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Effect of diffusion and internal heat source on
a two-temperature thermoelastic medium with
three-phase-lag model
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Abstract The purpose of this paper is to depict the effect of diffu-
sion and internal heat source on a two-temperature magneto-thermoelastic
medium. The effect of magnetic field on two-temperature thermoelastic
medium within the three-phase-lag model and Green-Naghdi theory with-
out energy dissipation i discussed. The analytical method used to obtain the
formula of the physical quantities is the normal mode analysis. Numerical
results for the field quantities given in the physical domain are illustrated
on the graphs. Comparisons are made with results of the two models with
and without diffusion as well as the internal heat source and in the absence
and presence of a magnetic field.
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Nomenclature

a – measure of thermodiffusion effect
b – measure of diffusive effect
C – mass concentration
CE – specific heat at constant strain
d – thermo-diffusion constant
eij – components of strain
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e = ekk – dilatation
f – complex constant
i – imaginary unit, i =

√
−1

J – current density vector
K∗ – additional material constant
K – coefficient of thermal conductivity
m – wave number in the x-direction
Q – moving internal heat source
Q0 – magnitude of an internal heat source
P – chemical potential per unit mass
T – temperature above the reference temperature T0

t – time
u̇ – particle velocity of the medium
V0 – velocity of a moving internal heat source
u,w – displacement component
x, y, z – Cartesian coordinates

Greek symbols

αc – linear diffusion expansion coefficient
αt – linear thermal expansion coefficient
δ – constant called a two-temperature parameter, δ > 0
δij – Kronecker delta
Φ – conductive temperature
ε0 – electric permeability
θ – thermal temperature
λ, µ – Lame’ constant
µ0 – magnetic permeability
ρ – mass density
σij – components of stress
τν – phase-lag of thermal displacement gradient
τT , τq – phase-lag of temperature gradient and the phase-lag of heat flux re-

spectively

β1 = ( 3λ + 2µ )αt, β2 = ( 3λ+ 2µ )αc, T̂ = T − T0, τ∗

ν = K + τν K
∗

1 Introduction

Diffusion is defined as a random walk of the ensemble of particles, from re-
gions of high concentration to a region of lower concentration. It occurs as
a result of the second law of thermodynamics which states that the entropy
or disorder of any system must always increase with time. Diffusion is im-
portant in many life processes. There is now a great deal of interest in the
study of this phenomenon, due to its many applications in geophysics and
industry. In integrated circuit fabrication, diffusion is used to introduce
dopants in controlled amounts into the semiconductor substrate. In partic-
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ular, diffusion is used to form the base and emitter in bipolar transistors,
integrated resistors, the source/drain regions in metal-oxide semiconductor
(MOS) transistors and dope polysilicon gates in MOS transistors. In most
of these applications, the concentration is calculated using what is known
as the Fick’s law [1]. This is a simple law that does not take into consid-
eration the mutual interaction between the introduced substance and the
medium into which it is introduced or the effect of the temperature on this
interaction. The phenomenon of diffusion is used to improve the conditions
of oil extractions (seeking ways of more efficiently recovering oil from oil
deposits). These days, oil companies are interested in the process of ther-
moelastic diffusion for more efficient extraction of oil from oil deposits. The
thermodiffusion process also helps the investigation in the field associated
with the advent of semiconductor devices and the advancement of micro-
electronics.

Thermodiffusion in the solids is one of the transport processes that has
great practical importance. Most of the research associated with the pres-
ence of concentration and temperature gradients has been made with metals
and alloys. The first critical review was published in the work of Oriani [2].
With the advancement of a nuclear energy, the interest in thermodiffusion
has returned to metallic oxides that often heats up in the inhomogeneous
temperature field, Fryxel and Aitken [3], in connection with technological
conditions. Thermodiffusion in the elastic solid is due to the coupling of the
fields of temperature, mass diffusion and that of strain. The heat and mass
are exchanged with the environment during the process of thermodiffusion
in an elastic solid. The concept of thermodiffusion is used to describe the
process of thermomechanical treatment of metals (carbonizing, nitriding
steel, etc.), these processes are thermally activated, and their diffusing sub-
stances being, e.g, nitrogen, carbon, etc. They are accompanied by defor-
mations of the solid. The coupled thermoelastic model was used to develop
the theory of thermoelastic diffusion by Nowacki [4–7]. Sherief et al. dis-
cussed the theory of generalized thermoelastic diffusion with one relaxation
time [8]. This implies a finite speed of propagation of waves. Othman et al.

studied the effect of diffusion on the two-dimensional problem of generalized
thermoelasticity with Green and Naghdi theory [9]. Karmakar and Kanoria
discussed elasto-thermo-diffusive response in a spherically isotropic hollow
sphere [10]. Sherief and Hussein studied a two-dimensional problem for
a thick plate with axi-symmetric distribution in the theory of generalized
thermoelastic diffusion [11].
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It is well-known that the usual theory of heat conduction based on
Fourier’s law predicts an infinite heat propagation speed. It is also known
that heat transmission at low temperature propagates by means of waves.
These aspects have caused intense activity in the field of heat propagation.
Extensive reviews on the second sound theories (hyperbolic heat conduc-
tion) given in Hetnarski and Ignaczak [12,13]. A two-phase-lag with both
the heat flux vector and the temperature gradient was introduced by Tzou
[14]. According to this model, classical Fourier’s law q = − K ∇T is re-
placed by q(P, t+τq) = −K∇T(P, t+τT ), where the temperature gradient
∇T at a point P of the material at time t+τT corresponds to the heat
flux vector q at the same point at time t+τq. Here K is the thermal con-
ductivity of the material. The delay time τT interpreted as that caused
by the microstructural interactions and is called the phase-lag of the tem-
perature gradient. The other delay time τq interpreted as the relaxation
time due to the fast transient effects of thermal inertia and is called the
phase-lag of the heat flux. Recently, Choudhuri has proposed a theory
with the three-phase lag (3PHL) which is able to contain all the previous
theories at the same time [15]. In this case Fourier’s law q = − K ∇T
is replaced by q(P, t+τq) = − [K∇T(P, t+τT )+K∗∇ν(P, t+τν)], where
∇ν (ν̇ = T ) is the thermal displacement gradient, K∗ is the additional
material constant and τν is the phase-lag for the thermal displacement
gradient. The purpose of the work of Choudhuri was to establish a mathe-
matical model that includes 3PHL in the heat flux vector, the temperature
gradient and in the thermal displacement gradient [15]. For this model,
we can consider several kinds of Taylor approximations to recover the pre-
viously cited theories. In particular, the thermoelasticity without energy
dissipation and thermoelasticity with energy dissipation were introduced
by Green and Naghdi [16–18]. A three-phase-lag model is very useful in
the problems of nuclear boiling, exothermic catalytic reactions, phonon-
electron interactions, phonon-scattering, etc. Quintanilla and Racke [19],
Kar and Kanoria [20], and Said and Othman [21] have solved different prob-
lems applying the 3PHL model. Othman and Eraki studied the generalized
magneto-thermoelastic half-space with diffusion under initial stress using
three-phase-lag model [22]. The development of the effect of rotation and
magnetic field is available in many studies, such as [23–34].

The present paper is concerned with the investigations related to the
effect of diffusion and magnetic field on a two temperature thermoelastic
medium with the 3PHL model and thermoelasticity without energy dissi-
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pation (G-N II) theory. The variations of the considered variables with the
horizontal distance are illustrated graphically. Comparisons made between
the two models in the absence and presence of the diffusion as well as mag-
netic field. Also a comparison is made with the results of the two models
with and without an internal heat source.

2 Formulation of the problem and basic equations

The problem is considered as a generalized thermodiffusion problem for
a medium with an internal heat source being permeated into the uniform
magnetic field with a constant intensity H = ( 0, H0, 0 ) which is act-
ing parallel to the y−axis at uniform temperature T0 in the undisturbed
state. A fixed Cartesian coordinate system (x, y, z) with origin on the
surface z = 0, which is stress free, and z-axis directed vertically into the
medium. The region z > 0 is occupied by the elastic solid with generalized
thermodiffusion. We are interested in a plane strain in the xz-plane with
displacement vector u = (u, 0, w). The governing equations in the absence
of the body force are as in Sherief et al. [8], Youssef [35], Choudhuri [15]:

1. The equation of motion

ρ ui,tt = (λ+ µ)uj,ij + µui,jj − (β1 T̂,i + β2 C,i) + Fi . (1)

2. The generalized heat conduction equation in the 3PHL model

K∗ ∇2Φ + τ∗

ν ∇2Φ,t +KτT ∇2Φ,tt =
[

1 + τq
∂

∂t
+

1

2
τ2

q

∂2

∂t2

]

(

ρCET,tt + β1 T0 e,tt + aT0 C,tt −Q
)

.(2)

The relation between the conductive temperature and the thermody-
namic temperature is

Φ − T = δΦ,ii . (3)

3. The generalized diffusion equation

dβ2ekk,ii + daT̂,ii +

[

1 + τq
∂

∂t
+

1

2
τ2

q

∂2

∂t2

]

C − dbCii = 0 . (4)
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The constitutive law of the theory of generalized thermoelasticity is

σij = λ ekk δij + 2 µ eij − (β1 T̂ + β2 C)δij ,

ekk =
∂ u

∂x
+
∂ w

∂z
, eij =

1

2
(ui, j + uj, i), i, j = x, z. (5)

P = − β2 ekk − a T̂ + bC . (6)

The variations of the magnetic and electric fields are perfectly conducting
slowly moving medium and are given by Maxwell’s equation in [36]

J = curl h − ε0E,t, curl E = − µ0h,t , E = − µ0 (u,t x H ), ∇ · h = 0 , (7)

F is the Lorentz force given by Fi=µ0(J × H )i. The components of the
Lorentz force will be

F1 = −µ0 H0
∂h

∂x
−µ2

0H
2
0 ε0

∂2u

∂t2
, F2 = 0, F3 = −µ0H0

∂h

∂z
−µ2

0H
2
0 ε0

∂2w

∂t2
,

where the small effect of the temperature gradient on J is also ignored.
Due to application of the initial magnetic field H , there is an induced
magnetic field h = (0, h, 0) and an induced electric field E , as well as
the simplified equations of electrodynamics of a slowly moving medium for
a homogeneous, thermal and electrically conducting, elastic solid. In the
above equation a comma followed by a suffix denotes partial derivative with
respect to the corresponding coordinates.

The field Eqs. (1) and (5) become

ρ
∂2u

∂ t2
= A

∂2u

∂ x2
+B

∂2w

∂ x∂ z
+ µ

∂2u

∂ z2

−β1
∂T̂

∂ x
− β2

∂C

∂ x
− µ0H0

∂ h

∂ x
− ε0µ

2
0H

2
0

∂2u

∂ t2
, (8)

ρ
∂2w

∂ t2
= µ

∂2w

∂ x2
+B

∂2u

∂ x ∂ z
+A

∂2w

∂ z2

−β1
∂T̂

∂ z
− β2

∂C

∂ z
− µ0H0

∂ h

∂ z
− ε0µ

2
0H

2
0

∂2w

∂ t2
, (9)

σzz = λ
∂u

∂x
+A

∂w

∂z
− β1T̂ − β2C , (10)

σxz = µ (
∂u

∂z
+
∂w

∂x
) , (11)
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where A = λ+ 2µ and B = λ+ µ.
Introducing the following non-dimensional quantities:

(x′, z′, u′, w′) = (c1η x, c1η z, c1η u, c1η w) ,

( t′, τ
′

q, τ
′

ν , τ
′

T ) = ( c2
1η t, c

2
1η τq, c

2
1η τν , c

2
1η τT ) ,

h′ =
h

H0
, σ′

ij =
σij

µ
, θ =

β1 T̂

(λ+ 2µ)
, C ′ =

C

ρ
,

P ′ =
P

β2
, Q′ =

β1

ρCE c4
1 η

2(λ+ 2µ)
Q , Φ′ =

β1 (Φ − T0)

(λ+ 2µ)
, (12)

where η = ρ CE

K∗ , and c2
1 = (λ+2µ)

ρ . Using the above non-dimension variables,
followed by employing h = − H0 e, and introducing the potential functions
defined by expressions

u =
∂ ψ1

∂ x
− ∂ ψ2

∂ z
, w =

∂ ψ1

∂ z
+
∂ ψ2

∂ x
, (13)

leads to obtaining

α
∂2ψ1

∂ t2
= B11∇2ψ1 − θ − a1 C , (14)

µ1∇2ψ2 − α
∂2ψ2

∂ t2
= 0 , (15)

CK Φ,ii + Cν Φ̇,ii +CT Φ̈,ii =
[

1 + τq
∂

∂ t
+

1

2
τ2

q

∂2

∂ t2

]

(

θ̈ + ε∇2ψ̈1 − a2 C̈ −Q
)

, (16)

Φ − T = β0 Φ,ii , (17)

∇4 ψ1 + a3∇2θ +

[

1 + τq
∂

∂t
+

1

2
τ2

q

∂2

∂t2

]

a4C − b1∇2C = 0 , (18)

where: B11 = B1 + µ1 + h0H0, ( A1, B1, µ1, h0 ) =
( A, B, µ, µ0 H2

0
)

ρ c2

1

,

a1 =
β2

c2
1

, CK =
K∗

ρCE c2
1

, Cν =
ηK

ρCE
+ CK τν ,
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CT =
η KτT

ρCE
, β0 = δ c2

1η
2, ε =

β2
1 T0

ρCE (λ+ 2µ)
, b1 =

bρ

β2
,

a2 =
a β1 T0

CE (λ+ 2µ)
, a3 =

a (λ+ 2µ)

β1β2
, a4 =

ρ

dβ2 c2
1 η

2
, α = 1+

ε0µ
2
0
H2

0

ρ
.

In Eq. (16) the dots refer to time differentiation.

3 Normal mode analysis

Solution of the considered physical variable can be decomposed in terms of
normal modes as in the following form:

[

u,w, ψ1, ψ2, θ,Φ, σij, C
]

(x, z, t) =
[

u∗, w∗, ψ∗

1 , ψ
∗

2, θ
∗, Φ∗, σ∗

ij , C
∗

]

(z) exp(f t+ imx),

Q = Q∗ exp(f t+ imz), Q∗ = Q0V0, (19)

where u∗(z), w∗(z), ψ∗

1(z), ψ∗

2(z), θ∗(z), Φ∗(x), σ∗

ij(z), and C∗(z) are
the amplitudes of the field quantities.

Introducing Eqs. (19) in Eqs. (14)–(18), we obtain

[

B11D2 −N1

]

ψ∗

1 − a1C
∗ = θ∗, (20)

[

µ1D2 −N2

]

ψ∗

2 = 0 , (21)

[

D4 − 2m2D2 +m4
]

ψ∗

1 + a3

[

D2 −m2
]

θ∗ − [b1 D2 −N4]C∗ = 0 , (22)

[

N5 D2−N5m
2
]

ψ∗

1 − N6 C
∗ =

[

N7 D2−N8

]

Φ∗+N3Q0 V0−N3 f
2θ∗, (23)

θ∗ =
(

N0 − β0 D2
)

Φ∗, (24)

where: N0 = 1 + β0 m
2 ,

N1 = B11 m
2 + α f2 ,

N2 = µ1m
2 + αf2 ,

N3 = 1 + τq f + 1
2τ

2
q f

2 ,
N4 = N3 a4 + b1 m

2, N5 = ε f2N3 ,

N6 = a2 f
2N3 ,
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N7 = CK +Cν f + CT f
2 ,

N8 = m2 N7, D = d
dz .

Eliminating C∗(x) and Φ∗(x) between Eqs. (20), (22), (23), and (24), we
obtain the sixth-order ordinary differential equation satisfied with ψ∗

1(x)

[

D6 − L1 D4 + L2 D2 − L3

]

ψ∗

1(z) =
− N0N3Q0V0a9

L0
, (25)

where L0 = −a8 a10 + a5 a13,

L1 = (− a8 a11 − a9 a10 + a13 a6 + a14 a5)/L0 ,

L2 = (− a8 a12 − a9 a11 + a13 a7 + a14 a6) /L0 ,
L3 = (− a9 a12 + a14 a7)/L0 ,

a5 = 1 + a3B11, a6 = a3B11m
2 +N1a3 + 2m2,

a7 = a3N1m
2 +m4 , a8 = a1a3 + b1 ,

a9 = a1a3m
2 +N4, a10 = B11N9 +N5β0,

a11 = N1N9 +B11N10 +N0N5 +m2N5β0 , a12 = N1N10 +N0N5m
2,

a13 = a1N9 +N6β0 , a14 = a1N10 +N6N0 ,

N9 = N7 +N3 f
2 β0 , N10 = N8 + N0N3 f

2.
Equation (25) can be factored as

(

D2 − k2
1

) (

D2 − k2
2

)

( D2 − k2
3) ψ∗

1(z) =
−N0N3Q0V0a9

L0
, (26)

where k2
n (n = 1, 2, 3) are the roots of the following characteristic equation

k6 − L1 k
4 + L2k

2 − L3 = 0 . (27)

Solution of Eq. (25), bound as z → ∞, given by

ψ∗

1(z) =
3
∑

n=1

Rn exp( − knz) +
N0N3Q0V0a9

L0L3
. (28)

In a similar manner, we get that

C∗(z) =
3
∑

n=1

H1nRn exp( − knz) − N0N3Q0V0a7

L0L3
, (29)

Φ∗(z) =
3
∑

n=1

H2nRn exp( − knz) − N3Q0V0(N1N4 − a1m
4)

L0L3
, (30)
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where H1n =
a5k

4
n − a6k

2
n + a7

a8k
2
n − a9

, and H2n =
B11k

2
n −N1 − a1H1n

N0 − β0k
2
n

.

Introducing Eq. (30) in Eq. (24), we get

θ∗(z) =
3
∑

n=1

H3nRn exp( − knz) − N0N3Q0V0(N1N4 − a1m
4)

L0L3
, (31)

where, H3n = (N0 − β0 k
2
n)H2n.

Solution of Eq. (21), bound as z → ∞, given by

ψ∗

2(z) = ξ2 exp( − k4z), k4 =
√

N2/µ1 . (32)

Introducing Eq. (28) and (32) in Eq. (13), yields

u∗(z) =
3
∑

n=1

imRn exp(−knz)+
imN0N3Q0V0a9

L0L3
+ ξ2k4exp(−k4z) , (33)

w∗(z) =
3
∑

n=1

−Rn knexp( − knz) + imξ2exp( − k4z) . (34)

Introducing Eqs. (12), (19), (29), (31), (33), and (34) in Eqs. (10), (11),
and (6), we get

σ∗

zz =
3
∑

n=1

H4nRn exp(−knz) + ξ3ξ2 exp( − k4z) +G1, (35)

σ∗

xz =
3
∑

n=1

H5nRn exp(− knz) − ξ4ξ2exp( − k4z), (36)

P ∗ =
3
∑

n=1

H6nRn exp(−knz) + imξ2k4exp( − k4z) +G2, (37)

where Rn(n = 1, 2, 3) are some coefficients, ξ3 = imk4 (λ−A) /µ,

ξ4 = (k2
4 +m2) , H4n = 1

µ [ −m2λ+Ak2
n − (λ+ 2µ) H3n − β2ρH1n],

H5n = −2imkn , H6n = m2 − k2
n − a3 H3n + b1H1n ,

G1 =
[− a1a3m

4 λ−N4m
2 λ + (λ+ 2µ) (N1N4 − a1m

4) + β2ρ a7]N0N3Q0V0
µL0L3

,

G2 = N0N3Q0V0

[

N4m
2 + a3N1N4 − b1a3N1m

2 − b1m
4
]

.
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4 Boundary conditions

In the physical problem, we should suppress the positive exponentials that
are unbounded at infinity. The four constants ξ2 and Rn (n = 1, 2, 3)
can be obtained by using the following boundary conditions on the surface
at z = 0:

σzz = −g (x,t) = −g0 e
f t+i m x , σxz = 0,Φ = 0,

∂ C

∂ z
= 0 , (38)

where g (x,t) is a function of x and t, and g0 is the magnitude of the
mechanical force. Using the expressions of the variables considered into
the above boundary conditions, Eqs. (38), we can obtain the following
equations satisfied with the parameters:

−
3
∑

n=1

knH1nRn = 0 ,
3
∑

n=1

H2nRn = 0 ,

3
∑

n=1

H4nRn + ξ3ξ2 = − g0 −G1 ,
3
∑

n=1

H5nRn − ξ4 ξ2 = 0 . (39)

Invoking Eqs. (39), we obtain a system of four equations. After applying
the inverse of matrix method (or Cramer’s rule using Matlab programming),
we have the values of the four constants ξ2 and Rn, (n = 1, 2, 3). Hence,
we obtain the expressions of the displacement components, the conductive
temperature, the thermal temperature, the chemical potential, the mass
concentration and stress components.











R1

R2

R3

ξ2











=











k1 H11 k2H12 k3H13 0
H21 H22 H23 0
H41 H42 H43 ξ3

H51 H52 H53 −ξ4











−1 









0
ξ5

−g0 − G1

0











, (40)

where ξ5 =
N3Q0V0(N1N4 − a1m

4)
L0L3

.

5 Particular cases

1. The corresponding equations for a two-temperature generalized ther-
moelastic medium with diffusion, with internal heat source and with-
out the magnetic field have been mentioned in cases above by taking
H0 = 0.
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2. The corresponding equations for a two-temperature generalized ther-
moelastic medium with diffusion, with magnetic field and without
internal heat source can be obtained from the mentioned cases above
by taking Q0 = 0.

3. Equations of the 3PHL model when, K, τT , τq, τν are greater then
zero and the solutions are always (exponentially) stable if 2KτT

τq
>

τ∗

ν > K∗τq, as in Quintanilla and Racke [19].

4. Equations of the GN-II theory can be obtained, when K = τT = τq =
τν = 0.

5. The corresponding equations for a two-temperature generalized ther-
moelastic medium with magnetic field, with internal heat source and
without diffusion, can be obtained by taking C = a = b = β2 = 0,
thus we have

[

B11D2 −N1

]

ψ∗

1 =
[

N0 − β0 D2
]

Φ∗ , (41)

[

µ1D2 −N2

]

ψ∗

2 = 0 , (42)

[

N5 D2 −N5m
2
]

ψ∗

1 =
[

N9 D2 −N10

]

Φ∗ +N3 Q0 V0 , (43)

θ∗ =
(

N0 − β0 D2
)

Φ∗ . (44)

Eliminating Φ∗(x) between Eqs. (41) and (43), we obtain the fourth-order
ordinary differential equation satisfied with ψ∗

1(x)

[

D4 − L5 D2 + L6

]

ψ∗

1z) =
−N0N3Q0V0

L4
, (45)

where L4 = B11 N9 +N5 β0 ,

L5 = N1N9 +N10 B11 +N5 m
2β0 +N0N5

L4
,

L6 = N1N10 +N0 N5 m
2

L4
.

Equation (45) can factored as

(

D2 − s2
1

) (

D2 − s2
2

)

ψ∗

1(z) =
−N0N3Q0V0

L4
, (46)

where s2
n (n = 1, 2) are the roots of the following characteristic equation:

s4 − L5 s
2 + L6 = 0 . (47)



Effect of diffusion and internal heat source. . . 27

Solution of Eq. (45), bound as z → ∞, is given by

ψ∗

1(z) =
2
∑

n=1

In exp( − snz) − N0N3Q0V0

L4L6
. (48)

In a similar manner, we get that

Φ∗(z) =
2
∑

n=1

H7nIn exp( − snz) +
N1N3Q0V0

L4L6
. (49)

Introducing Eq. (49) into Eq. (44), we get

θ∗(z) =
2
∑

n=1

H8nIn exp( − snz) +
N0N1N3Q0V0

L4L6
, (50)

where In (n = 1, 2) are some coefficients, H7n =
B11s

2
n −N1

N0 − β0s
2
n

, and

H8n = (N0 − β0 s
2
n)H7n.

Solution of Eq. (42) is the same as in Eq. (32) and

u∗(z) =
2
∑

n=1

imIn exp( − snz) + ξ2k4exp( − k4z) − imN0N3Q0V0

L4L6
, (51)

w∗(z) =
2
∑

n=1

−Insnexp( − snz) + imξ2exp( − k4z) , (52)

σ∗

zz =
2
∑

n=1

H9n In exp(− snz) + ξ3ξ2 exp( − k4z) +G3 , (53)

σ∗

xz =
2
∑

n=1

H10n In exp(−snz) − ξ4ξ2exp( − k4z) , (54)

where H9n = 1
µ

[

−m2λ+As2
n − (λ+ 2µ) H8n

]

, H10n = −2imsn,

G3 =
[m2 λ − (λ+ 2µ)N1]N0N3Q0V0

µL4L6
.

In this case the boundary conditions are

σzz = − g(z,t) = − g0 e
ft+ i m x, σxz = 0,Φ = 0 . (55)
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Using the expressions of the variables considered into the above boundary
conditions Eqs. (55), we can obtain the following equations satisfied with
the parameters:

2
∑

n=1

H7nIn +G4 = 0,
2
∑

n=1

H9nIn + ξ3 ξ2 = −g0 −G3,
2
∑

n=1

H10nIn − ξ4 ξ2 = 0,

(56)

where G4 = N1N3Q0 V0
L4L6

.

Invoking Eqs. (56), we obtain a system of three equations. After ap-
plying the inverse of matrix method, we have the values of three constants
In, ξ2 (n = 1, 2). Hence, we obtain the expressions of the displacement
components, conductive temperature, thermal temperature and stress com-
ponents.







I1

I2

ξ2






=







H71 H72 0
H91 H92 ξ3

H101 H102 − ξ4







−1 





−G4

−g0 −G3

0






. (57)

6 Numerical calculation and discussion

In order to illustrate the theoretical results obtained in the preceding sec-
tion, and to compare these in the context of the 3PHL model and the GN-II
theory, we now present some numerical results for the physical constants
as [37].
λ = 7.76 × 109 N m−2, µ = 3.86 × 1010 N m−2, ρ = 8954 kg m−3,
f = 0.25, CE = 383.1 J kg−1.K−1, Q0 = 3 K, T0 = 293 K, g0 = 3 N m−2,
V0 = 0.2 m s−1, τT = 7 × 10−5 s, τq = 9 × 10−5 s, τν = 6 × 10−5 s,
αt = 3.78 × 10−4 K−1, αc = 1.98 × 10−5 K−1, K∗ = 386 w m−1K−1,
µ0 = 1.9 N A−2, ε0 = 0.5 F m−1, K = 150 w m−1K−1 , ω = ω0 + iζ,
ζ = 0.7, ω0 = − 0.3, δ = 1.3 × 10−15, a = 1.2 × 104 m2 s−2K−1,
b = 0.9 × 106 m5 kg−1 s−2, d = 0.85 × 10−8 kg s m−3.

The computations carried out for a value of the time t = 0.1 s. The
variations of the thermal temperature θ, the conductive temperature Φ,
the displacement component w, the chemical potential P, the mass concen-
tration C and the stress components σzz, σxz with distance z for the value
of x, namely x = −1.3, substituted in performing the computation. The
results are shown in Figs. 1–14. The graphs show four curves predicted by
two different theories of thermoelasticity. In these figures, the solid lines
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represent the solution in the 3PHL model, and the dashed lines represent
the solution derived using the G-N II theory. Here all the variables are
taken in nondimensional forms.

6.1 The effect of diffusion

Figures 1–5 show comparisons between the displacement component, w,
the thermal temperature, θ, the conductive temperature, Φ, and the stress
components σzz and σxz with and without diffusion.
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Figure 1: Vertical displacement distribution with and without diffusion.
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Figure 2: Conductive temperature distribution with and without diffusion.
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Figure 3: Thermal temperature distribution with and without diffusion.
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Figure 4: Distribution of stress component σxz with and without diffusion.

Figure 1 displays distribution of the vertical displacement w. In the context
of the two models with diffusion, w starts with decreasing, then increases,
and again decreases. However, in the context of the two theories with-
out diffusion, w decreases to a minimum value, then increases, and moves
in wave propagation. Figure 2 shows that distribution of the conductive
temperature Φ, begins from a zero value and satisfies the boundary condi-
tion at z = 0. In the context of two theories with diffusion, Φ increases to
a maximum value, then decreases, and moves in wave propagation. How-
ever, in the context of the two theories without diffusion, Φ increases, then
decreases to a minimum value, and moves in wave propagation. Figure 3
explains the distribution of the thermal temperature θ. In the context of
two theories with diffusion, θ increases, then decreases to a minimum value,
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Figure 5: Distribution of stress component σzz with and without diffusion.

and moves in wave propagation direction. However, in the context of the
3PHL model without diffusion, θ decreases, then increases, and moves in
wave propagation direction. In the context of the G-N II model without
diffusion, θ increases, then decreases, and moves in wave propagation. Fig-
ure 4 depicts the distribution of the stress component σx z and demonstrates
that it reaches a zero value and satisfies the boundary condition at z = 0.
In the context of the two theories with diffusion, σx z increases, then de-
creases, and moves in wave propagation. However, in the context of two
theories without diffusion, σx z increases, and then decreases, and moves in
wave propagation. Figure 5 explains that distribution of the stress compo-
nent σz z begins from a negative value and satisfies the boundary condition
at z = 0. In the context of the two theories with diffusion, σz z increases,
then decreases, and moves in wave propagation. However, in the context
of the two theories without diffusion, σz z decreases, then increases, and
moves in wave propagation. All physical quantities begin to coincide when
the vertical distance increases reach the reference temperature of the solid.

6.2 The effect of the internal heat source

Figures 6–10 show comparisons between the thermal temperature, θ, the
conductive temperature, Φ, chemical potential, P , mass concentration, C,
and the stress component σz z with (Q0 = 3 ) and without (Q0 = 0) the
internal heat source.
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Figure 6: Chemical potential P with and without internal heat source.
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Figure 7: Mass concentration C with and without internal heat source.

Figure 6 displays that the values of chemical potential P increase with
heat source. Figure 7 depicts that the values of mass concentration C in-
crease with heat source then decrease. Figures 8 and 9 show that, the values
of thermal temperature θ and the conductive temperature Φ, decrease with
heat source. Figure 10 explains that the values of the stress component σz z

decrease with the heat source increasing.

6.3 The effect of magnetic field

Figures 11–14 show comparisons between the displacement component, w,
the conductive temperature, Φ, chemical potential, P , and mass concen-
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Figure 8: Conductive temperature distribution Φ with and without internal heat source.
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Figure 9: Thermal temperature distribution θ with and without internal heat source.

tration C in the absence (H0 = 0) and presence (H0 = 100 ) of a magnetic
field.

Figure 11 describes the distribution of the chemical potential P. In the
context of the two theories, P decreases in the range 0 ≤ z ≤ 14. The values
of P increase in the presence of a magnetic field. Figure 12 exhibits the
distribution of mass concentration C. In the context of the two theories,
C decreases and then increases for H0 = 0. The values of C increase in
the presence of a magnetic field in the first, then decrease, again increase
and last decrease. Figure 13 shows the distribution of the vertical dis-
placement w. In the context of the two models, w starts with decreasing,
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Figure 10: Distribution of stress component σzz with and without internal heat source.
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Figure 11: Chemical potential P with and without magnetic field.

and then increases for H0 = 0. Figure 14 explains that the distribution
of the conductive temperature Φ begins from a zero value and satisfies the
boundary condition at z = 0. In the context of the two theories, Φ increases
to a maximum value, then decreases, and moves in wave propagation for
H0 = 0. The values of the w and Φ decrease in the presence of a magnetic
field in the first, then increase and again decrease.

7 The effect of horizontal distance

Figures 15 and 16 are giving 3D surface curves for the physical quantities,
i.e., the stress components, σxz, and conductive temperature, Φ, to study
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Figure 12: Mass concentration C with and without magnetic field.
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Figure 13: Vertical displacement distribution w with and without magnetic field.

the effect of a magnetic field and the diffusion on wave propagation in
a generalized thermoelastic problem for a medium with an internal heat
that is moving with a constant speed in the context of the 3PHL model.
These figures are very important to study the dependence of these physical
quantities on the horizontal component of distance. The curves obtained
are highly depending on the vertical distance from origin, all the physical
quantities satisfy boundary condition and are moving in wave propagation.



36 M.I. Othman and S.M. Said

0 2 4 6 8 10 12 14
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

z

F

3PHL

G-N II

with magnetic field

without magnetic field

Figure 14: Conductive temperature distribution Φ with and without magnetic field.
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Figure 15: Distribution of stress component σxz against both components of distance
based on the 3PHL model.

8 Conclusions

The following conclusions based on the above analysis can be drawn:

1. It is clear that the diffusion, internal heat source and a magnetic field
have important roles in the distribution of the displacement compo-
nent w, thermal temperature θ, conductive temperature Φ, and stress
components σzz, σxz.

2. The analytical solutions based upon the normal mode analysis of the
thermoelastic problem in solids have been developed and used.

3. There are significant differences in the field quantities between the
G-N II theory and the 3PHL model due to the phase-lag of temper-
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Figure 16: Conductive temperature distribution Φ against both components.

ature gradient and the phase-lag of heat flux.

4. The physical quantities are very depending on the vertical distance
and horizontal distance.

Received 15 April 2017
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