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Stability analysis of engineering/physical dynamic
systems using residual energy function

CEM CİVELEK

In this article, an engineering/physical dynamic system including losses is analyzed in
relation to the stability from an engineer’s/physicist’s point of view. Firstly, conditions for a
Hamiltonian to be an energy function, time independent or not, is explained herein. To analyze
stability of engineering system, Lyapunov-like energy function, called residual energy func-
tion is used. The residual function may contain, apart from external energies, negative losses as
well. This function includes the sum of potential and kinetic energies, which are special forms
and ready-made (weak) Lyapunov functions, and loss of energies (positive and/or negative)
of a system described in different forms using tensorial variables. As the Lypunov function,
residual energy function is defined as Hamiltonian energy function plus loss of energies and
then associated weak and strong stability are proved through the first time-derivative of residual
energy function. It is demonstrated how the stability analysis can be performed using the resid-
ual energy functions in different formulations and in generalized motion space when available.
This novel approach is applied to RLC circuit, AC equivalent circuit of Gunn diode oscilla-
tor for autonomous, and a coupled (electromechanical) example for nonautonomous case. In
the nonautonomous case, the stability criteria can not be proven for one type of formulation,
however, it can be proven in the other type formulation.

Key words: stability analysis, residual energy function as Lyapunov function, physical
dynamic systems, coupled engineering systems

1. Introduction

Energy functions to investigate the stability properties of dynamic systems
are known for a relatively long time while a non-tensorial approach is used.
When assuming the simplified theory, for which losses are ignored, it is nec-
essary to consider system dynamics and the energies within the system. The
Lyapunov’s Direct Method (also called second method) has much in common
with the theory of Hamiltonian systems. In such systems, the concept of energy
function plays a central role, where the energy function consists of summation
of available potential and kinetic energies. Here, Hamiltonians are of interest,
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which represent the sum of energies, constant or not with respect to time t, of the
entire system together with loss of energies. However, not every Hamiltonian is
the sum of energies. Moreover, Hamiltonian representing sum of energies does
not need to be constant. Depending on constraints and variables, different Hamil-
tonians are obtained, two of which represent the sum of energies. One of them is
constant with respect to the variable t, while the other is not. Also, one can not
find many engineering/physical examples in the scientific literature.

Basic and detailed introduction to Lyapunov’s second (or direct) method and
stability of motion are given in [1–8]. A Hamiltonian-type Lyapunov function
as a pure Hamiltonian consisting of the sum of potential and kinetic energies
are investigated in [9–12], where dissipation may also be included [11–12] .
However, the conditions to be met in order for a Hamiltonian to be the sum
of energy functions (potential and kinetic energies) are ignored. In some of the
works, e.g. [13–15], a stability analysis using the sum of potential and kinetic
energies, scalar energy-like function of the state more general than quadratic
forms or energy like Lyapunov functions is derived. Such a function may be
viewed as generalized Lyapunov energy function or generalized distance func-
tion, without considering the concept as energy function in form of the Hamil-
tonian where losses are not taken into account. An example where friction is
included is shown in [16], where the Lyapunov candidate is in the form of en-
ergy function. However, all the system energies (positive and negative) are not
covered in this energy function. The approach considering losses for stability
analysis using the sum of kinetic and potential energies including generalized
velocity-proportional (Rayleigh) dissipation function (in tensorial forms) is ex-
plained in [17]. The proper conditions for a Hamiltonian to be the sum of en-
ergy functions are given in [18] and this work, together with [19] are some
of the best sources on Lagrange and Hamiltonian formalisms and dissipative
force and energy in a lossy case. Considering losses in examples in an obvi-
ous way is presented in [20] together with Lagrangian and Hamiltonian control
systems.

In [21–22], detailed introduction to energy functions for coupled systems
as Lagrangians and Hamiltonians are given. These works reveal how different
forms of Lagrangians and Hamiltonians using tensor analysis are derived for
an engineering (or a physical) system in an analytical way. Some applications
and examples using Lagrangians of some multipoles and extended Hamiltonians,
particularly in electrical engineering is presented in [22]. The extended Hamilto-
nian obtained through extended Lagrangian, both of which are in tensor analytic
forms is shown in [23], where also equations of generalized motion in dissipative
cases are derived directly in different tensorial forms and formulations contain-
ing an example with higher order elements. [24–28] give the theory of electrical
engineering based on Lagrange and Hamilton formalisms including generalized
motion space. Negative resistance oscillators are given in [29].
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The existing approaches in literature suffer form a lack of clear formulation of
the energy function which includes all energies (positive and negative). A typical
method for derivation of a Lyapunov function is trial and error. However, there
are also natural Lyapunov functions as energy functions in a form of Hamil-
tonian plus loss of energies which we call Residual Energy Function (REF) in
autonomous case. It is still trial and error approach, when nonautonomous Ly-
punov candidate is to find using REF. To the best of our knowledge, a total energy
function, called REF as a Lyapunov candidate including dissipation is originally
presented in this paper to analyze an engineering/physical system treatment for
stability. For a system to be stable, REF must be positive definite, while its first
time-derivative has to be negative semidefinite. For asymptotic stability, it has to
be negative definite. The author hereby investigates the stability properties of a
system using REF with examples, time dependent or not that describes system
dynamics of the entire system in various tensorial forms and formulations. In
some cases, for example here in time dependent case, depending of formulation
type a negative definite function fulfilling the stability criteria may be available
while in other type of formulation may not.

2. Holonomic constraints and sum of energy functions as Hamiltonians

Relation between generalized coordinates qk(t), generalized velocities q̇k(t)
and time t is given in the following general vectorial form (the variables are
defined in connection with tensors: superscript k means contravariant while sub-
script k means covariant form, k ∈ N+, k = 1, . . . , f , f is the degree of freedom):

fI(q̃, ˙̃q, t) = 0,

q̃ = [q1(t), q2(t), . . . , q f (t)],
˙̃q = [q̇1(t), q̇2(t), . . . , q̇ f (t)],

(1)

where subscript I: 1 . . .K, K – number of the equations, K < 3 f , and whereas the
functions fI are continuous and differentiable with respect to their variables. The
constraints must be formulated in such a way that the equations below

fI = 0,
d fI

d t
= 0 (2)

of generalized motion to describe fulfill 2K limitations.
Holonomic constraints are special cases of the general form of (1), fI(q̃, t) =

0: holonomic rheonomic, fI(q̃) = 0: holonomic sclerenomic. Such equations are
(holonomic) kinematic relations. In every holonomic case (also called integrable,
but integrable does not mean holonomic), the degree of freedom can be reduced
depending on the relations between the generalized coordinates.
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The constraints which appear as velocity dependent are actually differential
equations that can be integrated to give simply holonomic constraints, e.g. in
electrical circuits, the constraints are integrable but not holonomic. However,
they can be modified by integration to give a holonomic constraint. Otherwise,
they are nonholonomic. Finally, a holonomic system is a dynamic system whose
constraint equations, if any, are all of the holonomic form.

In this study, H+ = H+(p, q̃, t) form of Hamiltonian and L+ = L+( ˙̃q, q̃, t)
form of Lagrangian are used to obtain measurable results. Here in this paper, the
Lagrangian L stands for the form of Lagrangian L+.

A system is called a Hamiltonian system, if there exists a function H+(p, q̃, t)
such that

˙̃q = ∇pH+(p, q̃, t), ṗ =−∇q̃H+(p, q̃, t), (3)

where ∇q̃H+ =

(
∂H+

∂q1

∂H+

∂q2 · · · ∂H+

∂q f

)
denotes the gradient of H+ with re-

spect to q̃, etc., and ∇ ˙̃qL=

(
∂L

∂ q̇1

∂L

∂ q̇2 · · · ∂L

∂ q̇ f

)
= [p1(t) p2(t) · · · p f (t)]= p

which is the generalized momentum vector. A Hamiltonian system consists of
2 f differential equations of first order and necessarily has an even dimension 2 f .
A necessary and sufficient condition for a function to be a Hamiltonian is

∇q̃(∇pH+)−∇p(∇q̃H+) = 0. (4)

In dissipative (or lossy) cases, equations of generalized motion are derived
either through (classical) Hamiltonian H+(p, q̃, t) and generalized velocity pro-
portional (Rayleigh) dissipative function D( ˙̃q) or directly through the extended
Hamiltonian H +(p, q̃, t) as below:

˙̃q = ∇pH+(p, q̃, t) ṗ = −∇q̃H+(p, q̃, t)−∇ ˙̃qD( ˙̃q)
= ∇pH

+(p, q̃, t), = −∇ ˙̃qH
+(p, q̃, t).

(5)

The scalar functions H+(p, q̃, t), H +(p, q̃, t) are assumed to have continuous
second derivatives.

A Hamiltonian may include external force(s) as negative potential func-
tion(s), which will not be treated in this paper.

2.1. Conservative case

If the kinetic energy T ( ˙̃q) of the Lagrangian L of a closed system, i.e. au-
tonomouos, is the only part containing ˙̃q, that is

a) The potential energy is independent of generalized velocity, i.e. V =V (q̃);
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b) The kinetic energy T ( ˙̃q) is a homogeneous quadratic function of ˙̃q (positive
definite quadratic form);

c) The Lagrangian L is invariant with respect to a change in the coordinate

time (homogeneity in time),
∂L

∂ t
= 0.

Then the Lagrangian takes the form with prerequisites as shown:

L(q̃, ˙̃q) = T ( ˙̃q)−V (q̃) whereas det
[
∇ ˙̃q(∇ ˙̃qL)

]
6= 0. (6)

And if the holonomic constraints are scleronom, then the Hamiltonian H+ can be
obtained through Legendre transform which is a constant with respect to time t.
And H+ is equal to sum of potential and kinetic energies, the energy is an integral
of generalized motion. With the following prerequisites in vector notation taken
into account

fI(q̃) = 0,
∂L

∂ t
= 0 ⇔ L = T ( ˙̃q)−V (q̃), det

[
∇ ˙̃q(∇ ˙̃qL)

]
6= 0. (7)

Legendre transform leads to Hamiltonian given below:

H+ = T ( ˙̃q)+V (q̃)

= T (p)+V (q̃)

= const
∣∣∣
t

⇔ Ḣ+ ≡ dH+

d t
=

∂H+

∂ t
= 0. (8)

A constant Hamiltonian H+ = H+(p, q̃) is a Jacobian function.

2.2. Nonconservative case

Provided that the potential energy does not depend on the generalized veloc-
ities and the holonomic constraints are sclerenomic, in cases where Lagrangian
L does depend explicitly on time t, the most general form of the Lagrangian in
this case is

L(q̃, ˙̃q, t) = T ( ˙̃q, t)−V(q̃, t) with det
[
∇ ˙̃q(∇ ˙̃qL)

]
6= 0. (9)

If the form of the Hamiltonian is either generalized position and velocity depen-
dent as

H+(q̃, ˙̃q, t) = T ( ˙̃q, t)+V(q̃, t) (10)

or as is usual in generalized momentum and position dependent form

H+(p, q̃, t) = T (p, t)+V(q̃, t) (11)
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then, the Hamiltonian H+ obtained through Legendre transform is not a constant
with respect to the variable time t, i.e. H+ does depend explicitly on the time t.
In this case H+ is equal to the sum of potential and kinetic energies, but not
constant. Symbolically, assuming the prerequsites shown below

fI(q̃) = 0,
∂L

∂ t
6= 0 ⇔ L = T ( ˙̃q, t)−V(q̃, t), det

[
∇ ˙̃q(∇ ˙̃qL)

]
6= 0. (12)

Legendre transform yields Hamiltonian

H+ = T (p, t)+V(q̃, t)

6= const
∣∣∣
t

⇔ dH+

d t
=

∂H+

∂ t
6= 0. (13)

In both cases, i.e. conservative and nonconservative ones, it is mathematically
possible that kinetic energy may also appear in generalized position dependent
form T ( ˙̃q, q̃) without disturbing energy properties of Hamiltonian depending on
the type of formulation.

3. Stability through residual energy function H+

In some of the literature, for example [13, 14], authors assert incorrectly that
the sum of kinetic and potential energies [assumed as (weak) Lyapunov func-
tion] of a system (Hamiltonian under certain conditions) as defined above in (7)
and (12), will decrease in time. Their calculations do not cover any (generalized)
velocity proportional dissipation function at all. In some other literature such
as [15] and [16], authors mention losses (dissipation functions), so as the lost
energy is shown while total energy functions including the dissipation are ex-
cluded. Total energy in this complete form is called Residual Energy Function.
The aim of this study is to complete the stability concept with dissipation func-
tion in a form of easy, practical and applicable manner so it is easy to follow.
As it is known, the time derivative of a conservative Hamiltonian is always zero,
i.e., marginal stability but not asymptotical stability is assured. A pure Hamil-
tonian system cannot be asymptotically stable. Hamiltonian only as the sum of
energy functions without loss of energies is not sufficient. Instead, the sum of the
potential and kinetic energy functions plus loss of energies must be used. Since
dissipative force(s) derived from generalized velocity proportional (Rayleigh)
dissipation function are negative in form

FD =−∇ ˙̃qD( ˙̃q), (14)
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so the loss of energy in a related dissipative element (also in accordance with
extended Euler-Lagrange differential equation) is negative as below:

−
∫ [

∂D( ˙̃q)
∂ q̇k

q̇k

]
d t. (15)

Then, the proposed REF is

H
+ = H+−

∫ [ f

∑
k=1

∂D( ˙̃q)
∂ q̇k

q̇k

]
d t, 0 < H

+ < ∞ ∀t ∈ R+
0 (16)

which is the sum of all energies plus loss of energy in a system and through the

relation p =
∂L

∂ q̇
, the dissipative function can be transformed into the generalized

momentum dependent form. Such an REF is: H+ = H
+(p, q̃) in autonomous

case and H
+ = H

+(p, q̃, t) in nonautonomous case. Thus, one must use (classi-
cal) Hamiltonian plus loss of energies that is REF of a system. We must also
distinguish between two cases of Hamiltonians as the sum of energy functions
defined in (8) and (13). All the energies and losses (positive and negative) may be
included in this term based on Hamiltonian H+ and generalized velocity propor-
tional Rayleigh dissipation function D, where [H+] = Watt.sec and [D+] = Watt.
For an engineering/physical system, this energy is converted into another form
(dissipation in heat, which is loss of energy) and this residual energy function
of the system in all forms must be equal to or less than a finite constant as time
changes (marginal stability) or decrease with time (asymptotic stability), i.e.

H
+(p, q̃)6 const

∣∣∣
t
. (17)

That means this energy never increases for the system to be in a stable state, al-
though it may vary in limited boundaries. The function H

+(p, q̃) can take zero
value only when p = q̃ = 0. This, together with the fact that H+(p, q̃) vanishes
with increasing time which has only one meaning: asymptotic stability. Alter-
nately, based on the behavior of the function H

+(p, q̃), we can draw conclusions
concerning the stability of the system. A Hamiltonian system, that is lossless,
cannot be asymptotically stable as its stability is in a sense marginal. We apply
Barbashin-Krasovskii-LaSalle (invariance) principle and its relation to Lyapunov
theory to this approach and arrive to the conclusion that: (p = q̃ = 0) is an iso-
lated critical point of an autonomous system, REF H

+ of which has the following
properties:

a) H
+(p, q̃)> 0 ∀pk 6= 0 and qk 6= 0, k ∈ {1, . . . , f},

b)
∂H+

∂qk
and

∂H+

∂ pk
exist ∀qk, pk ,

c) H
+(p, q̃) = 0, if p = q̃ = 0.

(18)
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Such a real valued scalar function H
+(p, q̃) is positive definite. Hence, energy in

a physical system is a positive definite function of the state and the rate of change
of the sum of kinetic and potential energies plus loss of energy. The energy re-
mains either constant or may oscillate between limited values in a marginal stable
system and decreases always with (positive) dissipation, i.e.

1. H
+(p, q̃) : positive definite,

2.
dH+

d t
≡ Ḣ

+(p, q̃)6 0

∀ pk 6= 0, qk 6= 0 ∈ R2 f > 0 : negative semidefinite.

(19)

That increases only if the system is unstable.
Similarly, we realize now that asymptotic stability could be predicted if the

second property in (19) is substituted by

Ḣ
+(p, q̃)< 0 ∀ pk, qk ∈ R2 f > 0. (20)

Also note that the above property, namely, the scalar function vanishes with in-
creasing time, is taken for guaranteed, provided that it is in negative definite
form, that is, Ḣ+ < 0 ∀t. In that case it is a strong Lyapunov function (asymp-
totic stability). If the weaker condition in the form Ḣ

+(p, q̃)6 0 is the case (weak
Lyapunov function), the stability is guaranteed while ‘asymptotic stability’ may
still be possible. For an engineering system to be marginally stable, the energy
rate may either be zero or may oscillate between limited values. For a system to
be asymptotically stable the energy rate is negative. The phase trajectories (loci)
in 2 f -dimensional phase space, are 2 f -dimensional ellipses when H

+ = const.
As time elapses, these ellipses either stay constant (marginal stability) or they
must inevitably shrink (spirals towards the origin: asymptotic stability), provided
that the system is stable.

If the REF depends explicitly on time t (nonautonomous case), by applying
Barbalat’s Lemma for the stability of time-varying systems, (19) and (20) are
adjusted as

H(p, q̃, t)>W (p, q̃) ∀ t > 0, ∀p, q̃ ∈ R2 f > 0

with [H(p, q̃, t)]
∣∣∣
p,q̃=0

= 0, (21)

where W (p, q̃) is a positive definite time independent function. This implies that
H(p, q̃, t) is also positive definite. For stability, the (first) time derivative of the
REF must fulfill

Ḣ(p, q̃, t)6 Ŵ (p, q̃), (22)
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where Ŵ (p, q̃) is a negative semidefinite time independent function, while for
asymptotic stability

Ḣ(p, q̃, t)< Ŵ (p, q̃) (23)

and Ŵ (p, q̃) has a negative definite form, which is sometimes not possible to find
as will be shown using the nonautonomous example.

Time derivative of autonomous REF H(p, q̃) can be interpreted geometrically
as follows:

Ḣ(p, q̃)≡ d
d t

H(p, q̃) =
d
d t

{
H+(p, q̃)−

∫ [ f

∑
k=1

∂D( ˙̃q)
∂ q̇k

q̇k

]
d t

}

=
f

∑
k=1

(
∂H+

∂ pk
ṗk +

∂H+

∂qk
q̇k

)
− d

d t

∫ [ f

∑
k=1

∂D( ˙̃q)
∂ q̇k

q̇k

]
d t

=−
f

∑
k=1

∂D( ˙̃q)
∂ q̇k

q̇k. (24)

With superscript T meanining transposed form, the gradient vector is introduced

∇p,q̃H+(p, q̃)≡ gradH+(p, q̃) =

=

(
∂H+

∂ p1

∂H+

∂ p2
· · · ∂H+

∂ p f

∂H+

∂q1

∂H+

∂q2 · · · ∂H+

∂q f

)T

(25)

which is a vector perpendicular to the H+ surfaces. It is defined as positive along
the direction where H+ increases. Its magnitude is a measure of the rate of in-
crease of H+ with respect to the generalized coordinates and generalized mo-
menta. Rewriting the first time derivative of an (autonomous) REF in (19) as
the scalar product of the gradient vector ∇p,q̃H+ and generalized force-velocity

vector (ṗ ˙̃q) one gets:

Ḣ(p, q̃) = (∇p,q̃H+).(ṗ ˙̃q)−
f

∑
k=1

∂D( ˙̃q)
∂ q̇k

q̇k

≡ (gradH+).(ṗ ˙̃q)−
f

∑
k=1

∂D( ˙̃q)
∂ q̇k

q̇k =−
f

∑
k=1

∂D( ˙̃q)
∂ q̇k

q̇k

=−
{[

∇ ˙̃qD( ˙̃q)
]T

. ˙̃q

}
≡−

{[
gradD( ˙̃q)

]T
. ˙̃q

}
(26)

since (∇p,q̃H+).(ṗ ˙̃q)≡ (gradH+).(ṗ ˙̃q) = 0, due to the properties of a Hamil-
tonian. That means: a lossless system is always marginally stable. On the other
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hand, using a similar approach for a positive dissipation function, the term given
below

∇ ˙̃qD( ˙̃q)≡ gradD( ˙̃q) =
∂D( ˙̃q)

∂ q̇k
(27)

is a vector perpendicular to the D surfaces and in view of the (19) for time inde-
pendent REF, one obtains

−
f

∑
k=1

∂D( ˙̃q)
∂ q̇k

q̇k =−
{[

∇ ˙̃qD( ˙̃q)
]T

. ˙̃q

}
≡−

{[
gradD( ˙̃q)

]T
. ˙̃q.

}
6 0 (28)

i.e., the angle θ between the gradient vector of Rayleigh dissipation function and

the generalized velocity vector is
3π

2
6 θ 6

π

2
, while the first time derivative for

nonautonomous REF is as what follows

Ḣ(p, q̃, t) =
∂H+

∂ t
−
{[

∇ ˙̃qD( ˙̃q)
]T

. ˙̃q

}

≡ ∂H+

∂ t
−
{[

gradD( ˙̃q)
]T

. ˙̃q

}
6 0, (29)

where −∇ ˙̃qD( ˙̃q)≡−gradD( ˙̃q) =−∂D( ˙̃q)
∂ q̇k

is taken from (or dissipated) and not

added to the system for a positive Rayleigh dissipation function.

4. Stability analysis using different form of energy functions

The ideas and approach used above related to stability analysis can also be
used exactly in the same manner, whenever different forms of the energy func-
tions are available or derivable. If, for example, the forms H−(p̃,q) and D(q̇) are
available where p̃ = (p1 p2 . . . p f ) and q = (q1 q2 . . . q f ), which are derived
using metric tensor [gi j] and its inverse [gi j], then the starting point is

H
−(p̃,q)6 const

∣∣∣
t

(30)

which yields for autonomous case

Ḣ
−(p̃,q) =

(
∇p̃,qH

−) .( ˙̃p q̇)≡ (gradH−).( ˙̃p q̇)

=−
f

∑
k=1

∂D(q̇)

∂ q̇k
q̇k =−

{
[∇q̇D(q̇)] .q̇

}
≡−{[gradD(q̇)] .q̇} (31)
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and for nonautonomous case

Ḣ
−(p̃,q, t) =

∂H−

∂ t
−
{
[∇q̇D(q̇)] .q̇

}
≡ ∂H−

∂ t
−{[gradD(q̇)] .q̇}6 0 (32)

when the generalized motion takes place in Euclidean Space. In Euclidean Space,
all the elements of metric tensor are constants, i.e. whenever one substitutes pk,
qk instead of pk, qk (the variable time t remains the same) it strictly implies that if
a dynamic system is stable in a chosen coordinate system, then it must be stable
in another coordinate system in Euclidean Space.

5. Application of the approach

5.1. RLC circuit

For the purpose of investigating the stability properties of a system, we will
consider an example of a passive system in the form of an electric circuit consist-
ing of RLC elements in series without any initial stored energy in energy storage
elements. First, using system theoretical approach for the system, the stability
properties will be shown. Then, the stability property will be determined using
the method proposed in this paper.

Charge formulation

Assume that for a circuit consisting of a resistor R > 0, inductor L∗ > 0 and a
capacitor C > 0 in series, the input of a system is the voltage u(t) and the output
is the current i(t). Applying Kirchoff Voltage Law to the circuit, one obtains

u(t) = Ri(t)+L∗d i(t)

d t
+

1
C

t∫

0

i(τ)dτ. (33)

The Laplace transform of the above equation is:

U(s) =

[
R+ sL∗+

1
sC

]
I(s). (34)

Thus the transfer/system function, which is the transfer admittance in this case, is

H(s) = Y (s) =
I(s)

U(s)
=

s

s2L∗+ sR+
1
C

. (35)
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The properties of the solutions of a second order equation yields

s1.s2 =
1

L∗C

s1 + s2 =− R

L∗





⇒ s1 < 0, s2 < 0, s1 6= s2 (36)

which clearly reveals (asymptotic) stability. Such an electric circuit has a de-
gree of freedom f = 1, which is equal to the number of independent variables.
The holonomic constraint is q̇ = q̇L = q̇C ⇒ q = qL = qC, so that the degree of
freedom can not be reduced depending on the relations between the generalized
coordinates. The Lagrange-dissipative or more concisely {L,D}-model in terms
of charge formulation without external force(s) together with the prerequisite for
Legendre transform of this system are as follows:

{L,D}=





L∗(q̇)2

2
− (q)2

2C
,

R
(q̇)2

2
,

det

[
∂ 2L

∂ (q̇)2

]
= det(L∗) 6= 0 ∀L∗ > 0,

(37)

where q is the charge, q̇ is the current. So, the related REF in generalized position
and velocity dependent form is

H(q̇,q) =
L∗(q̇)2

2
+

(q)2

2C
−
∫

R(q̇)2d t. (38)

The REF in generalized momentum and generalized position dependent form for
our case is

H(p,q) =
(p)2

2L∗ +
(q)2

2C
−
∫

R

(L∗)2 (p)2d t (39)

and it fulfills all the properties of positive definiteness for generalized motion
to take place, where the Hamilton function in both cases, H = H(q̇,q) and H =
H(p,q), are available as Jacobian integrals. The first time derivative of the REF
is as follows:

Ḣ=−R(q̇)2 =− R

(L∗)2 (p)2 (40)

which is in negative definite form. It means that the system is asymptotically
stable.
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Flux formulation

When the variables are defined in terms of flux formulation, the variables in
charge formulation must be substituted in this case as shown below:

u(t)→ i(t), q → ψ, q̇ → ψ̇ , L∗ →C, C → L∗, R → G.

The degree of freedom in flux formulation is f = 1 again. And the holonomic
constraint is as given above. The {L,D}-model with the prerequisit for Legendre
transform yields in what follows:

{L,D}=





C(ψ̇)2

2
− (ψ)2

2L∗ ,

G
(ψ̇)2

2
,

det

[
∂ 2L

∂ (ψ̇)2

]
= det(C) 6= 0 ∀ C > 0,

(41)

where ψ is the flux, ψ̇ is the voltage. So the related REF in generalized momen-
tum and position dependent form for this case is

H(ψ̇ ,ψ) =
C(ψ̇)2

2
+

(ψ)2

2L∗ −
∫

G(ψ̇)2d t (42)

and in generalized momentum and position dependent form for this case is

H(p,ψ) =
(p)2

2C
+

(ψ)2

2L∗ −
∫

G

(C)2 (p)2d t. (43)

That fulfills again all the properties of positive definiteness, where the Hamilto-
nian in both cases, H = H(ψ̇,ψ) and H = H(p,ψ). The first time derivative of
the REF is

Ḣ=−G(ψ̇)2 =− G

(C)2 (p)2 (44)

which is in negative definite form that in turn means that the system is (asymp-
totically) stable.

5.2. AC equivalent circuit of Gunn diode oscillator

For a Gunn diode oscillator, an equivalent circuit is obtained when adding
as a nonlinear element, negative (differential) resistance −r in series to the RLC
elements assuming current i(t) flowing in the mesh and the voltage source is
removed. Using KVL one obtains for AC current the following differential equa-
tion

d 2i

d t2 +
R− r

L∗
d i

d t
+

1
L∗C

i = 0. (45)
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The solution of this equation is given below

i(t) = i(0)eαt cos(ωt +ϕ), i(0) 6= 0;

α =
r−R

2L∗ , ω =

√
1

L∗C
−
(

r−R

2L∗

)2

.
(46)

As can be seen, the stability is given when

α =
r−R

2L∗ 6 0 ⇒ r ¬ R ⇒
{

r = R : marginal stability,
r < R : asymptotic, stability.

(47)

Charge formulation

For such a circuit, REF in charge formulation is

H(p,q) =
(p)2

2L∗ +
(q)2

2C
−
∫

(R− r)

(L∗)2 (p)2d t (48)

which is positive definite. And the first time derivative of REF is negative
semidefinite as below:

Ḣ=−(R− r)

(L∗)2 (p)2 6 0 ⇒ r 6 R (49)

that overlaps with the result found through the solution of the differential equa-
tion.

Flux formulation

In this kind of formulation, the variables are substituted as follows:

i(t)→ u(t), L∗ →C, C → L∗, R → G,

r → g =
1
r

: negative (differential) conductance.

And this differential equation shows exactly the same stability properties for

g 6 G. (50)

For this kind of a circuit, REF in flux formulation is

H(p,ψ) =
(p)2

2C
+

(ψ)2

2L∗ −
∫

G−g

(C)2 (p)2d t (51)

which is positive definite. And the first time derivative of REF is negative
semidefinite as below:

Ḣ=−G−g

(C)2 (p)2 6 0 ⇒ g 6 G (52)

that overlaps with the result found through the solution of the differential equa-
tion.
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5.3. Electromechanical system

Another example is an electromechanical time dependent system as a coupled
one presented in the Fig. 1.

R

Eq

tvxd

A
C

0+
=  

k  

L
*

tv0

d 

x  

m  

B  

.

b  

Figure 1: An electromechanical system: The upper plate of the variable con-
denser is free to move along a straight line with constant velocity v0 under
the action of a spring, damper and the electric field between them. B: damper,
k: spring, L∗: inductor, R: resistor

Charge formulation

The generalized coordinates here are: q1 = distancex, q2 = chargeq. The de-
gree of freedom for this system is f = 2 and the constraint is holonomic sclero-
nomic, f ( ˙̃q) = 0 since generalized velocities (velocity and current) are propor-
tional with each other. So are the generalized coordinates: q̇1 ∝ q̇2 ⇒ q1 ∝ q2.
The potential function is independent of generalized velocity, V 6= V ( ˙̃q). The
{L,D}-model with prerequisites for Hamiltonian in translational-charge formu-
lation is

{L,D}=





m(q̇1)2 +L∗(q̇2)2

2
−

k(q1 − v0t)2+
(q2)2(d −q1 + v0t)

Aε
2

,

B
(q̇1)2

2
+R

(q̇2)2

2
,

(53)
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where

det

(
m 0
0 L∗

)
6= 0 ∀ m 6= 0 and/or L∗ 6= 0. (54)

The Hamiltonian derived by means of Legendre transform fulfilling the property
(4), consists of the sum of energies but it is not constant in this case since it is
dependent on time t in an explicit way. The dissipation energy can be calculated
easily and the sum of the kinetic and potential energy functions of quadratic
forms (which is Hamiltonian) plus the dissipation energy is REF given as below

H
+(p, q̃, t) =

(p1)
2

2m
+

(p2)
2

2L∗ +
k(q1 − v0t)2+

(q2)2(d −q1 + v0t)

Aε
2

−
∫ [

B
( p1

m

)2
+R

( p2

L∗

)2
]

d t, (55)

where d − q1 > 0, 0 6 v0t 6 q1, satisfying the condition given in (21) with a
positive definite time independent function,

W1(p, q̃) =
1
2

[
(p1)

2

m
+

(p2)
2

L∗ +
(q2)2(d−q1)

Aε

]

−
∫ [

B
( p1

m

)2
+R

( p2

L∗

)2
]

d t ∀ A, d ∈ R+. (56)

The first time derivative of the REF is as follows:

Ḣ
+(p, q̃, t) = v0

[
(q2)2

2Aε
− k(q1 − v0t)

]
−
[

B
( p1

m

)2
+R

( p2

L∗

)2
]
. (57)

Since 0 ¬ v0t ¬ q1, a negative (semi)definite form satisfying stability criteria for
this term can not be found.

The metric tensor and its inverse for this case are

[gi j] =
1
K

(
m 0
0 L∗

)
, [gi j] = K




1
m

0

0
1
L∗


 (58)

which means that the generalized motion takes place in Euclidean space, where
the elements of the metric tensor are constants.

Using the other form of Hamiltonian and velocity proportional (Rayleigh)
dissipation function, i.e. H− and D(q̇k,qk) one gets



STABILITY ANALYSIS OF ENGINEERING/PHYSICAL DYNAMIC SYSTEMS
USING RESIDUAL ENERGY FUNCTION 217

H
−(q̇,q, t) =

K2

2

[
(q̇1)

2

m
+

(q̇2)
2

L∗

]

+
1
2


k

(
K

m
q1 − v0t

)2

+

(
K

L∗q2

)2(
d − K

m
q1 + v0t

)

Aε




−
∫ [

B
K2

m2 (q̇1)
2 +R

K2

(L∗)2 (q̇2)
2
]

d t, (59)

H
−(p̃,q, t) =

1
K2

[
m(p1)2 +L∗(p2)2]

+
1
2


k

(
K

m
q1 − v0t

)2

+

(
K

L∗q2

)2(
d − K

m
q1 + v0t

)

Aε




−
∫ [

B

(
p1

K

)2

+R

(
p2

K

)2
]

d t. (60)

For this form, a negative (semi) definite relationship for stability criteria can not
be found, which was already explained for the other form.

Flux formulation

Using flux formulation instead of charge formulation, i.e. q2 = ψ , one ob-
tains: the degree of freedom is also f = 2 and the constraint is holonomic sclero-
nomic, f ( ˙̃q) = 0, since generalized velocities (velocity and voltage) are propor-
tional again and so are the generalized coordinates, q̇1 ∝ q̇2 = ψ̇ ⇒ q1 ∝ q2 = ψ ,
and the potential function is independent of generalized velocity, V 6=V ( ˙̃q). The
{L,D}-model with prerequisites for Hamiltonian is

{L,D}=





1
2

[
m(q̇1)2 +

Aε

d −q1 + v0t
(q̇2)2

]
− 1

2

[
k(q1)2 +

(q2)2

L∗

]
,

B
(q̇1)2

2
+G

(q̇2)2

2
,

(61)

where

det




m 0

0
Aε

d −q1 + v0t


 6= 0 ∀ m 6= 0 and/or A 6= 0. (62)
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Thus the related REF is as follows:

H
+(p, q̃, t) =

1
2

[
(p1)

2

m
+

d−q1 + v0t

Aε
(p2)

2
]
+

1
2

[
k(q1)2 +

(q2)2

L∗

]

−
∫ [( p1

m

)2
B+

(
d −q1 + v0t

Aε
p2

)2

G

]
d t. (63)

As can be seen, beside of time variable, the kinetic energy is also in general-
ized position dependent form T ( ˙̃q, q̃, t) or T (p, q̃, t) which is responsible for a
(generalized) position dependent metric tensor, i.e.

[gi j] =




m 0

0
Aε

(d −q1 + v0t)


 . (64)

That means the generalized motion takes place in noneuclidean space. This prob-
lem will not be handled any further. Instead, the literatures [24–26] are to be
referred. The condition in (21) with a positive definite quadratic form

W2(p, q̃) =
1
2

[
(p1)

2

m
+

(d−q1)

Aε
(p2)

2 + k(q1)2 +
(q2)2

L∗

]

−
∫ [( p1

m

)2
B+

(
d −q1

Aε
p2

)2

G

]
d t (65)

is satisfied. The first time derivative of the REF in this case is

Ḣ
+(p, q̃, t) =

v0

2Aε
(p2)

2 −
[( p1

m

)2
B+

(
d −q1 + v0t

Aε
p2

)2

G

]
(66)

which is a constant related the variable q2 = ψ . Equation (23) is fulfilled with
the negative definite term given by

Ŵ2(p, q̃) =
v0

2Aε
(p2)

2 −
[( p1

m

)2
B+

(
d −q1

Aε

)2

(p2)
2

]
(67)

prerequest that the following inequality is valid:
[( p1

m

)2
B+

(
d −q1

Aε

)2

(p2)
2

]
>

v0

2Aε
(p2)

2. (68)

That is, the system must be (asymptotic) stable.
It is not surprising that for this system, the origin is asymptotically stable,

provided that the input goes to zero, since it should be expected that:
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a) in translational-charge formulation, the distance and the current (so the
time dependent charge),

b) in translational-flux formulation, the distance and the voltage (so the time
dependent flux).

decay to zero with time, due to consumption of energy in the resistor and the
damper.

6. Conclusions

In this research paper, another stability analysis approach for engineer-
ing/physical systems is presented. The method is based on REF concept which
consists of Hamiltonian energy function plus loss of energy. The conditions for
a Hamiltonian, whether time dependent or not, as the sum of energy functions of
an engineering/physical system, is also explained. It is shown that stability anal-
ysis can be achieved using REF consisting of Hamiltonian (representing the sum
of the potential and the kinetic energies of an engineering/physical system which
is not always the case) plus loss of energies. For an engineering/physical system
Hamiltonian of which represents the sum of energies of a system, stability anal-
ysis can be carried out very efficiently using such a Hamiltonian and generalized
velocity proportional (Rayleigh) dissipation function. As can be seen, the losses
play a significant role in the equations and are never to be ignored for a complete
stability analysis, since such a Hamiltonian is responsible for marginal stability
while the REF stands for stability in general. The same approach is applicable, if
the other forms of Hamiltonian and (Rayleigh) dissipation function, e.g. H− and
D(qk) are used alternatively.

In virtue of examples given herein, how to apply the approach was demon-
strated. A stable system in a formulation type and generalized motion space re-
mains also stable in the other type of formulation and generalized motion space
(when available). Additionally, using an electromechanical example in differ-
ent formulations, it was shown that negative definite relation satisfying stability
criteria may be obtained or not. Application of formulation type depending on
problem type and further applications of the method to find the stability of an
engineering/physical problem need further studies.
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