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Motion planning for nonholonomic systems
with earlier destination reaching

ADAM RATAJCZAK

The motion planning problem consists in finding a control function which drives the sys-
tem to a desired point. The motion planning algorithm derived with an endogenous configura-
tion space approach assumes that the motion takes place in an arbitrary chosen time horizon.
This work introduces a modification to the motion planning algorithm which allows to reach the
destination point in time, which is shorter than the assumed time horizon. The algorithm deriva-
tion relies on the endogenous configuration space approach and the continuation (homotopy)
method. To achieve the earlier destination reaching a new formulation of the task map and the
task Jacobian are introduced. The efficiency of the new algorithm is depicted with simulation
results.

Key words: motion planning, nonholonomic, endogenous configuration space, homotopy,
continuation, earlier destination reaching

1. Introduction

According to [8, Formulation 14.1] the motion planning task relies on find-
ing a control function which leads the system from a certain initial position to
a desired destination with the required accuracy. Moreover, there is an assump-
tion that the time is unbounded t ∈ [0,∞) and exists some termination action
where all the velocities in the system are equal to zero. Finally, there exists some
t > 0 where the desired point is reached and the current controls are equal to the
termination actions.

The motion planning algorithms derived from the endogenous configuration
space approach [15] take the time interval as an input parameter, which have
to be bounded. The resultant motion needs the whole time interval to reach the
destination point. The selection of the particular value of the time horizon is
relatively inconvenient. It should take into account the resultant path length, the
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values of control function etc. In this paper, we present a new motion planning
algorithm which is able to reach the destination earlier, namely in shorter time
than the selected time interval.

The new algorithm will be also relayed on the endogenous configuration
space approach. This method unifies the theory of robotic manipulators with
the theory of nonholonomic systems. So, many methods and intuitions from
holonomic systems could be transferred to nonholonomic cases. The deriva-
tion of the motion planning algorithms based on the endogenous configuration
space approach relies on the continuation (homotopy) method [4, 5] which is
still an active tool for the construction of the motion/trajectory planning algo-
rithms [1, 2, 7]. Some other recent results of nonholonomic motion planning can
be found in [3, 6, 9].

This work is an extension of the conference paper [10], where the earlier des-
tination reaching feature was implemented with an outline of prioritarian multi-
ple task motion planning algorithm [11]. However, this paper introduces a new
algorithm which is no longer a kind of a multiple task, but it contains only one
task which is able to plan the motion with earlier destination reaching. In the
recent years, a little more research has been performed to influence on the so-
lution of planning algorithms based on the endogenous configuration space ap-
proach [13, 17, 18].

The remaining part of this paper is the following. In section 2 the motion
planning with earlier destination reaching problem is defined. The preliminary
material is presented in 3. The section 4 introduces the new motion planning
algorithm with earlier destination reaching. The simulation results are presented
in 5. The section 6 concludes the paper. There is also an Appendix A which
collects the details of the algorithm derivations.

2. Problem definition

Let us consider a control affine system with an output function




q̇ = f (q)+G(q)u = f (q)+
m

∑
i=1

gi(q)ui,

y = k(q),

(1)

where q∈Rn is a state space vector, u∈Rm denotes the control vector and y∈Rr

stands for the task space vector. The f (q) is a drift term, and the control matrix
G(q) collects the vector fields gi(q).

For the system (1) the motion planning problem with earlier destination
reaching could be defined in following way. Find a control function u(t) which
drives the system from an initial state q(0) = q0 to a desired point yd in a task
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space in time shorter than assumed interval [0,T ]. For the classic motion planning
problem derived with the endogenous configuration space approach the desired
point is reached at the end of the time horizon t ∈ [0,T ]. Here, we introduce
a modification to this assumption in which the desired point will be reached at
tk < T . Such a problem relies on the minimization of the following integral

min
u(·)

T∫

0

H
(
ε(t)

)
d t, (2)

where ε(t) = y(t)−yd is an error in the task space. Such definition (2) of a prob-
lem could be treated as a vector–valued practical optimization problem. We as-
sume that the problem is solved when all the variables reach the 0 value with
assumed accuracy. The particular formula of the function H

(
ε(t)

)
will be intro-

duced later.

3. Preliminaries

The problem stated in the previous section will be solved within an endoge-
nous configuration space approach [15]. For this aim, we will introduce the nec-
essary components.

The admissible control functions u(t) ∈ Rm in system (1) will be assumed
Lebesque square integrable on an interval t ∈ [0,T ]. Then, the control space
U = L2

m[0,T ] together with the inner product 〈u1(·),u2(·)〉 =
∫ T

0 uT
1 (t)u2(t) d t

and the induced norm forms a Hilbert space called the endogenous configura-
tion space. The endogenous configuration space is sometimes called the control
space. Every element of control space is a set of m control functions defined on
the interval [0,T ], which can be applied to (1) to obtain a system trajectory q(·).
It is worth to mention that for the nonholonomic system (1) the trajectory de-
pends not only on the control function but also on the initial condition q0. For
this purpose we introduce a flow of the system (1) as q(t) = ϕq0,t

(
u(·)
)

which
could be interpreted as the state of the system at time t, started from the initial
state q(0) = q0 and driven by the control functions u(·) over the horizon [0, t].
Every admissible control function u(·) ∈ U corresponds to the state trajectory
q(t) and the task space trajectory y(t) = k

(
q(t)

)
. Let us call this input–output

relation Kq0,t : U → Rr as an instantaneous map and define as follows

Kq0,t

(
u(·)
)
= y(t) = k

(
ϕq0,t

(
u(·)
))

. (3)

In the robotics nomenclature this relation could be identified with the kinemat-
ics of nonholonomic systems [15]. The differentiation of the kinematics yields
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a Jacobian Jq0,t : U → Rr expressed with the following formula [15]

Jq0,t

(
u(·)
)
v(·) = DKq0,t

(
u(·)
)
v(·) = d

dα

∣∣∣∣∣
α=0

Kq0,t

(
u(·)+αv(·)

)

=C(t)

t∫

0

Φ(t,s)B(s)v(s) ds = η. (4)

The Jacobian determines how the infinitesimal change of v(·)∈U in the control
space influences on change of η ∈ Rr in the task space. The matrices appearing
in (4) comes from the linear system associated with (1)

{
ξ̇ (t) = A(t)ξ (t)+B(t)v(t),

η(t) =C(t)ξ (t),
(5)

which is also a linear approximation of system (1) along a control–trajectory(
u(t),q(t)

)
pair. The mentioned matrices can be computed from the following

formulas

A(t) =
∂
(

f (q)+G(q)u
)

∂q
,

B(t) =
∂
(

f (q)+G(q)u
)

∂u
= G(q),

C(t) =
∂
(
k(q)

)

∂q
.

(6)

The matrix Φ(t,s) is a transition matrix [14] of the linear system (5) and satisfies

the differential equation
∂

∂ t
Φ(t,s)= A(t)Φ(t,s)with final condition Φ(s,s)= In.

4. Motion planning algorithm with earlier destination reaching

Having defined the kinematics (3) and Jacobian (4) of the nonholonomic sys-
tem (1) we can move to the derivation of the motion planning algorithm with
earlier destination reaching. The problem introduced in section 2 can be now
rewritten as

min
u(·)

T∫

0

H
(

Kq0,t
(
u(·)
)
− yd

)
d t. (7)



MOTION PLANNING FOR NONHOLONOMIC SYSTEMS . . . 273

To minimize the criterion (7) we define the task map Kq0,T : U → Rr as follows

Kq0,T

(
u(·)
)
=

T∫

0

H
(
y(t)
)

d t, H : Rr → Rr, H(y) =




h1(y)

h2(y)
...

hr(y)


. (8)

Moreover, we also choose the task error equal to the task map (8), namely
e(T ) = Kq0,T

(
u(·)
)
. To derive the algorithm formula we will need also the task

Jacobian which we obtain by a differentiation of the task map (8)

Jq0,T
(
u(·)
)
v(·) = DKq0,T

(
u(·)
)
v(·)

=
d

dα

∣∣∣∣∣∣
α=0

K
(
u(·)+αv(·)

)
=

d
dα

∣∣∣∣∣∣
α=0

T∫

0

H
(

Kq0,t

(
u(·)
)
− yd

)
d t

=

T∫

0

∂H
(
y(t)
)

∂y
C(t)

t∫

0

Φ(t,s)B(s)v(s) ds

︸ ︷︷ ︸
Jq0 ,t

(
u(·)
)

v(·)

d t. (9)

To solve the motion planning problem with earlier destination reaching we en-
roll the homotopy (continuation) method [4, 5]. In order to achieve this aim we
choose in the endogenous configuration space a smooth curve uϑ (·) parametri-
zed with ϑ ∈ R and passing through the initial configuration (control) u0(·) at
ϑ = 0. Along this curve we can compute the task error eϑ (T ) = Kq0,T

(
uϑ (·)

)
.

We also assume, that the task error eϑ (T ) is vanishing exponentially when the
continuation parameter ϑ → ∞. This fact could be expressed with the differential
equation

deϑ (T )

dϑ
=−γeϑ (T ). (10)

The parameter γ > 0 can be used to control the decay rate. The substitution of
the task map (8) into the (10), and the enrolling the task Jacobian (9) leads us to
the Ważewski–Davidenko equation

Jq0,T

(
uϑ (·)

)duϑ (·)
dϑ

=−γeϑ (T ). (11)

The equation (11) can be solved using any right Jacobian inverse, in particular
with a Moore–Penrose inverse

(
J

#
q0,T

(
uϑ (·)

)
η
)
(t) = BT(t)MT(t)P−1(T )η, (12)
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where η ∈ Rr is an element from the task space, M(t) can be obtained from the
differential equation

Ṁ(t) =−∂H
(
y(t)
)

∂y
−M(t)A(t) (13)

with the final condition M(T ) = 0. The matrix P(T ) is a solution of the following
differential equation

Ṗ(t) = M(t)B(t)BT(t)MT(t), (14)

with the initial condition P(0) = 0. The detailed derivations of the above formu-
las are attached in the Appendix A. Finally, the equation (11) together with the
Jacobian inverse (12) takes the form of dynamical system

duϑ (t)

dϑ
=−γ

(
J

#
q0,T

(
uϑ (·)

)
eϑ (T )

)
(t) = BT(t)MT(t)P−1(T )eϑ (T ), (15)

which is a motion planning algorithm with earlier destination reaching. The so-
lution, i.e. the wanted control function u∗(t), is a limit u∗(t) = limϑ→∞ uϑ (t) of
the resultant trajectory of (15).

The motion planning algorithm with earlier destination reaching task in [10]
was performed as a task priority scheme, where the main task was the proper mo-
tion planning and as a secondary task was chosen an earlier destination reaching
task. Contrary to [10], here, thanks to a specific structure of the function H(y),
there is only one task which reach earlier the destination point with assumed
accuracy.

4.1. Specific form of the function H
(
y(t)
)

Let us focus on the selection of the function H
(
y(t)
)
. As we previously as-

sumed, we want the computed control u∗(t) to drive the system (1) in such a way
which minimizes the criterion (7). Moreover, as long as the algorithm is a motion
planning algorithm we primarily want the desired destination yd to be reached, at
least at the end of time horizon T . The specific selection of the function H

(
y(t)
)

should guarantee that the mentioned two features, namely: the destination reach-
ing and a minimization of the criterion will be met. To do so the elements hi(y)
of function H

(
y(t)
)

should take positive values and have only one minimum at
yi − ydi . Regarding to those assumptions we chose the following three forms of
the H

(
y(t)
)

function

• Gaussian function

hi(y) = 1− e
−(yi−ydi

)2

2σ2 , (16)
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• Lorentzian function

hi(y) = 1− σ 2

σ 2 +(yi − ydi)
2 , (17)

• Quadratic function

hi(y) =
1
2

(
yi − ydi

)2
. (18)

The plots of the above three types of selected functions H
(
y(t)
)

are depicted in
Fig. 1.

Figure 1: The three types of function H(y)

5. Simulations

In this section we will present the results of numerical simulation of the mo-
tion planning algorithm with earlier destination reaching for a model of the uni-
cycle.

5.1. Unicycle

The schematic view and the meaning of all the variables are shown in the
Fig. 2. The kinematics of such system can be expressed with following equations




q̇ = G(q)u =




cos(q3) 0
sin(q3) 0

0 1


u

y = k(q) = q,

(19)

where q = (q1,q2,q3) = (x,y,θ) ∈ R3 is a state space vector, x, y denote the
position and θ the orientation of the unicycle. The controls belong to u ∈ R2 and
have the meaning of the longitudinal and rotation speeds. The output function is
set as an identity so y = q.
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Figure 2: Unicycle

5.2. Organization of computation

To solve the motion planning problem with earlier destination reaching it
is necessary to find a solution of the differential–algebraic system of equations
composed of (19), (6), (13), (14) and (8), namely





dqϑ (t)

d t
= f (qϑ (t))+G(qϑ(t))uϑ(t),

Aϑ (t) =
∂
(

f
(
qϑ (t)

)
+G

(
qϑ (t)

)
uϑ (t)

)

∂q
, Bϑ (t) = G(qϑ (t)),

dMϑ (t)

d t
=−∂H

(
y(t)
)

∂y
−Mϑ (t)Aϑ(t),

dPϑ (t)

d t
= Mϑ (t)Bϑ (t)B

T
ϑ(t)M

T
ϑ(t),

eϑ (T ) =Kq0,T (uϑ (·)),

(20)

for each value of ϑ , with initial conditions q(0) = q0, P(0) = 0 and final condi-
tion M(T ) = 0. The subscripts (·)ϑ in (20) mean that the function depends on the
current trajectory of the system ϕx0,t

(
uϑ (·)

)
driven by the control function uϑ (·).

For every ϑ the resultant trajectories of (20) are applied to solve the algorithm
equation (15), which now depends on particular trajectories

duϑ (t)

dϑ
=−γ

(
J

#
q0,T

(
u(·)
)
eϑ (T )

)
(t) = BT

ϑ (t)M
T
ϑ(t)P

−1
ϑ (T )eϑ (T ). (21)

As it can be seen, there are two independent variables, t and ϑ , so the whole
problem could be treated as a kind of partial differential equations. However,
based on the specific structure of equations (20) and (21) they can be solved
using two nested ordinary differential equation solvers. The inner solver gives
a solution of the (20), while the outer computes the algorithm equation (21).
Both solvers are built-in MATLAB solvers with variable step, and the demanded
control function is computed in nonparametric version [12].
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5.3. Simulation results

To show the efficiency of the new algorithm we will present the results of the
numerical computations. The simulations were performed for three “earlier des-
tination reaching” algorithms with all types of the h

(
y(t)
)

functions introduced
in section 4.1. Additionally, the result of the “classic” motion planning algo-
rithm [16], based on the task map defined by (3) with Moore-Penrose Jacobian
inverse of (4) is added for comparison purposes. The simulatively investigated
problem is to find a control function which drives the unicycle (19) from an ini-
tial state q0 = (0,0,0) to a desired point yd = qd = (5,5,0) in a shorter time than
the horizon T = 5. The decay rate in (10) is set γ = 1, and the parameter of the
hi

(
y(t)
)

function in (16) and (17) is equal σ = 1.
The results of the simulation are depicted in Figs. 3–7. The path in XY plane

is shown in Fig. 3. One can observe, that the motion path is similar for each algo-
rithm. However, only the “classic” solution does not overshoot the desired point.

Figure 3: Path of the motion in XY plane

Figure 4: Control functions
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It is related with the higher motion speeds for all “earlier destination reaching”
algorithms. The control function plots are presented in Figs. 4 and 5 where the
interesting regions are emphasized. As it can be expected, the earlier reaching
of the destination results with the higher values of control functions. The control
values for the quadratic function are very high, while the values for Gaussian or
Lorentzian function take more practical values. For comparison, the controls ob-

Figure 5: Control functions (interesting regions)

Figure 6: State trajectories



MOTION PLANNING FOR NONHOLONOMIC SYSTEMS . . . 279

tained from “classic” algorithm take very small values. It is noteworthy that the
controls for all “earlier destination reaching” algorithms take the zero value at the
end of the motion, which means that the unicycle stops at the destination point.
Fig. 6 presents the trajectories of the state vector elements. As it can be seen in
the plots, the destination is reached earlier by the algorithm with quadratic func-
tion than by the algorithms with Gaussian or Lorentzian function. The same fact
can be observed in Fig. 7 where the norm ‖q(t)−qd‖ is depicted. The algorithm
with quadratic function reaches the destination in time below 1 s, while the other
two algorithms need about 1.5 s. In comparison, the “classic” algorithm uses the
whole time horizon, by default.

Figure 7: Norm ‖q(t)−qd‖ in time

6. Conclusion

The paper introduces the new algorithm which is able to plan the motion in
a shorter time than the predefined time horizon, which is an update to classic
motion planning algorithms derived by means of the endogenous configuration
space approach.

The presented algorithms could be tuned by a specific selection of the
H
(
y(t)
)

function. The efficiency of the algorithm has been presented with nu-
merical simulation, where the three different functions have been enrolled. The
results for the Gaussian function (16) and for the Lorentzian function (17) are
comparable. All algorithms successfully solve the motion planning problem and
reach the destination earlier than the time interval.

The modification introduced to the motion planning algorithm derived within
an endogenous configuration space approach brings the new algorithm closer to
the definition in [8, Formulation 14.1]. In the new algorithm the time horizon is
no longer important, and the system reaches the termination action, wherein the
velocities are equal to zero.
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A. Derivation of the Jacobian inverse

Let us start from the Jacobian equation

Jq0,T

(
u(·)
)
v(·) =

T∫

0

∂H
(
y(t)
)

∂y
Jq0,t

(
u(·)
)
v(·) d t = η, (22)

where v(·) ∈U and η ∈ Rr. To find a Moore–Penrose inversion Jq0,T : U → Rr

we will use the Lagrange multiplier method, together with the minimization of
the squared norm of the control function

min
u(·)

1
2

T∫

0

vT(t)v(t) d t. (23)

The Lagrange function takes the following form

L (v(·),λ ) = 1
2

T∫

0

vT(t)v(t) d t

+ λ T




T∫

0

∂H
(
y(t)
)

∂y
Jq0,t

(
u(·)
)
v(·) d t −η




=
1
2

T∫

0

vT(t)v(t) d t +λ T




T∫

0

∂H
(
y(t)
)

∂q

t∫

0

Φ(t,s)B(s)v(s) ds d t −η


. (24)

The differentiation of the Lagrangian (24) and equating to zero, together with
equality

T∫

0

t∫

0

f (t,s) ds d t =

T∫

0

T∫

s

f (t,s) d t ds (25)

give us

v(t) =−BT(t)

T∫

t

ΦT(s, t)

(
∂H
(
y(s)

)

∂q

)T

d t λ . (26)
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The substitution of (26) into (22) allows us to find the Lagrange multiplier

λ =

−




T∫

0

∂H
(
y(t)
)

∂q

t∫

0

Φ(t,s)B(s)BT(s)

T∫

s

ΦT(z,s)

(
∂H
(
y(t)
)

∂q

)T

dzdsd t




−1

η

=−P−1(T )η. (27)

Substituting the Lagrange multiplier (27) into (26) we solve the Jacobian equa-
tion (22) and obtain the pseudo inverse

v(t)= BT(t)

T∫

t

ΦT(s, t)

(
∂H
(
y(s)

)

∂q

)T

d t P−1(T )η =
(
J

#
q0,T

(
u(·)
)
η
)
(t). (28)

Let us focus on the P(T ) function

P(T ) =

T∫

0

∂H
(
y(t)
)

∂q

t∫

0

Φ(t,s)B(s)BT(s)

T∫

s

ΦT(z,s)

(
∂H
(
y(t)
)

∂q

)T

dzdsd t. (29)

If we make a following substitution

M(t) =

T∫

t

∂H
(
y(s)

)

∂q
Φ(s, t) ds (30)

and use again the identity (25), then the equation (29) takes the form

P(T ) =

T∫

0

M(t)B(t)BT(t)MT(t) d t. (31)

The trajectory of M(t) from (30) can be computed from (13) with suitable fi-
nal condition and the solution of (31) coincides with the solution of (14) with
appropriate initial condition. Including (30) and (31) into (28) we obtain

(
J

#
q0,T

(
u(·)
)
η
)
(t) = BT(t)MT(t)P−1(T )η, (32)

what is just (12).
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