18)

We solve the above initial value problem by the RK4 method 
by choosing some appropriate values for p, q, r and t. For the 
refinement of p, q, r and t, we apply the Newton’s method untill 
we meet the following convergence criteria:

max 
j f1(1) ¡  S

2 j, j f2(1)j, j f5(1)j, j f7(1)j


 < ε ,

where ε > 0 is a small positive real number. All the numerical 
results in this paper are achieved with ε = 10–6.

To validate our code by the shooting method, we have com-
puted the numerical results by the MATLAB built-in function 
bvp4c. For further reliability of our results, we reproduce the 
skin friction coefficient reported by Hayat et al. [44]. The com-
parison presented in Table 1 indicates a strong agreement be-
tween our results and those of Hayat et al. For this comparison 
we have chosen βe = 0, Kr = 0.2, Sc = 0.5, Bi1 = 0.2 = Bi2, 
Pr = 1.5.

Table 1 
Comparison of the skin friction cofficient Cf Rex

1/2

S Z Present results Hayat [44]

Shooting bvp4c HAM Numerical

0.1 1.5 1.69643 1.69643 1.69635 1.69634

0.3 1.08549 1.08549 1.08543 1.08543

0.5 0.46756 0.46756 0.46751 0.46751

0.5 0.0 0.42215 0.42215 0.42215 0.42215

1.0 0.45243 0.45243 0.45239 0.45239

1.5 0.46756 0.46756 0.46751 0.46751

4.	 Results and discussion

In this section, we examine the numerical solution of the math-
ematical model (13–16) for different choices of the values of 
some important physical parameters. We first present the nu-
merical results of some parameters of interest in the form of 
tables followed by the discussion on the graphical behaviour 
of certain important profiles.

Table 2 describes the effect of chemical reaction parameter 
Kr and Schmidt number Sc on the Sherwood number. It can 
be seen from the table that as the values of chemical reaction 
Kr increase, the Sherwood number exhibits the decreasing 
behaviour and the increasing values of Schmidt number Sc 
also show that the Sherwood number decreases. Figure 2 
shows the effect of positive and negative values of squeezing 
parameter S on the velocity profile. For increasing values of 
positive squeezing parameter, the velocity profile increases. 
The graph exhibits that as the upper plate moves towards the 
lower plate that causes a force which provides more velocity to 

Table 2 
Numerical values of ShxRex

–1/2 when βe = 0.1, B = 10.0, 
Bi1 = 0.2 = Bi2, Z = 1.5, S = 0.2, Pr = 1.5

Sc Kr
ShxRex

–1/2

Shooting bvp4c

1.0 0.2 0.16598 0.16598

2.0 0.14395 0.14395

3.0 0.12571 0.12571

4.0 0.11044 0.11044

4.0 0.3 0.17513 0.17513

0.5 0.16825 0.16825

1.0 0.15288 0.15288

1.2 0.14737 0.14737

Fig. 2. Influence of S on f 0
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the motion of fluid. The negative values of squeezing param-
eter S on the velocity profile shown that for decreasing values 
of squeezing parameter the velocity graph decreases. It can be 
concluded that the graph decreases due to the motion of the 
upper plate away from the lower plate. As a result, vacuum 
is created in the middle of the channel. To fill this gap, fluid 
starts moving in the upward direction, which results the 
decrease of the velocity profile. Figure 3 exhibits the effect 
of modified Hartman number Z on the velocity profile and the 
effect of thermal radiation parameter Rd on the temperature 
profile. As the values of Hartman number increase, the fluid 
velocity increases near the lower plate, whereas the velocity 
near the upper plate decreases. Physically, increasing values 
of modified Hartman number correspond to high intensity of 
external electric field, which is responsible for the production 
of Lorentz force parallel to wall. It can be observed that the 
temperature profile increases as the value of radiation param-
eter increases.

Figure 4 shows the effect of Prandtl number Pr and Biot 
number Bi1 on the temperature profile. Prandtl number rep-
resents the ratio of the momentum diffusivity to heat diffu-
sivity. It can be can be observed that for large values of Pr 

temperature profile decreases. The increasing values of Prandtl 
number make convection dominate in transferring energy from 
the channel, whereas the case of conduction is opposite in na-
ture. It can be exhibits from the figure that for increasing values 
of Biot number the temperature profile increases. Physically, 
temperature versus thermal Biot number reflect the interac-
tion between conduction in solid and convection at its surface. 
The increasing values of Biot number for temperature result in 
an enhancement of temperature profile. As the value of Biot 
number increases, there is reduction in the thermal resistance 
of the surface. Due to an increase in convection, higher sur-
face temperature is attained. Figure 5 shows the influence of 
squeezing parameter S and temperature relaxation parameter 
βe  on the temperature profile. As the value of squeezing pa-
rameter increases the temperature profile decreases. It can be 
visualized from the figure that for increasing values of thermal 
relaxation parameter the temperature profile decreases. As the 
values of thermal relaxation parameter increases, the fluid par-
ticles need more time for transferring heat to the adjoining 
particles, which results in the fall of the temperature profile.

Figure 6 exhibits the effect of Schmidt number Sc and 
Biot number Bi2 on the concentration profile. For increasing 

Fig. 3. Influence of Z on f 0 and Rd on θ
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Fig. 4. Influence of Pr and Bi1 on θ
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values of Schmidt number, the concentration profile decreases. 
Schmidt number is the ratio of momentum diffusivity to the 
mass diffusivity, so larger value of Schmidt number is expected 
to cause less mass diffusivity. As a result concentration pro-
file decreases. For increasing values of Biot number Bi2 for 

concentration, the concentration profile increases. This rise 
is linked to higher values of Biot number, which indicate a 
deeper penetration of concentration. Figure 7 exhibits the in-
fluence of relaxation parameter βe  and chemical reaction pa-
rameter Kr on the concentration profile. For increasing values 

Fig. 5. Influence of S and βe  on θ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

h

q(
h

)

S=0.0, 2.0, 4.0, 6.0.

Z=1.5, B=10.0, Sc=0.5, 
Pr=1.0, Rd=0.2,be=0.1, 
Bi1=Bi2=0.2, Kr=0.2.
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

h

q(
h

)

be=0.0, 5.0, 10.0, 15.0.

Z=1.5, B=10.0, S=0.2, 
Sc=0.5, Pr=1.0, Rd=0.2,
Bi1=Bi2=0.2, Kr=0.2, 

Fig. 6. Influence of Sc and Bi2 on φ
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Fig. 7. Influence of Sc and Bi2 on φ
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of relaxation parameter, the concentration profile increases. 
For increasing values of chemical reaction the concentration 
profile decreases, because the increasing values of chemical 
reaction result a reduction in the molecular diffusivity. Figure 
8 shows the influence of prandtl number Pr on concentration 

profile. For increasing values of Prandtl, the boundary layer 
thickness increases.

Figures 8–11 show the effect of different parameters on 
entropy generation for Re = 0.1, Ω = 1.0, χ = 0.2, λ1 = 0.2 
and βr = 1.0. Figure 8 shows the effect of squeezing param-

Fig. 9. Influence of βr and Re on NG
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Fig. 10. Influence of Bi1 on NG and S on Be
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Fig. 8. Influence of Pr on φ and S on NG
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eter S on entropy generation NG. It can be concluded from 
this figure that due to increase in squeezing parameter, the 
entropy generation number NG decreases. The entropy is 
more prominent near the walls of the channel than at the 
center. Figure 9 shows the effect of Brinkman number βr 
and Re on the entropy profile NG. For increasing values of 
Brinkman number, the entropy generation NG increases. The 
increase in the entropy is produced by the irreversibility 
of fluid friction. As Re increases the entropy generation 
parameter NG increases. From the figure, it can be observed 
that there is more disturbance in the movement of the fluid 
and there is an increase in the entropy generation due to the 
contribution of fluid friction and heat transfer. Figure 10 
exhibits the effect of Biot number for temperature Bi1 on 
entropy generation NG and squeezing parameter S. It can 
be observed that for increasing values of Biot number the 
entropy profile increases on Bejan number Be. For increasing 
values of S the graph of Be increases. It can be observed that 
near the lower wall of the channel, the graphs are confined 
in the region 0 ¢ Be < 0.7, which suggests that fluid friction 
entropy is dominant; in fact, entropy due to heat and mass 
transfer is dominant. Figure 11 shows the effect of Brinkman 
number βr and Biot number Bi1 on Be; for increasing values 
of βr, the profile of Be increases. For increasing values of Bi1 
the profile of Be increases.

5.	 Conclusions

In the presence of magnetic field, squeezing flow between 
two Riga plates is investigated numerically. Cattaneo-Christov 
model is incorporated for heat transfer. The ordinary differential 
equations along with the boundary conditions were solved nu-
merically with the shooting method and the results are compare 
with Matlab built-in function bvp4c. The main findings of the 
article are as follows.

●	 Velocity profile increases for increasing values of the 
squeezing parameter S and decreases for decreasing val-
ues of S.

●	 A little enhancement in temperature is observed for in-
creasing values of thermal radiation Rd and temperature 
profile decreases for increasing values of thermal relax-
ation parameter βe .

●	 Concentration profile decreases for increasing values of 
chemical reaction parameter Kr.

●	 Entropy generation has decreasing behaviour for in-
creasing values of squeezing parameter S and increasing 
behaviour is observed for increasing values of mean ob-
servation constant βR.

●	 Bejan number Be demonstrated that fluid friction impact 
are stronger near the lower stretching wall and heat and 
mass transfer effect are prominent in the upper wall.
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