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Investigation of limit cycles and signal stabilization
of two dimensional systems with memory type

nonlinear elements

K.C. PATRA and B.K. DAKUA

The paper presents a simple, systematic and novel graphical method which uses computer
graphics for prediction of limit cycles in two dimensional multivariable nonlinear system having
rectangular hysteresis and backlash type nonlinearities. It also explores the avoidance of such
self-sustained oscillations by determining the stability boundary of the system. The stability
boundary is obtained using simple Routh Hurwitz criterion and the incremental input descri-
bing function, developed from harmonic balance concept. This may be useful in interconnected
power system which utilizes governor control. If the avoidance of limit cycle or a safer operating
zone is not possible, the quenching of such oscillations may be done by using the signal stabi-
lization technique which is also described. The synchronization boundary is laid down in the
forcing signal amplitudes plane using digital simulation. Results of digital simulations illustrate
accuracy of the method for 2×2 systems.

Key words: describing function, dither signal, incremental input describing function, limit
cycles, signal stabilization, stability boundary

A. Introduction

Growing interest in prediction of limit cycles in 2×2 nonlinear systems has
been closely noticed among researchers for several decades [1–18]. The problem
is remarkable and more complex in the presence of memory type nonlinearity
[8, 19, 24, 34–36]. The situation is worse because literature seldom discusses
methods of quenching the limit cycle oscillations sustained in the system under
autonomous state [17, 24].

It has been realized that the exhibition of limit cycle in two dimensional mul-
tivariable nonlinear systems in several occasions like Couple Core Reactor [29],
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PWR Nuclear reactor systems [18], radar antenna pointing system [16] and In-
terconnected Power System [32] which can fit the structure [25] of a general two
dimensional nonlinear system, has been addressed in the present work.

Existing practice of power system, interconnected with various areas through
tie-lines, sometimes suffers from mismatches in frequency because of area load
change and also some other abnormal conditions. The popular, the simple, easy
realisation, low cost, robust and decentralised nature of the control strategy, the
load frequency control (LFC) is used immensely. The LFC also shows poor per-
formance for the presence of backlash nonlinearities in the Governors [32]. It has
been stressed on the LFC scheme in the zone of operation avoiding the existence
of Limit Cycle or reducing the amplitude of sustaining oscillations. It may not be
always possible to have such safer zone of operation i.e. either absence of limit
cycle or reduction in amplitude of self sustained oscillations.

In some recent literature [36] the limit cycle induced by backlash nonlinear-
ity is discussed, but detailed analysis, well established conclusions and straight
forward techniques are still lacking [30]. The suppression of limit cycle oscilla-
tion using state feedback approach has been dealt to an extent [36]. Investigation
has also been done to find the existence of limit cycle oscillations in combustion
chambers of gas turbines [8] and for a combustor with long flame [11] which are
different from the general stream unlike the present work. In some cases like [7]
prediction of limit cycle under uncertainty has been discussed.

The present work proposes harmonic balance concept leading to a graphical
method has been adopted for prediction of limit cycles in 2×2 general systems
with rectangular hysteresis and backlash type nonlinearities which claim to be
the novel method for memory type nonlinearities not been detailed elsewhere.
The possibility of quenching the limit cycle considering the method of signal
stabilization has also been investigated [17, 20, 21, 24]. In sequel the stabiliza-
tion boundary [21] of the system is determined. All such developments either by
graphical or analytical approach have been substantiated by digital simulation or
with the use of MATLAB/SIMULINK application.

B. Prediction of limit cycle in a class of 2×2 systems

with memory type nonlinearities

B.1. Rectangular hysteresis

B.1.1. Graphical method

Consider a system having two interconnected subsystems as given in Fig. 1,
which represents a class of general 2×2 systems [25, 26]. In the system N1, N2
are two nonlinear elements with Rectangular Hysteresis input-output character-
istics as shown in Fig. 2a and 2b, respectively. G1, G2 are two linear elements.
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Figure 1: A class of 2×2 nonlinear system

Figure 2: Input-output characteristics of nonlinear elements N1 and N2

(Rectangular Hysteresis type nonlinearities)

The simpler analysis is possible with the assumptions that the system exhibits
self oscillation at a single frequency and the loop possesses low pass character-
istics. Harmonic balance method is used to develop a graphical technique in the
following lines.

The describing function for the rectangular hysteresis nonlinearity is ex-
pressed as:

N(X ,ω) =
Y

X
∠θ =





0, X <
H

2
,

4M

πX
∠− sin−1 H

2X
, X >

H

2
.

When the system exhibits limit cycle the phasor diagram can be drawn as in
Fig. 3a and subsequently the normalized phasor diagram with respect to R1 is
shown as in Fig. 3b. The determination of different quantities through graphical
procedure is illustrated through examples.
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a) b)

c) d)

Figure 3: a) phasor diagram for a 2×2 nonlinear system; b) normalised phasor
diagram for a simplified generalised 2 × 2 nonlinear system; c) normalised
phasor diagram for example 1 with ω = 0.6463 rad/sec; d) solution of the
system in Example 1

Example 1
Consider the system of Fig. 1 with the linear elements:

G1(s) =
2

s(s+1)2 , G2(s) =
1

s(s+4)
,

whereas the nonlinear elements are shown as in Fig. 2a and 2b where h =
H

2
.

Memory type nonlinearities contribute additional phase angle to the loop
phase angles of G1(jω) and G2(jω) of subsystem (1) and (2) respectively which
are taken care of in the respective methods of prediction of limit cycles as well
as in the signal stabilizations.

For subsystem (1)
θL1 = θN1(X1,ω)+θG1(jω)
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θL1 =−sin−1 H

2X1
− π

2
−2tan−1 ω . (1)

For subsystem (2)
θL2 = θN2(X2,ω)+θG2(jω)

or

θL2 =−sin−1 H

2X2
− π

2
− tan−1 ω

4
. (2)

In graphical method [26], while θL1 traces a circle, θL2 traces a straight line.

Radius of the above mentioned circle is: r =
1

2sinθL1

and centre of the circle

is at (
0.5,

−1
2tanθL1

)
(3)

The point of intersection of the circle and the straight line is at (ui,vi), which
can be obtained as follows:

ui =
vi

tanθL2

−1 (4)

and

vi =
3cotθL2 + cotθL1 ±

√
(3cotθL2 + cotθL1)

2 −8csc2θL2

2csc2θL2

. (5)

The phasor diagram of the above system can be obtained by using the fol-
lowing relationship (cf. Eq. (6)) shown in Fig. 3a and the normalised one shown
in Fig. 3b.

R1 = X1 +C1, R2 = X2 +C2 , R2 =C1 , R1 =−C2 . (6)

Again from the above mentioned system

C1

R1
=

M1

M2
=

G1

G2
= 1.7762

√
16+ω2

1+ω2 , (7)

where, M1 = 1.0, M2 = 1.126 and C1, C2, R1, R2, X1, X2 are amplitudes of re-
spective sinusoids and G1, G2 are magnitudes or absolute values of the respective
transfer functions.

Fig. 3c shows the graphical determinations of different quantities utilising

the data from Table 1. The values of
C1

R1
for different values of ω are calculated

from Eq. (7) as well as from the graphical plot of figures (cf. Fig. 3c). The point
of intersection of these two curves provides the frequency of the limit cycle of
Example 1.
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Table 1: Values of different quantities for Example 1

ω θL1 θL2

C1

R1

C1

R1
from plot from Eq. (6)

0.60 −164.82 −109.83 0.58, 3.76 5.28

0.61 −165.66 −109.97 0.62, 3.99 5.23

0.62 −166.49 −110.11 0.68, 4.25 5.19

0.63 −167.31 −110.25 0.76, 4.54 5.14

0.64 −168.13 −110.39 0.86, 4.85 5.10

0.6463 −168.64 −110.48 0.93, 5.07 5.07 (LC)

0.65 −168.94 −110.53 0.98, 5.21 5.06

0.70 −172.88 −111.23 2.02, 8.00 4.87

Fig. 3d shows the variation of
C1

R1
from the phasor diagram (curve A) and

from Eq. (7) (curve B) for different values of frequency ω (cf. Table 1).
The point of the intersection of curve (A) and curve (B) provides the value of

limit cycle frequency ω = 0.6463 rad/sec.
Again, corresponding to this value of ω ,

C1

R1
= 5.0782,

X1

R1
= 5.0049,

C2

R1
= 1.0,

X2

R1
= 5.3410.

This provides the parameter of the limit cycle as:

X1 =
4M1G1

π

(
BD

OD

)
= 2.7291,

X2 =
4M2G2

π

(
AD

OA

)
= 2.9240,

C1 = 2.7792, C2 = 0.5472.

B.1.2. Digital simulation

Example 1 is revisited, as shown in Fig. 4a. Following the procedure as out-
lined in [23], the limit cycle is predicted using the digital simulation technique.

G1(s) =
2

s(s+1)2 =
2
s
− 2

(s+1)2 −
2

s+1
, (8)
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G2(s) =
1

s(s+4)
=

0.25
s

− 0.25
s+4

. (9)

For very small value of the sampling period (T )

T G(z)≃ G(s).

a)

b)

c)

Figure 4: Digital simulation of the system in Example 1: a) canonical representation of
the system, b) equivalent sample data system, c) digital representation in Z-domain
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Hence, inserting the sampling period (T ) as gain and taking the Z-transform
of the above functions, Fig. 4a can be equivalently represented in sampled data
form and digital form in z domain as Fig. 4b and Fig. 4c respectively. This pro-
cedure yields:

y1(nT ) = f1x1(nT ),

y2(nT ) = f2x2(nT ),

x1(nT ) = r1(nT )− c1(nT ),

x2(nT ) = r2(nT )− c2(nT ),

r1(nT ) =−c2(nT ),

r2(nT ) = c1(nT ).

As
W1(s)

Y1(s)
=

2
s

, taking Z-transform

W1(z)

Y1(z)
= 2

(
z

z−1

)
=

2
1− z−1 ,

W1(z)(1− z−1) = 2Y1(z),

W1(z)− z−1W1(z) = 2Y1(z)

or
W1(z) = 2Y1(z)+ z−1W1(z).

Taking inverse Z-transform,

w1(nT ) = 2y1(nT )+w1 [(n−1)T ] . (10)

Again
W2(s)

Y1(s)
=

−2
s+1

or
W2(z)

Y1(z)
=

−2z

z− e−T
=

−2
1− z−1e−T

.

Hence

W2(z)(1− z−1e−T ) =−2Y1(z) or W2(z) =−2Y1(z)+ z−1e−TW2(z).

Taking inverse Z-transform,

w2(nT ) =−2y1(nT )+ e−T w2 [(n−1)T ] . (11)

Further
W3(s)

W2(s)
=

1
s+1

or
W3(z)

W2(z)
=

T ze−T

z− e−T
=

Te−T

1− z−1e−T
,
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W3(z)(1− z−1e−T ) =W2(z)(Te−T )

or
W3(z) =

(
Te−T

)
W2(z)+

(
z−1e−T

)
W3(z).

Taking inverse Z-transform,

w3(nT ) = Te−T w2(nT )+ e−T w3 [(n−1)T ] . (12)

Similarly,
V1(s)

Y2(s)
=

0.25
s

or
V1(z)

Y2(z)
=

0.25z

z−1
=

0.25
1− z−1 ,

V1(z)− z−1V1(z) = 0.25Y2(z) or V1(z) = 0.25Y2(z)+ z−1V1(z).

Taking inverse Z-transform,

v1(nT ) = 0.25y2(nT )+ v1 [(n−1)T ] . (13)

Again,

V2(s)

Y2(s)
=

−0.25
s+4

or
V2(z)

Y2(z)
=

−0.25z

z− e−4T
=

−0.25
1− z−1e−4T

,

V2(z) =−0.25Y2(z)+ z−1e−4TV2(z).

Taking inverse Z-transform,

v2(nT ) =−0.25y2(nT )+ e−4T v2 [(n−1)T ] . (14)

Since
T G(z)≃ G(s).

Hence,
C1(z) = T [W1(z)+W2(z)+W3(z)].

Taking inverse Z-transform,

c1(nT ) = T [w1(nT )+w2(nT )+w3(nT )] . (15)

Again C2(z) = T [V1(z)+V2(z)], hence taking inverse Z-transform,

c2(nT ) = T [v1(nT )+ v2(nT )] . (16)

The results of digital simulation are shown in Fig. 5 and compared in Table 2
with the results obtained from the graphical method and also that of SIMULINK
application.
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Figure 5: Results of Example 1 for C1, C2, X1, and X2 obtained from
Digital Simulation and SIMULINK application

Table 2: Comparison of results of Example 1

Methods
of Computation

ω
(rad/sec)

X1 X2 C1 C2

Graphical 0.6463 2.73 2.92 2.77 0.54

Digital Simulation 0.6472 2.72 2.94 2.80 0.62

SIMULINK 0.6465 2.73 2.94 2.80 0.69

B.1.3. Simulation using MATLAB/SIMULINK

The above mentioned system of Example 1 of Fig. 1 is simulated using MAT-
LAB/SIMULINK Toolbox. The result is shown in Fig. 5 and compared with that
of graphical method and the digital simulation in Table 2.

B.2. Backlash nonlinearity

B.2.1. Graphical method

Consider a system of Fig. 1 where N1 and N2 are two nonlinear elements with
backlash input-output characteristics as shown in Fig. 6. G1, G2 are the transfer
functions of the linear elements.
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a) b)

Figure 6: Input–output characteristic of nonlinear elements N1 and N2

The graphical method based on normalised phasor diagram [21, 26] is used
for prediction of limit cycle in the system which has been illustrated through an
example. The whole system is assumed to exhibit oscillation predominantly at
a single frequency. Backlash nonlinearities contribute additional phase angle to
the loop phase angles of G1(jω) and G2(jω) of the subsystems (1) and (2).

Example 2

Consider the system of Fig. 1 with G1(s) =
2

s(s+1)2 ; G2(s) =
2

s(s+4)
and

the two nonlinear elements having backlash characteristics with b1 = b2 = 1.0
as shown in Fig. 6.

Describing function of the above Backlash Nonlinearities is expressed as:

N(Xm,ω) =

∣∣∣∣
Y

Xm
∠Ø

∣∣∣∣
or

N(Xm,ω) =

KXm

π

√(
π

2
+β +

1
2

sinβ

)2

+ cos4 β

Xm

∠− tan1




cos2 β
π

2
+β1 +

1
2

sin2β
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or

N(Xm,ω) =





K
π

√(
π
2+β+1

2 sin2β
)2
+cos4 β

Xm
∠− tan1

(
cos2 β

π
2+β+1

2 sin2β

)

for Xm > b
2 ,

0 for Xm < b
2

(17)

and

N1(Xm1,ω) =
K1

π

√(
π

2
+β1 +

1
2

sin2β1

)2

+ cos4 β1.

Again,

N2(Xm2,ω) =
K2

π

√(
π

2
+β2 +

1
2

sin2β2

)2

+ cos4 β2.

The detailed derivation is shown in Appendix A1.
The limit cycling condition of the system can be represented by the phasor

diagram shown in Fig. 7a and subsequently the normalised phasor diagram in
Fig. 7b.

For subsystem (1)
θL1 = θN1(Xm1,ω)+θG1(jω)

or

θL1 =


− tan−1




cos2 β1

π

2
+β1 +

1
2

sin2 β1




−π

2
−2tan−1 ω


 , (18)

where

β1 = sin−1
(

1− b1

Xm1

)
.

Similarly
θL2 = θN2 (Xm2,ω)+θG2(jω)

or

θL2 =


− tan−1




cos2 β2

π

2
+β2 +

1
2

sin2 β2




−π

2
− tan−1

(ω

4

)

 , (19)

where

β2 = sin−1
(

1− b2

Xm2

)
.
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a) b)

c) d)

Figure 7: a) Phasor diagram for a 2× 2 nonlinear system, b) normalised phasor dia-
gram for a simplified generalised 2× 2 nonlinear system, c) solution of the system in
Example 2, d) normalised phasor diagram for Example 2 with ω = 0.6955 rad/sec

In this case also Eqs. (3), (4), (5) and (6) are valid whereas:

C1

R1
=

C1

C2
=

Y1G1

Y2G2
=

Xm1N1G1

Xm2N2G2
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or

C1

R1
=

(Xm1G1)
K1

π

√(
π

2
+β1 +

1
2

sin2β1

)2

+ cos4 β1

(Xm2G2)
K2

π

√(
π

2
+β2 +

1
2

sin2β2

)2

+ cos4 β2

,

C1

R1
=

K1Xm1G1

K2Xm2G2

√(
π

2
+β1 +

1
2

sin2β1

)2

+ cos4 β1

√(
π

2
+β2 +

1
2

sin2β2

)2

+ cos4 β2

,

K1 = 1.2; K2 = 1.4,

(20)

where, Y1, Y2, N1, N2, G1 and G2 are magnitude or absolute values of the respec-
tive transfer functions.

Since

|G1(jω)|= 2
ω(1+ω2)

; |G2(jω)|= 1

ω
√

16+ω2
,

∣∣∣∣
G1

G2

∣∣∣∣=

2
ω(1+ω2)

1

ω
√

16+ω2

=
2
√

16+ω2

(1+ω2)
.

Eq. (20) can be written as:

C1

R1
=

1.714×1
√

16+ω2

Xm2(1+ω2)

√(
π

2
+β1 +

1
2

sin2β1

)2

+ cos4 β1

√(
π

2
+β2 +

1
2

sin2β2

)2

+ cos4 β2

. (21)

Several normalised phasor diagrams are drawn to scale utilizing the data from

Table 3. The values of
C1

R1
for different values of ω are calculated using Eq. (21)

as well as from the graphical plots (cf. Fig. 7d). Fig. 7c shows the variation of
C1

R1
from the phasor diagrams (curve A) and from Eq. (21) (curve B) for different

values of frequency ω (cf. Table 3).
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Table 3: Values of different quantities for Example 2: for backlash: D1 = 2.16, D2 = 1.26,
b1 = b2 = 1.0; Xm1 = 2.3, Xm2 = 1.4

ω θL1 θL2

C1

R1

C1

R1
(rad/sec) (in degrees) (in degrees) from plot OD1, OD2 from Eq. (21)

0.600 −166.3940 −121.8119 0.8554, 4.2227 9.8200

0.625 −168.4773 −122.1618 0.8616, 4.9186 9.6127

0.650 −170.5142 −122.5110 0.8720, 5.8676 9.4065

0.675 −172.5052 −122.8596 0.8869, 7.2609 9.2017

0.700 −174.4505 −123.2074 0.9064, 9.5447 8.9988

0.6961 −174.1500 −123.1532 0.9031, 9.0955 9.0303

0.6955 −174.1037 −123.1448 0.9025, 9.0302 9.0351

The point of the intersection of curve (A) and curve (B) provides the value of
limit cycle frequency ω = 0.6955 rad/sec. Other values of interest are determined
from the Fig. 7d as:

C1

R1
= 9.0302;

X1

R1
= 8.6090;

C2

R1
= 1.0;

X2

R1
= 9.5381.

Thus,

X1 = Xm1N1G1
BD

OD
= 4.4220,

X2 = Xm2N2G2
AD

OD
= 4.8965,

C1 = 4.6384,
C2 = 0.5136,

where, Xm1 and Xm2 are amplitudes of sinusoids for subsystems S1 and S2 re-
spectively.

Following the similar steps as has been illustrated in section 2.1.2, the digital
simulation for the example 2 is done.

The results of the digital simulation are shown in Fig. 8 and compared in
Table 4 with the results obtained from the graphical method.
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Figure 8: Results of Example 2 for C1, C2, X1, and X2 obtained from
digital simulation

Table 4: Comparison of results of Example 2

Methods of computation
ω

(rad/sec)
X1 X2 C1 C2

Graphical 0.6955 4.42 4.89 4.63 0.51

Digital simulation 0.76 4.30 4.51 4.39 0.57

C. Signal stabilization

The system shown in Fig. 1 exhibits a limit cycle in the autonomous state.
The possibility of quenching the limit cycle by injecting suitable high frequency
signals [12, 17, 20–22, 24] at the two inputs is shown below. When the amplitude
B1 of sinusoidal input B1 sinω f t is gradually increased keeping the amplitude of
forcing signal B2 sinω f t fixed, the system would continue to exhibit a limit cycle.
The variables at various points in the system would be composed of signals of the
input frequency (ω f ), the frequency of self oscillations (ωs) and the combination
of frequencies, k1ω f ± k2ωs where k1, k2, assume various integers values.

However as the magnitude B1 is gradually increased the frequency of self
oscillations, ωs, would also gradually change. For a certain magnitude of the
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input, synchronization would occur i.e. the self-oscillations would be quenched
and the system would exhibit forced oscillations at frequency ω f . If subsequently
the amplitude B1 is reduced a point may be reached at which the self oscillations
would reappear (i.e. desynchronization would take place). It may be noted that
for each given B2, the amplitude B1 for synchronization in general, be larger than
that for desynchronization.

C.1. Rectangular hysteresis

C.1.1. Complex oscillation

Considering the system of Fig. 1, a high frequency signal Bsinω f t may be
injected at u1 keeping u2 unexcited as shown in Fig. 9a.

a) b)

c) d)

Figure 9: a) Equivalent system for forced oscillations, b) equivalent system for analysing
complex oscillations, c) inearized equivalent of the system, d) equivalent linearization
for incremental signals for the system of Fig. 6a

If the amplitude (B) of the high frequency signal is gradually increased, the
system would exhibit complex oscillations [28, 31]. In the process for a certain
value of amplitude B, synchronization would occur where the self-oscillation
would vanish and the system would exhibit forced oscillations at the frequency
ω f [20]. On the reverse operation, if the amplitude B is gradually reduced, at
certain value of B the self-oscillations i.e. the limit cycle would reappear and the
system would exhibit complex oscillations, which is termed as desynchroniza-
tion phenomenon [12, 17, 21, 22, 24, 31].
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The process of complex oscillations with synchronization and desynchro-
nization has been analysed through subsequent development of Figs 9b, c and d,
illustrated through example 3 and the results of which are shown in Fig. 10a, b,
c and d.

a) b)

c) d)

Figure 10: Results of the system in Example 3 using digital simulation method: a) vari-
ation of C1, C2 with Dither amplitude B, b) variation of ω with Dither amplitude B,
c) synchronization of C1 with forcing frequency, d) synchronization of C2 with forcing
frequency

Example 3
Consider the system of Fig. 1 with U1 =Bsinω f t, the equivalent DIDF [22] is

being used for prediction of forced oscillations. G1(s), G2(s), N1, N2 remain the
same as in the example1. The equivalent DIDF [27] for Rectangular Hysteresis
in the subsystem S1 is given by

NA(B,A) =
M1

πA

[
sin−1

(
h+A

B

)
− sin−1

(
h−A

B

)]
, (22)
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where input to the nonlinear element N1 is X1 sinωst +Bsinω f t;
ω f

ωs
→ ∞ (high

value). X1 and B are amplitudes of sinusoids: X1 is the amplitude of limit cycle,

B is the amplitude of high frequency signal and A = Average value of X1 i.e.
2X1

π
.

During the process of signal stabilization, keeping frequency ω f at 7 rad/sec
(at least 10 times of ωs), the amplitude B of forcing signal is gradually increased
till quenching of self-oscillation. The corresponding value of B is taken as syn-
chronization amplitude. Similarly, in the reverse operation, keeping ω f constant,
gradually the amplitude B is reduced and the value of B for desynchronization is
noted. The results of forced oscillations are shown in Table 5 and also presented
in Fig. 10.

Table 5: Forced oscillations of Example 3 with M1 = 1.0, M2 = 1.126, ω f = 7 rad/sec

B C1 C2
ω

(rad/sec)
Remarks

0 2.901 0.6598 0.6347

1.0 1.881 0.5413 0.7757

2.0 1.188 0.7071 0.5817

3.0 0.8639 0.8207 0.5031

4.0 0.6246 0.8888 0.4833

5.0 0.4178 0.8507 0.4833

6.0 0.4155 0.7861 0.4833

7.0 0.3293 0.7858 0.4833

7.3 0.0192 0.5127 6.9813 Synchronization

8.0 0.0192 0.5176 6.9813

Based on the assumptions [23–25], the input to the nonlinear element N1
is composed of sinusoidal signals of frequencies ωs and ω f while the input to
the nonlinear element N2 is composed only of a sinusoidal signal of frequency
ωs. The equivalent system for Fig. 10a under complex oscillation is shown in
Fig. 10b and the linearized equivalent is shown in Fig. 10c, where N1eq is the
Dual Input Describing function (DIDF) [1, 6, 27] and N2 is the single sinusoidal
input Describing function (DF) for the self-oscillating signal of frequency ωs
only.

Considering the steps outlined in [23–25], the conditions for the existence of
complex oscillations with memory type nonlinearity can be written as:

i. The Phase angle condition

θc1 +θc2 = 180◦, (23a)
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where θC = loop angles of subsystems which include the angles of N1
and N2.

θC1 = Arg

(
G1(jω)N1(X1,ω)

1+G1(jω)N1(X1,ω)

)
,

θC2 = Arg

(
G2(jω)N2(X2,ω)

1+G2(jω)N2(X2,ω)

)
,

θL1 = ∠G1(jω)+∠− sin−1 H

2X ′
1
,

θL2 = ∠G2(jω)+∠− sin−1 H

2X ′
2
.

ii. The gain condition
C1

R1
× C2

R2
= 1. (23b)

iii. The amplitude ratio condition

X ′
1

X ′
2
=

|1+N2G2(jω)|
|N1G1(jω)| . (23c)

Eq. (23) constitutes three relations with three unknowns: ω , X1, and X2, which
can be solved by analytical method/graphical method/digital simulation/ use of
MATLAB/SIMULINK.

C.1.2. Digital simulation

The steps depicted in section 2.1.2 for example1 are followed for Example 3
here. The Results of Forced oscillations using digital simulation for Example 3
showing the synchronization of the system with the forcing signal are given in
Table 5. The variations of C1 and C2 and ω with dither amplitude B obtained
from digital simulation are shown in Fig. 10a and b, respectively.

During the process of signal stabilization, the values of C1 and C2 synchro-
nised with forcing frequency are shown in Fig. 10c and d, respectively.

C.1.3. Desynchronization

In the process of forced oscillation for a reasonably large B, the self-
oscillations would be quenched and the system would synchronise to forced os-
cillations at frequency ω f .

Because of low pass characteristics of the system, the output C1 and C2 are
assumed to be negligibly small. Hence, the inputs to the nonlinear elements N1
and N2 can be approximated Bsinω f t and a vanishingly small signal.
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If B is gradually reduced the self-oscillations would reappear [22, 28, 31] at
a point at which the forced oscillations become unstable and this instability can
be predicted by employing Incremental input Describing function (IDF) [31].

The limiting value of B at which the self-oscillations reappear can be deter-
mined by replacing the nonlinear elements N1 and N2 by their IDFs i.e. N1i and
N2ifor vanishingly small signals superimposed on the finite amplitude signal of
frequency ω f at their respective inputs.

The linearized equivalent for incremental input signals of the systems of Fig.
9(b) is shown in Fig. 9(d). The condition for self-oscillations for just reappear-
ance is obtained as:

[
1+N1iG1(jω)

[
1+

(
N2iG2(jω)

1+N2iG2(jω)

)]]
= 0. (24)

Eq. (19) implies that N1i is the slope at the origin of the modified charac-
teristic of N1 for an input Bsinω f t, while N2i is the slope at the origin of the
characteristic of N2 [22, 24, 28, 31].

Example 4
Example 3 is revisited in the line of Fig. 9d for forced oscillation. For a

vanishingly small signal X2s, the N2i for the rectangular hysteresis would tend to
be infinity.

Hence,
N2iG2(jω)

1+N2iG2(jω)
≃ 1.

Hence Eq. (24) yields
1+2N1iG1(jω) = 0, (25)

where

N1i =
2M1

πB

1√
1−
(

H

2B

)2
= 0.5. (26)

Substituting G1(jω) and separating the real and imaginary parts of Eq. (24)
we get,

2N1i −ω2 = 0 and 1−ω2 = 0 or 2N1i −1 = 0 or N1i = 0.5.

From Eq. (26),

2M1

πB

√
1−
(

H

2B

)2
= 0.5, where M1 = 1, H = 1.
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Hence,

2

πB

√

1−
(

1
2B

)2
= 0.5,

2
0.5

= πB

√

1−
(

1
2B

)2

or

1−
(

1
2B

)2

=

(
4

πB

)2

or B2 −
(

4
π

)2

=
1
4

or

B =

√
1
4
+

(
4
π

)2

=
√

1.871 = 1.367 = Bd

(Desynchronization value of B).
Results of forced oscillations using digital simulation for Example 4 show-

ing the desynchronization of the system are given in Table 6. Results of digital
simulation shows desynchronization at Bd = 1.8.

Table 6: Results of forced oscillations for Example 4 with M1 = 1.0,
M2 = 1.126, ω f = 7 rad/sec

B C1 C2 ω Remarks

8.0 0.0192 0.5176 6.9813

7.0 0.0192 0.5176 6.9813

6.0 0.0192 0.5176 6.9813

5.0 0.4178 0.7970 0.5027

4.0 0.6246 0.8888 0.4987

3.0 0.7181 0.8313 0.4987

2.0 1.151 0.705 0.5872

1.9 1.304 0.6892 0.6160

1.8 1.450 0.6361 0.6545 Desynchronization

1.7 1.511 0.6103 0.6604

1.6 1.564 0.5846 0.6981

1.5 1.678 0.5808 0.7060

1.0 1.885 0.5413 0.7662
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C.2. Backlash nonlinearity

C.2.1. Forced oscillation

When the system of Fig. 1 exhibits self oscillations while being subjected
to the high frequency inputs B1 sinω f t and B2 sinω f t at u1 and u2 respectively
the behaviour of the system can be analysed by replacing the nonlinear elements
N1 and N2 by their modified characteristics [28, 31] determined by the compo-
nents of the frequency ω f at their inputs, thus leading to the Fig. 9d as a lin-
ear equivalent. The condition for existence of forced/complex oscillations under
such situation is derived as [21].

G1(jω)N1eq +G2(jω)N2eq +2G1(jω)G2(jω)N1eqN2eq =−1 (27)

and
X ′

1

X ′
2
=

∣∣∣∣
N1eqG1(jω)

1+N2eqG2(jω)

∣∣∣∣ , (28)

where N1eq and N2eq are the DFs for the modified characteristics (DIDFs of the
original nonlinear elements) forming the respective nonlinear elements of the
system of Fig. 9d and X ′

1, X ′
2 are the inputs to the respective non linear ele-

ments. In the process of signal stabilization two important phenomena [28, 31]
like synchronization and desynchronization are observed. The synchronization
is determined with the use of Dual Input Describing Function (DIDF) which is
very complex for backlash nonlinearities [27]. The desynchronization is deter-
mined with the use of Incremental Describing Function (IDF) which is simple to
determine.

C.2.2. Determination of stability boundary

Let the system of Fig. 9a be subjected to high frequency inputs, B1 sinω f t
and B2 sinω f t at U1 and U2 respectively. Consider the situation for reasonably
large signal, when the self oscillations have been quenched and consequently
the system is exhibiting a harmonic oscillation at the forcing frequency (dealt
in subsequent section). Since the frequency of the forcing signal is high, the
magnitude of outputs C1 and C2 can be assumed to be negligibly small.

It has been seen that when the forcing signal is gradually reduced, the self
oscillation would reappear at a point at which the forced oscillations becomes
unstable and that this instability can be predicted by employing incremental input
describing functions (IDF) [6, 31].

Hence, the limiting values of the forcing signals at which the self oscillations
reappear can be obtained by analysing the stability boundary of the equivalent
linear system obtained by replacing the nonlinear elements N1 and N2 by their
respective IDFs, N1i and N2i (these are gains for vanishingly small signals of an
incommensurate frequency superimposed on the finite amplitudes of the forcing
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signals of frequency ω f at their respective inputs). The equivalent linear sys-
tem for incremental signals is shown in Fig. 9d and its stability boundaries can
therefore be obtained by applying Routh-Hurwitz Criterion.

The following specific example is intended to illustrate the procedure for the
analysis of this phenomenon and outline the distinct stability boundary (in the
K1−K2 plane) of the system obtained for occurrence of limit cycles and quench-
ing of such oscillations through digital simulations.

Example 5

Consider the system of Fig. 9a, where G1(s) =
2

s(s+1)2 ; G2(s) =
1

s(s+4)
and the two nonlinear elements have backlash type characteristics shown in
Fig. 6 with b1 = b2 = 1.0, slopes K1 = 1.2, K2 = 1.4 and D1 = 2.16 and D2 = 1.26
respectively. The occurrence of limit cycles is predicted leading to the stability
boundary of the linear equivalent system in sequel. The system is forced with
high frequency signals B1 sinω f t and B2 sinω f t at u1 and u2 respectively. Let
the system be oscillating (after synchronization) at frequency ω f and can be
evaluated [21, 31] from the stability boundary in the K1/K2 plane of the lin-
ear equivalent for incremental signals of the system shown in Fig. 9d, wherein
the nonlinear elements have been replaced by their incommensurate IDF’s. The
equivalent characteristic equation for this system is obtained as:

s5+6s4+(9+N2i)s
3+(4+2N1i+2N2i)s

2+(8N1i+N2i)s+4N1i.N2i = 0, (29)

N1i (For Back lash nonlinearity) = K1, the slope of N1 and N2i (for Back lash
non linearity) = K2, the slop of N2. The IDF for backlash nonlinearity has been
derived in Appendix A2 [1, 6, 31]. Replacing N1i and N2i by K1 and K2 respec-
tively in Eq. (29) and the equivalent characteristics equation of the systems of
Example 5 becomes:

s5 +6s4 + s3(9+K2)+ s2(4+2K1+2K2)+ s(8K1+K2)+4K1K2 = 0. (30)

Employing the Routh-Hurwitz criterion from Eq. (30), the stability boundary
of the system in terms of K1 and K2 is derived in Appendix A3. Table 7 is pre-
pared for different values of K2 with the computed values of K1 from Eqs. (A3-1),
(A3-2) and (A3-4) respectively. Utilizing the data from Table 7, Fig. 11 is drawn
showing the stability boundary in K1/K2 plane. The boundary confirms no oc-
currence of limit cycle within it.

Employing the Routh-Hurwitz criterion from Eq. (30), the stability boundary
of the system in terms of K1 and K2 is derived in Appendix A3. Table 7 is pre-
pared for different values of K2 with the computed values of K1 from Eqs. (A3-1),
(A3-2) and (A3-4) respectively. Utilizing the data from Table 7, Fig. 11 is drawn
showing the stability boundary in K1/K2 plane. The boundary confirms no oc-
currence of limit cycle within it.
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Table 7: Stability Boundary of system for Example 5

K2

K1
(Degree 1)
Eq. (A3-1)

for stability K1 >

K1
(Degree 2)
Eq. (A3-2)

for stability K1 >

K1
(Degree 3)
Eq. (A3-5)

r for stability K1 <

0 25 1.0 1.0

1 27 1.6495 0.50976

2 29 2.6060 0.3315

3 31 4 0.30643

4 33 6 0.30765

5 35 8.7797 0.31552

6 37 12.4452 0.32515

7 39 16.9706 0.33492

8 41 22.1250 0.34425

9 43 28 0.35293

10 45 34.1696 0.36092

11 47 40.6083 0.36824

12 49 47.2363 0.37493

13 51 54 0.38104

14 53 60.8628 0.38664

15 55 67.7995 0.39177

16 57 74.7926 0.39649

17 59 81.8295 0.40084

18 61 88.9009 0.40486

19 63 96 0.40858

20 65 103.1216 0.41203

C.2.3. Synchronization

When the system is exhibiting a limit cycling in autonomous state, one of the
way to quench the limit cycle by enforcing high frequency dither signal [17, 21,
22, 28, 31] at the relevant point in the loop as shown in Fig. 9a. The method of
digital simulation as outlined in section 2.1.2 is followed for determination of a
synchronization boundary and has been illustrated through the example.

Example 5 is revisited: Using the method of digital simulation for a fixed
value of B2, B1 is gradually increased; the oscillations are quenched, at a partic-
ular value of B1 the system is synchronized to forcing frequency ω f . The results
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Figure 11: ∗ Stability boundary for the system of Example 5
∗ For clarity of the Fig. 11 the boundary derived from degree 2 and 1 of s (in Routh-Hurwitz Criterion)
are not shown. The boundary derived with the most stringent conditions of degree 3 of s (Routh-Hurwitz
Criterion) only is shown.

of synchronization values of B1 for different fixed values of B2 are shown in Ta-
ble 8 and plotted in Fig. 12a. The synchronization boundary in B2−B1 plane is
shown in Fig. 12b.

Table 8: Forced oscillations of Example 5 with ω f = 7 rad/sec

B2 B1 C1 C2 ω Remarks

0

0.5 4.572 0.5745 0.7570

1.0 3.781 0.5221 0.8055

2.0 3.114 0.5065 0.8267

3.0 1.798 0.5537 0.7222

4.0 1.240 0.6261 0.5764

5.0 1.024 0.6469 0.5027

6.0 0.8797 0.6805 0.4654

7.0 0.8144 0.6884 0.4394

8.0 0.7033 0.6858 0.4363

9.0 0.6139 0.6464 0.4217

9.5 0.514 0.6022 0.4363

9.6 0.5128 0.6144 0.4363

9.7 0.0394 0.0155 6.9813 Synchronized

9.8 0.0400 0.0159 6.9814
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a) b)

Figure 12: a) Synchronization of C1 with forcing frequency, b) Quenching of oscillations
by signal stabilization

D. General 2×2 nonlinear systems

D.1. Graphical method

Consider the general 2× 2 nonlinear system [25, 26] as shown in Fig. 13.
From the block diagram of Fig. 13 we get,

R1 =C1 +E1 , C2 = R2 , R2 =C2 +X2 , R1 =−C3 ,

C2 =−R1

G3
.

Accordingly, the normalised phasor diagram for a sustained limit cycle of the
system of Fig. 13 is shown in Fig. 14a. The phasor diagram is normalised with
respect to amplitude R1.

Figure 13: General 2×2 Nonlinear Systems
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a) b)

c) d)

Figure 14: Graphical representation of the system in Example 6: a) normalised phasor
diagram for most general 2× 2 nonlinear system of Fig. 13, b) normalised phasor dia-
gram for the system in Example 6 with ω = 0.74 rad/sec, c) normalised phasor diagram
with ω = 0.75 rad/sec for final solution, d) final solution of the system in Example 6
corresponding to Table 9

Centre of the circle is at

(
1
2
,

−1
2tanθL1

)
with radius, r =

1
2

sinθL1.

Coordinate of point A

(
1

G3
cos(π +θL3),

1
G3

sin(π +θL3)

)
.
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Coordinates of Di are ui and vi, where i = 1, 2.
Let

α =
1

G3
{sin(π +θL3)cot(θL2 +θL3)− cos(π +θL3)},

λ = 2cot(θL2 +θL3)

(
α +

1
2

)
+ cotθL1 ,

vi =
λ ±

√
λ 2 −4cosec2(θL2 +θL3)α(α +1)

2cosec2(θL2 +θL3)
,

ui = vi cot(θL2 +θL3)−α,

where,

θL1 = arg (G11(jω))+ arg (G12(jω))+ arg(N1(X ,ω)),

θL2 = arg (G22(jω))+ arg(N2(X ,ω)),

θL3 = arg(G3(jω)),

OB =
R1

R1
= 1.0,

OA =
C2

R1
=

1
|G3|

,

ODi =
C1

R1
, BDi =

E1

R1
, ADi =

X2

R1
(i = 1,2).

The phasor diagram for a given ω yields

ODi

BDi
=

C1/R1

E1/R1
= (N1)iG11G12 ,

OA

ADi
=

C2/R1

X2/R1
= (N2)iG22

or
1

ADiG3
= (N2)iG22 ,

where (N1)i and (N2)i are the two DFs corresponding to the points Di with i = 1
and 2 respectively. This finally gives the following results:

(N1)i =
ODi

BDiG11G12
, (31)

(N2)i =
1

ADiG22G3
(32)
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and
X1

X2
=

BDiG11

ADi
(33)

(This can be determined from the phasor diagram).
Eq. (24) can also be written as

X1

X2
=

BDi|G11|
ADi

= |G11|
√√√√√

(u−1)2 + v2

(
u− 1

|G3|
cos(γ)

)2

+

(
v− 1

|G3|
sin(γ)

)2 (34)

(This can also be computed analytically) where γ = π +θL3.
Considering the magnitude ratios only from the respective DFs,

X1

X2
=

M1

M2
× (N2)i

(N1)i
=

1
1.126

× ODiADiG22G3

BDiG11G12
, (35)

where (N1)i and (N2)i are determined from phasor diagram in conjunction with
Eqs. (31) and (32).

Equations (31)–(35), with the aid of phasor diagram Fig. 14b and c, yield

numerical values for N1, N2 and
X1

X2
for a given value of ω . The comparison

of the ratio
X1

X2
obtained by two independent ways is best done by plotting

X1

X2
against ω . The point of intersection of the two curves ensures their equality and
thus yields the frequency of limit cycle. Once ω is determined, the amplitudes of
other variables of interest are calculated directly from the expressions developed.

This procedure is repeated for several values of ω . The frequency of limit

cycle is found to be the frequency for which
X1

X2
, for a particular value of i (1

or 2), determined by both routes are the same. The amplitudes of several other
variables can subsequently be calculated. This procedure is illustrated through
the Example 6.

Example 6

Consider the system of Fig. 13

G11(s) = s+1, G12(s) =
2

s(s+1)3 ,

G22(s) =
1

s(s+4)
, G3(s) =

1
(s+1)(s+4)

.
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N1, N2 represent the nonlinearities of subsystem S1 and S2 having rectangular
hysteresis characteristics with M1 = 1.0 and M2 = 1.126 respectively.

θL1 = tan−1 ω − sin−1 H

2X1
− π

2
−3tan−1 ω,

θL2 =−π

2
− tan−1 ω

4
− sin−1 H

2X2
,

θL3 =− tan−1 ω − tan−1 ω

4
.

For different values of ω , the relevant data used for drawing normalised pha-
sor diagrams to scale are shown in Table 9 and normalised phasor diagrams are
drawn using computer graphics as shown in Fig. 14b and 14c. A tentative solu-

tion for matching
X1

X2
is shown in Table 9.

Table 9: Values of different quantities for Example 6

ω θL1 θL2 θL3

X1

X2
(Plot)

X1

X2
(Eq. (26))

0.71 −173.64 −111.37 −45.43
18.08,
1.0969

69.4784,
2.6215

0.72 −174.40 −111.51 −45.95
8.5556,
1.0944

30.4845,
2.3881

0.73 −175.15 −111.65 −46.47
5.8363,
1.0796

19.5513,
2.1220

0.74 −175.90 −111.78 −46.98
4.4018,
1.0677

13.6981,
1.8985

0.75 −176.63 −111.92 −47.48
3.4906,
1.0908

10.1127,
1.6633

0.76 −177.36 −112.06 −47.99
2.9067,
1.1066

7.5908,
1.4298

0.77 −178.09 −112.20 −48.49
2.4685,
1.1269

5.7058,
1.1641

0.771 −178.18 −112.22 −48.55
2.4981,
1.1267

5.6682,
1.1203

0.775 −178.44 −112.27 −48.74
2.2391,
1.1345

4.5870,
1.0253

The above process is reiterated by taking the values X1 = 1.975, X2 = 1.768
and shown in Table 6, which has been finally obtained with the help of Fig. 9d.

The limit cycles exhibited at ω = 0.75 rad/sec where X1 = 2.074, X2 = 1.891,
C1 = 1.737 and C2 = 0.469.
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Table 10: Final solution of the system in Example 6, limit cycles exhibited at
ω = 0.75 rad/sec where X1 = 2.074, X2 = 1.891, C1 = 1.737 and C2 = 0.469

ω θL1 θL2 θL3

X1

X2

(Plot)

X1

X2

(Eq. (26))

0.71 −175.414 −116.493 −45.440
5.5188,
1.0163

18.3946,
2.0532

0.72 −176.173 −116.632 −45.958
4.1557,
1.0285

12.9171,
1.8326

0.73 −176.924 −116.770 −46.472
3.3087,
1.0407

9.3236,
1.6016

0.74 −177.668 −116.909 −46.983
2.7788,
1.0597

6.8997,
1.3784

0.75 −178.405 −117.047 −47.489
2.3762,
1.0914

5.1447,
1.0964

0.752 −178.550 −117.075 −47.590
2.2957,
1.0940

4.7699,
1.0441

D.2. Digital simulation

The procedure followed in section 2.1.2 is adopted for the system of Fig. 13.
The system of Fig. 13 is equivalently presented as shown in Fig. 15a, b for the
Example 6. Subsequently, the digital equivalent is shown in Fig. 15c. The results
of digital simulations are shown in Fig. 16a, b, c and d and compared in Table 11
with that of graphical method as well as with the use of MATLAB/SIMULINK.

D.3. Simulation using Matlab/Simulink

The results of example 6 using MATLAB/SIMULINK are shown in Fig. 16a,
b, c and d and the same are compared with that of other methods in Table 11.

Table 11: Comparison of results of Example 6

Method of computation
ω

(rad/sec)
X1 X2 C1 C2

Graphical (phasor Diagram) 0.750 2.074 1.891 1.738 0.469

Digital Simulation 0.740 2.106 1.896 1.773 0.542

SIMULINK 0.748 2.110 1.879 1.754 0.545



INVESTIGATION OF LIMIT CYCLES AND SIGNAL STABILIZATION
OF TWO DIMENSIONAL SYSTEMS WITH MEMORY TYPE NONLINEAR ELEMENTS 317

a) b)

c)

Figure 15: Digital simulation of the general 2 × 2 nonlinear system: a) equivalent of
Fig. 13, b) equivalent for Example 6, c) digital representation of Example 6 in Z-domain

Figure 16: Results obtained for limit cycles (LC) of Example 6 by digital simulations
and MATLAB/SIMULINK for general 2×2 nonlinear systems
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D.4. Signal stabilization for general 2× 2 nonlinear system

In the line of section 3 the general 2×2 system shown in Fig. 13 is examined
for signal stabilization, taking Bsinω f t at u1 point. The procedure depicted in
section 2.1.2 is followed for the Example 6 using digital simulations. The results
from the digital simulation are shown in Tables 12, 13. During the process of sig-

Table 12: Results of digital simulation for Example 6 showing Synchronization

B C1 C2 ω Remarks
0.0 1.805 0.554 0.7357

0.5 1.161 0.471 0.8887

1.0 0.287 0.544 0.7570
1.5 0.297 0.667 0.6166

2.0 0.229 0.710 0.5983
2.5 0.222 0.719 0.5691

3.0 0.075 0.587 0.7197

3.1 0.071 0.601 0.6792
3.2 0.044 0.557 0.7306

3.3 0.044 0.557 0.7331
3.4 0.040 0.552 0.7757

3.5 0.023 0.497 7.9534 Synchronization

4.0 0.023 0.565 7.9534

Table 13: Results of digital simulation for Example 6 showing Desynchronization

B C1 C2 ω Remarks

3.5 0.023 0.497 0.7662
3.0 0.075 0.587 0.7222

2.5 0.222 0.719 0.5691
2.0 0.229 0.710 0.5856

1.5 0.297 0.664 0.6148

1.4 0.308 0.634 0.6613
1.3 0.278 0.613 0.6662

1.2 0.299 0.613 0.6756
1.1 0.285 0.587 0.6912

1.0 0.287 0.547 0.7409 Desynchronization

0.5 1.150 0.471 0.8837
0.0 1.812 0.555 0.7357
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nal stabilization, the variation of amplitudes C1, C2 and frequency ω are shown
in Fig. 17a and b respectively. The value of C1 synchronised with the forcing
frequency is clearly shown in Fig. 17c.

Figure 17: Results of Example 6 of the most general 2 × 2 systems for signal stabi-
lization: a) variation of C1 and C2 with Dither amplitude B, b) variation of ω Dither
amplitude B, c) The value of C1 synchronised with Forcing frequency
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E. Conclusion

The graphical procedure illustrated through examples provides a clear in-
sight into the prediction of limit cycle and its quenching by way of signal stabi-
lization for general 2× 2 systems with memory type nonlinearities. This is the
novelty of the present work which has not been addressed in detail elsewhere.
The procedure for determining stability boundary provides a clear and simple
method of predicting the existence of limit cycle. This may be much useful for
interconnected power system where the governor possesses backlash nonlinear-
ities for selecting a safer zone of operation avoiding such Limit Cycles. The
results so obtained are compared with that of digital simulation and also by use
of MATLAB/SIMULINK, which substantiates the accuracy of the method and
thus claims to be a powerful method to solve such problems.

Appendix A1

Derivation of Describing Function for Backlash type nonlinear elements:

For Xm > H =
b

2
or Xm >

b

2
where β :

Xm sinβ = Xm −2H

or

β = sin−1
(

1− 2H

Xm

)
.

Equation to output of nonlinear element:

y =





K

(
x− b

2

)
; 0 6 ωt 6

π

2
,

K

(
Xm − b

2

)
;

π

2
6 ωt 6 (π −β ),

K

(
x+

b

2

)
; (π −β )6 ωt 6 3

π

2
,

K (Xm−H) ;
3π

2
6 ωt < (2π −β ),

K

(
x− b

2

)
; (2π −β )6 ωt 6 2π .

The output is a periodic function but does not possess odd symmetry of non-
linear element but odd half wave symmetry i.e. y(ωt ±π) =−y(ωt).



INVESTIGATION OF LIMIT CYCLES AND SIGNAL STABILIZATION
OF TWO DIMENSIONAL SYSTEMS WITH MEMORY TYPE NONLINEAR ELEMENTS 321

Consider Fig. 18,

Figure 18: Backlash type nonlinearities (used for derivation of
describing function

Therefore, the fundamental component of y is given by:

y1 = A1 cosωt +B1 sinωt,

where

A1 =
1
π

2π∫

0

ycosωt d(ωt)

and

B1 =
1
π

2π∫

0

ysinωt d(ωt).
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Due to symmetry of y only the positive half wave need to be considered.

A1 =
2
π




π/2∫

0

K(Xm sinωt −H)cosωt d(ωt)

+

π−β∫

π/2

K(Xm−H)cosωt d(ωt)+

π∫

π−β

K(Xm sinωt +H)cosωt d(ωt)




=
2
π




π/2∫

0

KXm sinθ cosθ dθ −KH

π/2∫

0

cosθ dθ

+K

π−β∫

π/2

(Xm−H)cosθ dθ +

π∫

π−β

KXm sinθ cosθ dθ +KH

π∫

π−β

cosθ dθ


 ,

where ωt = θ

=
2KXm

π




π/2∫

0

(
sin2θ

2

)
dθ


− 2KH

π
[sinθ ]

π/2
0

+
2K(Xm−H)

π
[sinθ ]

π−β
π/2 +

2KXm

π




π∫

π−β

(
sin2θ

2

)
dθ


− 2KH

π
[sinθ ]ππ−β

=
2KXm

π

[
−cos2θ

4

]π/2

0
− 2KH

π
[1−0]+

2K(Xm−H)

π
[sinβ −1]

+
2KXm

π

[
−cos2θ

4

]π

π−β

+
2KH

π
[0− sinβ ]

=
KXm

2π
[1+1]− 2KH

π
+

2K(Xm−H)

π
sinβ − 2K(Xm−H)

π

+
2KXm

4π
[−1+ cos2(π −β )]− 2KH sinβ

π

=
KXm

π
− 2KH

π
+

2KXm sinβ

π
− 2KH

π
sinβ − 2KXm

π

+
2KH

π
− KXm

2π
+

KXm

2π
cos(2π −2β )− 2KH sinβ

π
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=
KXm

2π
+

2KXm sinβ

π
− 2KXm

π
+

KXm

2π
cos2β − 4KH

π
sinβ

=
KXm

2π
[1+ cos2β ]+

2KXm

π
[sinβ −1]− 4KH

π
sinβ

=
KXm

2π
2cos2 β +

2KXm

π
[sinβ −1]− 4KH

X
sinβ

=
KXm

π
cos2 β +

2KXm

π

[
−1+ sinβ

(
1− 2H

X

)]

=
KXm

π
cos2 β +

2KXm

π
[−1+ sinβ sinβ ]

or

A1 =
KXm

π
cos2 β +

2KXm

π
[−1+sin2 β ] =

KXm

π
cos2 β +

2KXm

π
[−1+1−cos2 β ]

=
KXm

π
cos2 β (1−2) =

−KXm

π
cos2 β . (36)

Similarly,

B1 =
2
π




π/2∫

0

K (Xm sinωt −H)sinωt d(ωt)+

π−β∫

π/2

K (Xm−H)sinωt d(ωt)

+

π∫

π−β

K (Xm sinωt +H)sinωt d(ωt)




=
2KXm

π

π/2∫

0

sinθ .sinθ dθ − 2KH

π

π/2∫

0

sinθ dθ +
2K(Xm−H)

π

π−β∫

π/2

sinθ dθ

+
2KXm

π

π∫

π−β

sinθ sinθ dθ +
2KH

π

π∫

π−β

sinθ dθ

=
2KXm

π

π/2∫

0

(1− cos2θ)

2
dθ +

2KH

π
[cosθ ]

π/2
0 − 2K(Xm−H)

π
[cosθ ]

π−β
π/2
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+
2KXm

π

π∫

π−β

(1− cos2θ)

2
− 2KH

π
[cosθ ]ππ−β

=
2KXm

2π

[
θ − sin2θ

2

]π/2

0
+

2KH

π
[0−1]− 2K(Xm−H)

π
[cos(π −β )−0]

+
2KXm

2π

[
θ − sin2θ

2

]π

π−β

− 2KH

π
[−1− cos(π −β )]

=
KXm

2
− 2KH

π
+

2KXm

π
cosβ − 2KH

π
cosβ +KXm+

KXm

2π
sin(2π −2β )

−KXm

π
(π −β )+

2KH

π
− 2KH

π
cosβ

=
KXm

π

[π

2
−0−0

]
− 2KH

π
− 2K(Xm−H)

π
(−cosβ )

+
KXm

π

[
π +

1
2

sin2(π −β )− (π −β )

]
+

2KH

π
− 2KH

π
cosβ

=
3
2

KXm+
2KXm

π
cosβ − 2KH

π
cosβ −KXm+

KXm

π
β −KXm

2π
sin2β − 2KH

π
cosβ

=
KXm

2
+

2K

π
(Xm−2H)cosβ +

KXm

π
β − KXm

2π
sin2β

or

B1 =
KXm

2
+

2K

π
(Xm sinβ )cosβ +

KXm

π
β −KXm

2π
sin2β (∵ Xm−2H =Xm sinβ )

=
KXm

2
+

KXm

π
sin2β +

KXm

π
β − KXm

2π
sin2β

=
KXm

π
+

[
π

2
+β + sin2β

(
1− 1

2

)]
=

KXm

π

[
π

2
+β +

sin2β

2

]
. (37)

Now

D.F =
1

Xm
[B1 + jA1]

=
KXm

πXm

√√√√
[{

π

2
+β +

1
2

sin2β

}2

+{−cos2 β}2

]
,

θ = tan−1 A1

B1
,

where A1 is −ve.
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Appendix A2

For X >
b

2
Incremental Input Describing Function (IDF) for backlash nonlinearity:
The IDF for the Backlash nonlinearity [Singh (1968)] can be obtained utiliz-

ing the centre and radius of the circle:
The centre of the circle at

(
A+

1
2

dA

dX

)
+ j

(
β +

1
2

dB

dX

)
;

the radius of the circle is

1
2

{(
dA

dX

)2

+

(
dB

dX

)2
} 1

2

,

where

A =
K

π

(
π

2
+β +

1
2

sin2β

)
,

B =
−K

π
cos2 β ,

β = sin−1
(

1− b

X

)
,

(
A+

1
2

dA

dX

)
=

K

π

(π

2
+β + cosβ

)
,

(
B+

1
2

dB

dX

)
=−K

π

b

X
.

For non integral values on n, the IDF is real and is given by Ni = K, the slope

of backlash nonlinearity for X >
b

2
.

Appendix A3

Determination of stability boundary of Example 2:
Consider the Eq. (22) and applying Routh-Hurwitz criterion:

s5 1 (9+K2) (8K1 +K2)
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s4 6 (4+2K1+2K2) (4K1K2)

s3 6(9+K2)− (4+2K1 +2K2)

6
= a

6(8K1+K2)−4K1K2

6
= b

s2 a(4+2K1 +2K2)−6b

a
= c 4K1K2

s1 bc−a(4K1K2)

c
s0 4K1K2

For s0 row:
4K1K2 > 0

This implies K1 and K2 are positive.
For s3 row:

6(9+K2)− (4+2K1 +2K2)

6
> 0

ie. K1 −2K2 > 25.
(38)

For s2 row:

a(4+2K1+2K2)−6b

a
> 0 or

[
6(9+K2)− (4+2K1 +2K2)

6

]
(4+2K1 +2K2)

−6

[
6(8K1+K2)−4K1K2

6

]
> 0

i.e. K2
1 −2K2

2 +49K1 −20K2 −7K1K2 −50 > 0.

(39)

For s1 row:

bc−a(4K1K2)

c
> 0 or bc−a(4K1K2)> 0 (40)

or

(
48K1 +6K2 −4K1K2

6

)(−4K2
1 +8K2

2 −196K1 +80K2 +28K1K2 +200
−2K1 +4K2 +50

)

− (−2K1 +4K2 +50)(4K1K2)

6
> 0
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i.e.

K3
1 (−192)+K3

2(−96K1 +48)+K2
1 (2904K2−9408)

+K2
2 (−1368K1+480)+K2

1 K2
2 (−48)+K1K2(−8136)

+9600K1 +1200K2 > 0. (41)
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