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An extension of Klamka’s method to positive descriptor
discrete-time linear systems with bounded inputs

TADEUSZ KACZOREK

The minimum energy control problem for the positive descriptor discrete-time linear sys-
tems with bounded inputs by the use of Weierstrass-Kronecker decomposition is formulated
and solved. Necessary and sufficient conditions for the positivity and reachability of descriptor
discrete-time linear systems are given. Conditions for the existence of solution and procedure
for computation of optimal input and the minimal value of the performance index is proposed
and illustrated by a numerical example.

Key words: descriptor, positive, discrete-time, linear, system, Weierstrass-Kronecker de-
composition, minimum energy control

1. Introduction

A dynamical system is called positive if its trajectory starting from any non-
negative initial condition state remains forever in the positive orthant for all non-
negative inputs. An overview of state of the art in positive system theory is given
in the monographs [8, 19] and in the papers [11, 20–24]. Models having positive
behavior can be found in engineering, economics, social sciences, biology and
medicine, etc.

Descriptor (singular) linear systems were considered in many papers and
books [1–7, 9, 21, 31–33]. The positive standard and descriptor systems and
their stability have been analyzed in [19, 23]. Descriptor positive discrete-time
and continuous-time nonlinear systems have been analyzed in [11].

The minimum energy control problem for standard linear systems has been
formulated and solved by J. Klamka [27–29] and for 2D linear systems with
variable coefficients in [27]. The relative controllability and minimum energy
control problem of linear systems with distributed delays in control has been in-
vestigated by Klamka in [30]. The minimum energy control of fractional positive
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linear systems has been addressed in [14, 15] and for positive discrete-time lin-
ear systems in [10, 13, 16, 18, 26]. The minimum energy control problem for
positive electrical circuits has been investigated in [17].

In this paper the minimum energy control problem for positive descriptor
discrete-time linear systems with bounded inputs by the use of Weierstrass-
Kronecker decomposition will be formulated and solved.

The paper is organized as follows. In section 2 Weierstrass-Kronecker de-
composition theorem for regular pencil and conditions for the reachability of
positive systems are recalled. Necessary and sufficient conditions for the positiv-
ity of the descriptor linear systems are given in section 3. The minimum energy
control problem for positive descriptor systems with bounded inputs is formu-
lated and solved in section 4. Concluding remarks are given in section 5.

The following notation will be used: ℜ – the set of real numbers, ℜn×m –
the set of n×m real matrices, ℜn×m

+ – the set of n×m matrices with nonnegative
entries and ℜn

+ =ℜn×1
+ , In – the n×n identity matrix, Z+ – the set of nonnegative

integers.

2. Preliminaries

Consider the descriptor discrete-time linear system

Exi+1 = Axi +Bui , i ∈ Z+ = {0,1, . . .}, (1)

where xi ∈ ℜn, ui ∈ ℜm are the state and input vectors and A ∈ ℜn×n, B ∈ ℜn×m.
It is assumed that detE = 0 and

det[Ez−A] 6= 0 for some z ∈C (the field of complex numbers). (2)

It is well-known [12, 25] that if (2) holds then there exist nonsingular matrices
P1,P2 ∈ ℜn×n such that

P1[Ez−A]P2 =

[
In1z−A1 0

0 Nz− In2

]
, A1 ∈ ℜn1×n1 , N ∈ ℜn2×n2 , (3)

where n1 = deg{det[Ez−A]}, n2 = n−n1 and N is the nilpotent matrix with the
index µ , i.e. Nµ−1 6= 0, Nµ = 0.

The matrices P1 and P2 can be computed using procedures given in [12,
25, 32].

Premultiplying (1) by the matrix P1 and introducing the new state vector

x̄i =

[
x̄1,i
x̄2,i

]
= P−1

2 xi, x̄1,i ∈ ℜn1, x̄2,i ∈ ℜn2 (4)
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and using (4) we obtain

P1EP2P−1
2 xi+1 = P1AP2P−1

2 xi +P1Bui (5)

and
x̄1,i+1 = A1x̄1,i +B1ui , (6a)

Nx̄2,i+1 = x̄2,i +B2ui , (6b)

where

P1B =

[
B1
B2

]
, B1 ∈ ℜn1×m, B2 ∈ ℜn2×m. (6c)

Theorem 1 The solution x̄1,i of the equation (6a) has the form

x̄1,i = Ai
1x̄10 +

i−1

∑
k=1

Ai−k−1
1 B1uk . (7)

Proof. The proof is given in [12].

Theorem 2 The solution x̄2,i of the equation (6b) for zero initial conditions x̄20 =
0 has the form

x̄2,i =−
µ−1

∑
k=0

NkB2ui+k . (8)

Proof. The proof is given in [12].

Definition 1 The positive descriptor discrete-time linear system (1) is called
reachable in q steps (q ¬ n) if for every given final state x f ∈ ℜn

+ there exists
an input sequence uk ∈ ℜm

+, k = 0,1, . . . ,q−1 which steers the state of the system
from zero initial condition x0 = 0 to x f .

A real square matrix is called monomial if each its row and each its column
contains only one positive entry and the remaining entries are zero.

Theorem 3 The descriptor discrete-time linear system (1) is reachable in q steps
if and only if the matrices

[B1 A1B1 · · · An1−1
1 B1], (9)

[B2 NB2 · · · Nµ−1B2] (10)

contain full rank monomial matrices.

Proof. The proof is given in [12].
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3. Positivity of the descriptor systems

Definition 2 The descriptor system (1) is called (internally) positive if xi ∈ ℜn
+,

i ∈ Z+ for any x0 ∈ ℜn
+ and all inputs ui ∈ ℜm

+, i ∈ Z+.

Theorem 4 The descriptor system (1) is positive if and only if the following
conditions are satisfied

(1) P2 ∈ ℜn×n
+ is monomial,

(2) A1 ∈ Mn1 , B1 ∈ ℜn1×m
+ ,

(3) −B2 ∈ ℜn2×m
+ .

Proof. . It is well-known [19] that P−1
2 ∈ ℜn×n

+ if and only if P2 ∈ ℜn×n
+ is mono-

mial matrix. From (4) we have x̄i = P−1
2 xi ∈ ℜn

+ if and only if xi ∈ ℜn
+ for i ∈ Z+.

The standard subsystem (6a) is positive if and only if the condition 2) is satis-
fied [19]. From (8) it follows that x̄2,i ∈ ℜn2

+ if and only if −B2 ∈ ℜn2×m
+ since

N ∈ ℜn2×n2
+ and ui ∈ ℜm

+ for i ∈ Z+. Therefore, the descriptor system (1) is posi-
tive if and only if the three conditions are satisfied.

Example 1 Consider the descriptor linear system (1) with the matrices

E =



−0.5 0 1 0
0.25 0 0 1
−0.5 0 1 0.5

0 0 0 0.5


, A =




1.5 0 −2 0
0 0.2 1 0

1.5 0.1 −2 −0.5
0 0.1 0 0.5


, B =




−1
0.5
−0.5
−0.5


. (11)

It is easy to check that the pencil is regular since

det[Ez−A] = 0.025z2−0.15 6= 0. (12)

In this case

P1 =




3 2 −2 −2
2 2 −2 −2
−1 0 1 1
1 0 −1 1


, P2 =




0 2 0 0
0 0 5 0
1 0 0 0
0 0 0 1


 (13)

and

P1EP2 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0


, P1AP2 =




0 3 0 0
2 0 0 0
0 0 1 0
0 0 0 1


, P1B =




0
1
0
−1


,

N =

[
0 1
0 0

]
, A1 =

[
0 3
2 0

]
, B1 =

[
0
1

]
, −B2 =

[
0
1

]

n1 = n2 = 2, m = 1.

(14)
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Therefore, by Theorem 4 the descriptor system (1) with (11) is positive.
Using (9) and (10) for (14) we obtain the monomial matrices

[B1 A1B1] =

[
0 3
1 0

]
, (15)

[B2 NB2] =

[
0 2
2 0

]
. (16)

Therefore, the descriptor system (1) with (11) is reachable in q = 2 steps.

4. Minimum energy control of the descriptor systems

Consider the positive reachable in q steps descriptor system (1) and the per-
formance index

I(u) =
q−1

∑
k=0

uT
k Quk , (17)

where uk ∈ ℜm
+ and Q ∈ ℜm×m

+ is a symmetric positive defined matrix.
The minimum energy control problem can be stated as follows: Given the

matrices E, A, B of (1), the final state x f ∈ ℜn
+ and the matrix Q of the perfor-

mance index (17), find an input sequence uk ∈ ℜm
+, k = 0,1, . . . ,q−1 satisfying

the condition

uk <U (U ∈ ℜm
+ is given) for k = 0,1, . . . ,q−1 (18)

that steers the state vector of the system from x0 = 0 to x f ∈ ℜn
+ and minimizes

the performance index (17).
From the block-diagonal structure of matrices P1EP2 and P1AP2 it follows

that minimum energy control problem can be applied to both subsystems (6)
separately (Fig. 1). The minimum energy control problem can be stated as fol-
lows.

Given the matrices A1 ∈ Mn1 , B1 ∈ ℜn1×m
+ , B2 ∈ ℜn2×m

+ , N ∈ ℜn2×n2
+ ,

Qk ∈ ℜm×m
+ of the performance matrix (17) and x f ∈ ℜn

+, find an input sequence

ui =

[
u1,i
u2,i

]
∈ ℜ

(l+µ)m
+ , where max(l+µ) = q, u1,k ∈ ℜlm

+ , k = 0,1, . . . , l−1 and

u2, j ∈ℜ
µm
+ , j = 0,1, . . . ,µ−1, that steers the state vector from x0 = 0 to x f ∈ ℜn

+
and minimizes performance index (17).

Let us first consider the subsystem (6a). To solve the problem we define the
matrix

Wl = RlQ̃
−1
1 RT

l ∈ ℜn1×n1
+ , (19)
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Figure 1: Descriptor discrete-time linear system

where Rl is the reachability matrix defined by

Rl = [B1 A1B1 · · · An1−1
1 B1] (20)

and
Q1 = blockdiag[Q−1

1 · · · Q−1
1 ] ∈ ℜlm×lm

+ . (21)

If the system (1) is reachable in q steps then the input sequence

ul =




ul−1
ul−2

...
u0


= Q−1

1 RT
l W−1

l x̄1, f ∈ ℜlm
+ (22)

steers the subsystem (6a) from x̄10 = 0 to x̄1, f since

x̄1,l = Rlul = RlQ
−1
1 RT

l W−1
l x̄1, f =WlW

−1
l x̄1, f = x̄1, f . (23)

Now let us consider the subsystem (6b). To solve the problem for the subsystem
(6b) we define the matrix

Wµ = RµQ−1
2 RT

µ ∈ ℜn2×n2
+ , (24)

where Rµ is the reachability matrix defined by

Rµ = [B2 NB2 · · · Nµ−1B2] (25)

and
Q2 = blockdiag[Q−1

2 · · · Q−1
2 ] ∈ ℜ

µm×µm
+ . (26)

If the system (1) is reachable in q steps then the input sequence

uµ =




uµ−1
uµ−2

...
u0


= Q−1

2 RT
µW−1

µ x̄2, f ∈ ℜ
µm
+ (27)
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steers the subsystem (6b) from x̄20 = 0 to x̄2, f since

x̄2,µ = Rµ ûµ = RµQ−1
2 RT

µW−1
µ x̄2, f =WµW−1

µ x̄2, f = x̄2, f . (28)

Finally, we define the matrices

Q =

[
Q1 0
0 Q2

]
, Rq =

[
Rl 0
0 Rµ

]
, Wq =

[
Wl 0
0 Wµ

]
(29)

and the input sequence can be computed from

ûq =

[
ul
uµ

]
= Q−1vRT

qW−1
q x̄ f ∈ ℜ

qm
+ . (30)

The vector

x̄ f =

[
x̄1, f
x̄2, f

]
, x̄1, f ∈ ℜn1

+ , x̄2, f ∈ ℜn2
+ (31)

is related with x f ∈ ℜn
+ by (4).

Theorem 5 Let the positive system (1) be reachable in q steps and ūi ∈ ℜqm
+ ,

i = 0,1, . . . ,q−1 be an input sequence satisfying (18) that steers the state of the
system (1) from x0 = 0 to x f ∈ ℜn

+. Then the input sequence (30) satisfying (18)
also steers the state of the system from x0 = 0 to x f ∈ ℜn

+ and minimizes the
performance index (17), i.e. I(û) ¬ I(ū). The minimal value of the performance
index (11) is given by

I(û) = xT
f W

−1
q x f , (32)

Proof. The proof is similar to the proof in [13, 19].
If m = 1 then the matrix

Rµ =−[B2 NB2 · · · Nµ−1B2] ∈ ℜn2×n2
+ (33)

is monomial. From (8) we have

x̄21 = Rµuµ (34)

and
uµ = R−1

µ x̄2i ∈ ℜn2
+ . (35)

Note that (35) should satisfy the condition (18). Therefore, the problem has a
solution if and only if uµ <U .

In general case when m > 1 the matrix Rµ has µm monomial columns and
the equation (34) has the solution

uµ = R̄µ x̄2i ∈ ℜn2
+ , (36)
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where

R̄µ = RT
µ

[
Rµ RT

µ

]−1
+Rµ

{
In2 −RT

µ

[
RµRT

µ

]−1
Rµ

}
K (37)

and K ∈ ℜn2×n2
+ is arbitrary matrix.

Therefore, the problem has a solution if and only if uµ <U and the following
theorem has been proved.

Theorem 6 The minimum energy control problem for the positive descriptor sys-
tem with bounded inputs has a solution only if uµ < U, where uµ is defined by
(36).

The optimal input sequence (30) and the minimal value of the performance
index (32) can be computed by the use of the following procedure.

Procedure 1

Step 1. Knowing E,A ∈ ℜn×n, B ∈ ℜn×n find matrices P1,P2 ∈ ℜn×n and us-
ing (3), (6c) compute A1 ∈ Mn1 , B1 ∈ ℜn1×m

+ , B2 ∈ ℜn2×m
+ , N ∈ ℜn2×n2

+ .

Step 2. Knowing the matrix Q1 and using (19)–(20) compute the matrices Rl
and Wl .

Step 3. Knowing the matrix Q2 and using (24)–(25) compute the matrices Rµ

and Wµ .

Step 4. Using (4) find the vector x̄ f for given x f .

Step 5. Using (29) and (30) find the desired input sequence ui ∈ ℜ
qm
+ , i =

0,1, . . . ,q−1.

Step 6. Using (32) compute the minimal value of the performance index.

Example 2 (Continuation of Example 1)
For the positive system (1) with (11) find an input sequence uk ∈ ℜm

+, k =
0,1, . . . satisfying the condition (18) with

uk <
1
3
, k = 0,1, . . . (38)

that steers the state of the system from x0 = 0 to x f = [2 1 1 2]T and minimizes
the performance index (17) for

Q = diag[2 2 2 2]. (39)

Using Procedure 1 we obtain for the subsystem (A1, B1) the following.
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Step 1. In this case the matrices A1, B1, B2 and N are given by (13) and

x̄i = P−1
2 xi =




0 0 1 0
0.5 0 0 0
0 0.2 0 0
0 0 0 1







2
1
1
2


=




1
1

0.2
2


 . (40)

Step 2. Taking into account that the reachability matrix

R1l = [B1 A1B1 · · · Al−1
1 B1] =

[
0 3 0 18 · · ·
1 0 6 0 · · ·

]
(41)

has only monomial columns and using (19) we obtain

W1l = R1lQ
−1
1l RT

1l =

[
0 3 0 18 · · ·
1 0 6 0 · · ·

]
diag[0.5 0.5 0.5 · · · ]




0 1
3 0
0 6

18 0
...

...




=
1
2

[
9+182 + . . . 0
0 1+62 + . . .

]
∈ ℜ2×2

+ . (42)

Step 3. Using (22) and (41)-(42) we obtain the input

û2 =

[
u1
u0

]
= Q−1

12 RT
12W−1

12 x̄1, f

=

[
0.5 0
0 0.5

][
0 1
3 0

][
2/9 0

0 2

][
1
1

]
=

[
1
2
3

]
(43)

which does not satisfy the condition (38). Therefore, we compute

û3 =




u2
u1
u0


= Q−1

13 RT
13W−1

13 x̄1, f

=




0.5 0 0
0 0.5 0
0 0 0.5






0 1
3 0
0 6







2
9

0

0
2
37



[

1
1

]
=




1
37
1
3
6

37



. (44)
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The input (44) does not satisfy the condition (38) and we continue the procedure

û4 =




u3
u2
u1
u0


= Q−1

14 RT
14W−1

14 x̄1, f

=




0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5







0 1
3 0
0 6

18 0







2
9+182 0

0
2

37



[

1
1

]
=




1
37
3

9+182

6
37
18

9+182




. (45)

The input (45) satisfies the condition (38) and by Theorem 5 is the optimal one
for the subsystem (6a).

Step 4. The minimal value of the performance index (17) for the subsystem
(6a) is

I1(û4) = x̄T
1, f W

−1
14 x̄1, f = [1 1]




2
9+182 0

0
2

37



[

1
1

]
=

2
9+182 +

2
37

. (46)

Now using Procedure 1 for the subsystem (6b) we obtain the following.
Step 2. Using (14) and (24)–(25) we obtain

Rµ =−[B2 NB2 · · · Nµ−1B2] =

[
0 1
1 0

]
(47)

and

Wµ = Q−1
2 RT

µW−1
µ x̄2, f =

[
0 1
1 0

][
0.5 0
0 0.5

][
0 1
1 0

]
=

[
0.5 0
0 0.5

]
. (48)

Step 3. Taking into account (47) and (48) we obtain the input

uµ = Q−1
2 RT

µW−1
µ x̄2, f =

[
0.5 0
0 0.5

][
0 1
1 0

][
2 0
0 2

][
0.2
0.2

]
=

[
0.2
0.2

]
(49)

which satisfy the condition (38).
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Therefore, in this case the optimal input for system (1) with (11) is given by

ui =





u1i for i = 0,1,2,3,

u2i =





kiui for i = 0,1 and

0 for i = 2,3, k0 =
0.2(9+182)

18
,

0.2 ·37
6

.

(50)

The minimal value of the performance index (32) of the system is

I(û) = I1(û4)+ I2(uµ), (51)

where I1(û4) is given by (46) and

I2(uµ) = x̄T
2, fW

−1
µ x̄2, f = [0.2 0.2]

[
2 0
0 2

][
0.2
0.2

]
= 0.16. (52)

5. Concluding remarks

Necessary and sufficient conditions for the reachability of the positive de-
scriptor discrete-time linear systems have been given (Theorem 4). The mini-
mum energy control problem for the descriptor discrete-time linear systems by
the use of Weierstrass-Kronecker decomposition has been formulated and solved
(Theorems 5 and 6). A procedure for computation of the optimal input and the
minimal value of the performance index has been proposed. The effectiveness
of the procedure has been demonstrated on the example of positive descriptor
discrete-time linear system.

The presented method can be extended to positive fractional descriptor
continuous-time linear systems with bounded inputs.
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