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Abstract: The optimal energy management (OEM) in a stand-alone microgrid (SMG) is
a challenging job because of uncertain and intermittent behavior of clean energy sources
(CESs) such as a photovoltaic (PV), wind turbine (WT). This paper presents the effective
role of battery energy storage (BES) in optimal scheduling of generation sources to fulfill
the load demand in an SMG under the intermittency of the WT and PV power. The OEM is
performed by minimizing the operational cost of the SMG for the chosen moderate weather
profile using an artificial bee colony algorithm (ABC) in four different cases, i.e. without
the BES and with the BES having a various level of initial capacity. The results show
the efficient role of the BES in keeping the reliability of the SMG with the reduction in
carbon-emissions and uncertainty of the CES power. Also, prove that the ABC provides
better cost values compared to particle swarm optimization (PSO) and a genetic algorithm
(GA). Further, the robustness of system reliability using the BES is tested for the mean data
of the considered weather profile.
Key words: artificial bee colony, battery energy storage, clean energy sources, optimal
energy management, stand-alone microgrid

1. Introduction

These days, the concept of a microgrid (MG) system is increased rapidly to fulfill the electricity
demand in a limited geographical area [1]. The MG system integrates the clean energy sources
(CESs), namely a wind turbine (WT) and photovoltaic (PV), small dispatchable sources, i.e. a
fuel cell (FC), diesel engine (DE) and a microturbine (MT), battery energy storage (BES) as
well as a cluster of load demand [2]. The CES helps in cutting the carbon-emission along with
serving the electricity demand. The MG can be operated in stand-alone microgrid (SMG) mode
and on-grid MG mode. The optimal energy management (OEM) in the MG is a challenging
job, because of uncertain and intermittent nature of the CES, and dynamic behavior of load and
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bid cost. The BES can perform important part in the OEM of the MG system and in reducing
the intermittency/uncertainties of the CES by optimally managing their charging or discharging
operations, in accordance to excess or shortage in available energy from the generation sources.
Also, the BES has better ramping capabilities than small dispatchable sources. The OEM in the
MG is a latest issue and quite a lot of research is being carried out in this area.

The economic dispatch in the MG, considering several mathematical objectives and their
constraints through various heuristic approaches is discussed in literatures [3–16]. The MG
operation is optimized for its operational cost with the help of forecasting and energy storage
management modules in [3]. A WT-BES-hydro based hybrid MG is optimally scheduled to
maximize the net profit under wind uncertainty through various heuristic approaches in [4]. This
hybrid MG optimal operation is also handled in [5] by additionally imposing a system of penalty
costs using an artificial bee colony (ABC) algorithm. The stochastic operation costs and power
losses of the MG under intermittency of the CES are taken as an objective function for economic
operation of the MG in [6]. In [7], the authors discuss the optimal component sizing of the
MG elements for economic load scheduling. Paper [8] minimizes the active power differences
in uncertain conditions through effective charge-discharge processes of the BES. The BES is
optimized in [9] to fulfill the residual load, which is the difference of load and the CES power
due to uncertain nature of the CES.

Two layer strategies are used for energy scheduling in the MG [10–12]. An optimal control
is performed based on forecasting data profiles in the first layer and in the layer second, a robust
control is applied to minimize the forecasting errors in [10]. The BES benefits of maximum
exploitation of the CES is used for energy scheduling in the lower level, whereas the upper
level optimizes the operational cost, using a genetic algorithm (GA) in [11]. Paper [12] presents
economic operation based on predicted data in the schedule layer, and controllable units’ power
is dispatched as per real-time data in the dispatch layer. A multi-objective problem is formulated
in [13–16] for the economic operation of the MG. The problem consisting of minimization of
operational costs and pollutant emissions is solved by applying particle swarm optimization
(PSO), a GA and normal boundary intersection techniques in [13, 14]. A fuzzy multi-objective
problem to minimize the economic cost and power losses under uncertainty scenarios is solved
through chaotic binary PSO in [15]. Paper [16] realizes economic operation for minimization of
generation and BES life-loss costs through a non-dominated sorting GA.

The above literatures discussed the OEM in the MG or SMG by minimizing various costs,
losses and pollutant emissions for a single or multi-objective problem using the heuristic ap-
proaches. But, these are lacking in considering the effective role of BES for fulfilling the load
demand in the SMG and at the same time, taking the penalty costs imposed on the SMG and BES
ageing constraint. The main contribution of this work is as follows:

a) The non-linear models of the WT, PV and BES are introduced to express a more realistic
case, but at the cost of non-linearity.

b) Optimal generation scheduling of the SMG is executed to minimize the objective problem,
which is a mixed integer non-linear problem (MINLP) in nature and it is a precisely
formulated cost function with applicable system constraints.

c) A weather profile consisting of moderate solar and wind resources is generated for the
problem simulation.
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d) The problem is simulated in four cases as without and with the BES having a different
level of initial energy to analyze the system reliability with handling the uncertain nature
of the CES.

e) The results obtained from the ABC method of such an MINLP are compared through the
PSO and GA techniques.

The remaining part of the paper is structured as: SMG elements, considered weather profile
and the OEM of the SMG are modeled in Section 2 and 3, respectively. A brief of the ABC
algorithm and its implementation is described in Section 4. Section 5 demonstrates the SMG
system and, the results and discussions of the objective problem. Finally, the work is concluded
in Section 6.

2. Modeling of SMG elements and weather profile

The SMG has uncontrollable sources as a WT and PV, controllable sources as a MT and FC,
BES as an energy storage device and locally connected load demand. The mathematical model
of the SMG elements is as follows:

2.1. PV modeling

The output power of a PV array is varying according to the solar radiation at a particular
interval t and expressed as:

Pv (t) = ηv · r (t) · A , (1)

where A represents the PV cell area in m2/W, r (t) is the solar radiation at interval t and ηv is the
PV array efficiency.

2.2. WT modeling [4]

The WT power at each interval t depends on the value of wind speed. The output power is
normally relatively proportional to the cube of wind speed, if speed lies in between the cut-in and
nominal speed. The mathematical formulation of power generation from the WT is written as:

Pw (t) =


0 vci > v ≥ 0
Pmax
w · (v3 − v3

ci)/(v3
r − v3) vr > v ≥ vci

Pmax
w vco > v ≥ vr

0 v ≥ vco

, (2)

where v, vco, vci , and vr are the actual, cut-out, cut-in and nominal wind speed, correspondingly
and Pmax

w is maximum power output from the WT.

2.3. BES modeling

The BES is having a set of battery blocks, which are connected in the combination of series
and shunt to deliver the nominal output voltage and current to the system. The state-of-charge
(SOC) of the BES is a measure that decides the BES operation at each interval as idle or charging
or discharging. At each interval, the SOC value is calculated on the basis of the BES power and
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it is formulated for discharging and charging in (3) and (4), respectively.

SOC (t) = (1 − λ) · SOC (t − 1) − Pb (t)/(Emax
b · ηdch), (3)

SOC (t) = (1 − λ) · SOC (t − 1) − (Pb (t) · ηch)/Emax
b , (4)

where λ is the self-releasing energy rate, Emax
b

and Pb (t) are the maximum capacity and power
at interval t of the BES (negative/positive value of the BES power for charging/discharging
operation), respectively, and ηch/ηdch is the charge/discharge efficiency of the BES.

C-rate: The discharging/charging power in each hour is scaled by C-rate of the BES. The
C-rate of 1 C is showing that the BES can completely discharge its power in one hour. Hence,
C-rate of 1 C is called as a 1-hour discharge. Similarly, C-rate of 0.5 C is indicating a 2-hour
discharge.

State-of-health (SOH) [10]: It is a ratio that represents the BES state comparing to the ideal
state of the BES. This is computed by (5) only for the BES discharging process, where, Eb (t)
shows the degradation in capacity of the BES at dispatch interval t.

SOH(t) = Eb (t)/Emax
b . (5)

A value of 3 × 10−4 linear ageing coefficient (δ) [20] is considered for SOH evaluation. The
degraded BES capacity Eb (t) is found out as:

Eb (t) = Eb (t − 1) − δ · Emax
b · (SOC (t − 1) − SOC (t)

)
, (6)

The discharge power of the BES at that interval is again evaluated in accordance to the BES
capacity obtained from (6).

2.4. Analysis of solar radiation and wind speed
The hourly solar radiation (W/m2) and wind speed (m/s) data [18] from January-April, 2010

are considered to generate the moderate CES power profile. A range of 450–650 W/m2 of the
average value of solar radiation between the hours 8:00–19:00 of each day is taken to create
the stochastic days of a solar radiation profile as shown in Figure 1(a). In addition, the range

(a) (b)

Fig. 1. (a) Solar radiations of chosen profile and (b) mean and SD value of the profile
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3.5–10 m/s (as per the cut-in and nominal speed of WT) of wind speed found more than 50% of
hours in each day is chosen to generate the wind speed profile as presented in Figure 2(a). The
mean and standard deviation (SD) of the solar radiation and wind speed profile are presented in
Figures 1(b) and 2(b), respectively. Hence, these stochastic solar radiation and wind speed profiles
are considered in determining the available CES power for problem simulation.

(a) (b)

Fig. 2. (a) Wind speeds of chosen profile and (b) mean and SD value of the profile

3. Mathematical model for OEM of SMG

3.1. Objective problem
The problem is proposed to minimize the operational cost of an SMG for optimal generation

scheduling. The proposed problem consisting of various costs is described as:

Min C =
T∑
t=1

(Pw (t) · Bw + Pv (t) · Bv + Pb (t) · Bb + Pm(t) · Bm+

+ Pf (t) · Bf + Pnu (t) · Bnu + Pns (t) · Bns + Cm(t) + Cf (t)), (7)

where Bk (k is w, v, b, m, f , nu and ns) is the bid cost of the WT, PV, BES, MT, FC, unused CES
and unserved demand, respectively. Pm(t), Pf (t), Pnu (t) and Pns (t) are the MT, FC, unused CES
and unserved demand power at interval t, respectively. Cm(t) and Cf (t) are the startup/shutdown
cost of the MT and FC, respectively, and T is the study period of problem simulation.

a) Penalty costs [5]: Two types of penalties are included in a cost objective function, one is
due to not fully utilizing the available WT and PV power of each interval and other is
because of not fulfilling the load demand of each interval. Hence, the imposed penalties
are promoting the maximum utilization of the CES (or decreasing the uncertainty of CES)
and system reliability. These are described as:

Pnu (t) = available CES power − Pv (t) − Pw (t), (8)
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Pns (t) = Pd (t) − Pw (t) − Pv (t) − Pm(t) − Pf (t) − Pb (t), (9)

where Pd (t) is the load demand at interval t.
b) Startup/Shutdown Cost [13]: Startup/shutdown operation of the MT and FC involves certain

costs, and these can be modeled as:

Cm(t) = (Cum · (1 −Um(t − 1)) ·Um(t)) + (Cdm · (1 −Um(t)) ·Um(t − 1)), (10)

Cf (t) = (Cu f · (1 −Uf (t − 1)) ·Uf (t)) + (Cd f · (1 −Uf (t)) ·Uf (t − 1)), (11)

where Cum/Cdm and Cu f /Cd f represent the startup/shutdown costs of the MT and FC,
respectively, and Um(t)/Uf (t) is the off or on status of the MT/FC at interval t, equal to 0
for off and 1 for on.

3.2. SMG constraints
The constraints applicable for the considered SMG system are as follows [4, 10, 13, 15]:
a) The system balance constraint at each period t is written as:

Pd (t) = Pv (t) + Pw (t) + Pm(t) + Pf (t) + Pb (t). (12)

If the load demand at any of the interval of the study period is not satisfied, then the total
unserved demand is represented by the loss of load probability (LOLP) index [19], which
is expressed as:

LOLP =
T∑
t=1

Pns (t)
/ T∑
t=1

Pd (t). (13)

b) The minimum and maximum boundary value of the MT power at dispatch interval t is
given as:

Pmin
m ≤ Pm(t) ≤ Pmax

m . (14)

c) The minimum turn on and off time of the MT at interval t are given as:

Tm, on(t) ≥ Tmin
m, on, Tm, off (t) ≥ Tmin

m, off . (15)

where Tm, on(t) and Tm, off (t) are the turn on and off time of the MT, respectively.
d) The output power of a FC is restricted by minimum and maximum value as follows:

Pmin
f ≤ Pf (t) ≤ Pmax

f . (16)

e) The minimum turn on and off time of the FC at interval t are given as:

Tf , on(t) ≥ Tmin
f , on, Tf , off (t) ≥ Tmin

f , off, (17)

where Tf , on(t) and Tf , off (t) are the turn on and off time of the FC, respectively.
f) The boundary values of the BES power at each interval t are considered as:

Pmin
b ≤ Pb (t) ≤ Pmax

b . (18)
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g) The minimum and maximum energy storing capacity of the BES is provided as:

Emin
b ≤ Eb ≤ Emax

b . (19)

h) The SOC of the BES is limited by minimum and maximum value in each interval, given as:

SOCmin ≤ SOC(t) ≤ SOCmax. (20)

i) SOH value of the BES is restricted by minimum value at each period t as:

SOH(t) ≥ SOHmin. (21)

4. ABC algorithm and implementation

The objective problem with its constraints for OEM is formulated in the previous section is
an MINLP in nature [24]. The conventional optimization algorithms are not suitable for solving
the MINLP. The heuristic approaches provide appreciable solutions for such type of non-linear
problems. In this paper, three heuristic algorithms, i.e. an ABC, PSO and a GA are applied for
problem simulation. The PSO was first discovered in 1995 by Kennedy and Eberhart [21], and
the GA was first proposed in 1967 by Holland [22], they are established and popular algorithms.
The theory of these algorithms is omitted here due to space limitation. The brief overview of the
ABC technique is as follows:

4.1. ABC algorithm
The ABC algorithm was first discovered [17] by Dervis Karaboga, which is based on the nature

of swarm of honey bees for locating the food sources. It has two types of bees, i.e. employed and
unemployed, which shares information to locate food sources successfully. The employ group
of bees exploits a food source and the unemployed group of bees searches for a food source
continuously. Further, the unemployed group of bees is classified into onlookers and scout bees,
the scout bees explore the food sources nearer to the nest and the onlooker bees look at the nest
to set-up the communication with the bees of the employed group.

At the initialization phase, solutions (SN ) are randomly created which are likely to the food
sources. The ratio of the employed bees and food sources is one to one. To evaluate the new
solution of the employed bees (22) is used.

vi, j =

{
xi, j + ψi, j (xi, j − xr1, j ) if j = j1
xi, j otherwise

, (22)

where xi, j , vi, j and xr1, j are the j-th element of xi , vi and xi , respectively; ψi, j is randomly chosen
from ε [−1, 1]; j1 is a random integer ε [1, D] and D is representing the problem dimension; xi
and xi are the various solutions in the current population; vi is the new solution, if this solution
vi is superior than xi , then xi is updated by vi , otherwise xi is unchanged.

An onlooker bee opts the food source randomly as per the probability calculated by (23). Then,
all onlooker bees have to update their better food sources by comparing the solutions evaluated
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using (22).

pi = fiti
/ SN∑

j=1
fitj , (23)

where fiti is the fitness value of xi computed by (24).

fiti =


1
( f (xi) + 1)

if f (xi) ≥ 0

| f (xi) | + 1 otherwise
. (24)

In an ABC, a predetermined limit of the number of cycles is introduced. In the case of a food
source, it is not upgraded to the limit. This food source should be discarded and the bee becomes
the scout bee and again, a randomly generated solution for food sources are created by scout bees.

4.2. Implementation of ABC algorithm

1: Initialization of the food sources xi, j , i.e. Pm(t) and Pf (t), i = 1, 2, . . . , SN , j = 1, 2, . . . , D and
trial = 0, where the trial is representing the abandoned food sources solution xi

2: Obtain the food sources
3: Iteration = 1
4: repeat

/*employed bees phase*/
5: for i = 1 to SN do
6: Obtain a new food source vi , using (22) and determine its quality in terms of fitness of an objective

problem, using (7) and (24)
7: Apply a greedy selection procedure
8: If food source solution xi remains unimproved, then trial = trial + 1, otherwise trial = 0
9: end for

10: Determine the values of probability pi by (23) for the fitness values of food sources solutions
/*onlooker bees phase*/

11: t = 0, i = 0
12: Repeat
13: if rand < pi then
14: Evaluate a new food source vi, j using (22)
15: Apply a greedy selection procedure
16: If food source solution xi remains unimproved, then trial = trial + 1, otherwise trial = 0
17: t = t + 1
18: Endif
19: until (t = SN )

/*scout bees phase*/
20: if limit < max (trial) then
21: Initialize xi again with randomly generated food sources
22: Endif
23: Remember the best solution obtained so far
24: Iteration = 1+ iteration
25: until (iteration = maximum iteration)
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5. SMG system description and discussions of simulation results

Figure 3 shows the basic architecture of the considered SMG [13]. It is located in remote rural
areas, where expansion of a transmission system is not feasible. It has two dispatchable sources,
i.e. a MT and FC along with BES and a CES to meet the connected load demand. The parameters
of the SMG elements are listed in Table 1. The bid costs and, power and time limits of the SMG
elements are provided in Table 2. April 03, 2010 [18] is selected from the generated weather
profile, for the hourly data of solar radiation and wind speed. Table 3 presents the hourly values
of demand.

Fig. 3. SMG architecture

Table 1. Values of system parameters [4, 10]

Parameter Value Parameter Value

SOCmin 0.1 ηch/ηdch 0.9/1.0

SOCmax 0.9 C-rate, ηv 0.1 C, 0.14

SOHmin 0.5 A (m2/W) 0.00694

Emin
b

(kWh) 30 vci, vco (m/s) 3.5, 23

Emax
b

(kWh) 300 vr (m/s) 11

λ 0 T (h) 24

The OEM is performed for an hourly varying load profile and a moderate WT and PV
power scenario. The power output of the MT and FC are taken as decision variables. When
demand is low, the BES extracts power from generation sources and releases back to load demand
whenever required to fulfil the demand. The SOC of the BES at each dispatch interval defines the
available/require capacity for discharge/charge operation. The objective function with its related
constraints as described in Section 3 is simulated in MATLAB® for a day with one hour as the
lead interval. The bid cost for penalties due to not utilized CES power (1.0 €ct/kWh) is slightly
lesser than the bid cost of unserved demand (1.029 €ct/kWh) as the serving load is given on
priority. A factor 0.85 tons/MWh [23] is used to address the reduction in carbon-emission in an
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Table 2. Values of power and time limits, bid and other costs [13, 15]

Type Pmin

(kW)
Pmax

(kW)
SUC/SDC
(€ct/kWh)

Tmin
on
(h)

Tmin
off
(h)

Bid Cost
(€ct/kWh)

WT 0 15 0 0 0 1.073

PV 0 25 0 0 0 2.584

MT 6 30 0.96 2 2 0.457

FC 3 30 1.65 2 2 0.294

BES −30 30 0 0 0 0.38

Table 3. Hourly values of load demand [13]

Hour (h) 1 2 3 4 5 6 7 8 9 10 11 12

Load (kW) 52 50 50 51 56 63 70 75 76 80 78 74

Hour (h) 13 14 15 16 17 18 19 20 21 22 23 24

Load (kW) 72 72 76 80 85 88 90 87 78 71 65 56

MG through the exploitation of the moderate CES. The OEM of the SMG is carried out in four
different cases based on the level of the BES initial energy capacity as follows:

Case-I: The OEM without BES.
Case-II: The OEM with BES.
Case-III and IV: The OEM with BES having 15% and 20% initial energy.

5.1. Case-I: The OEM without BES

In this, optimal energy scheduling of an SMG is performed without an energy storage device.
The power of a WT and PV is given first priority to supply the demand to promote the use of
a CES and reduce the carbon-emission. The remaining unfulfilled load is optimally shared by
controllable sources as a MT and FC. The output power of these controllable sources is restricted
by their constraints and cost associated with them. Figure 4 depicts that a FC is sharing its full
capacity at all of the intervals to satisfy the demand with optimizing the objective problem, as
the bid cost of the FC is lesser than the MT. Table 4 provides the various costs for all three
algorithms, and an LOLP index at optimal cost. The results establish that the ABC provides the
most consistent and better results with reference to all costs and other factors compared to PSO
and GA. As, the variation in mean cost (1127.392 €ct) and best cost (1127.385 €ct) is very less.
The unserved demand at optimal cost is depicted in Figure 8 and it shows that load is not fully
met at hours 7 to 9 and 17 to 23. The value of the LOLP index is 0.0814 and cost of total unserved
demand is 141.94 €ct, which indicates the amount of grid energy exchange cost to fulfill the
unmet demand, if the MG is in on-grid mode. It is concluded that a larger portion of load is not
satisfied in this case.
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Fig. 4. Optimal generation power
scheduling in SMG for Case-I

Table 4. Results of various costs and LOLP for all cases

Algorithm Best cost
(€ct)

Mean cost
(€ct)

Worst cost
(€ct)

LOLP at
best cost

ABC 1127.385 1127.392 1127.402
Case-I PSO 1235.013 1274.616 1325.512 0.0814

GA 1135.342 1139.053 1143.635

ABC 1062.313 1062.313 1062.314
Case-II PSO 1062.69 1062.979 1062.998 0.0125

GA 1062.823 1063.085 1063.365

ABC 1052.576 1052.576 1052.577
Case-III PSO 1052.685 1052.968 1052.993 0.0036

GA 1052.746 1052.871 1053.048

ABC 1047.885 1047.896 1047.906
Case-IV PSO 1047.905 1048.184 1048.947 0

GA 1048.126 1048.255 1048.378

5.2. Case-II: The OEM with BES

The BES with its minimum initial capacity (30 kWh) is included in optimal operation of an
SMG. The optimal scheduling of generation and the BES is presented in Figure 5, which shows
that both a MT and FC are operating at their rated value at all intervals to supply the load and
charge the BES. The BES is charged at hours 1 to 5 and 10 to 16 to store energy for fulfilling
the demand latter at shortage of power generation. At hour 22, the BES fully released energy
up to its boundary limit, after that the BES is unable to fulfill the unserved demand. Therefore,
some amount of load is not met in last dispatch intervals as depicted in Figure 8. Also, this
figure presents that the unserved demand is effectively reduced at most of the intervals by adding
the BES in the SMG compared to Case-I. The cost of total unsatisfied demand (21.67 €ct) is
drastically reduced compared to Case-I. Table 4 listed the several costs for an ABC, PSO and a
GA, as well as LOLP at best cost. The ABC provides better optimal cost (1062.313 €ct) than PSO



510 N.K. Paliwal, A.K. Singh, N.K. Singh Arch. Elect. Eng.

(1062.69 €ct) and the GA (1062.823 €ct). The LOLP index and the best cost are better, compared
to Case-I.

Fig. 5. Optimal generation and BES
power scheduling in SMG for Case-II

5.3. Case-III and IV: The OEM with BES having 15% and 20% initial energy

The optimal load sharing by generation sources and the BES for Case-III and IV are shown
in Figures 6 and 7, respectively. The BES plays an efficient role in order to meet the demand by
optimal charging-discharging processes. The BES is fully discharged at hour 23 and it enhances
the system reliability at last dispatch intervals in Case-III, comparing to Case-II as described
in Figure 6 and Figure 8. The load demand is completely satisfied at all intervals in Case-IV.
Figure 8 depicted that the unserved demand in Case-III is only at intervals 22 and 23, which is
also less compared to Case-I and Case-II. It ensures that the BES with initial energy is working as
a dispatchable source to satisfy the power balance constraint of the SMG to handle the uncertain
nature of a CES. It is indicated by greatly reduced value of the LOLP index as presented in Table 4
for the Case-III and Case-IV. Also, the best costs for Case-III and Case-IV are better than the
cost of Case-I and Case-II.

Fig. 6. Optimal generation and BES power
scheduling in SMG for Case-III

Fig. 7. Optimal generation and BES power
scheduling in SMG for Case-IV
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It is concluded that by adding the BES, system becomes reliable with much less amount
of unserved power and also, reduces system operational cost. The cost due to not utilized CES
power is zero in all the cases, as demand is higher than the CES power at each interval. Besides,
the utilization of the CES with moderate energy in the SMG approximately reduces 0.22 tons
carbon-emission in a day compared to conventional energy sources. The optimized values of
SOC obtained at each interval points of dispatch period for Case-II, Case-III and Case-IV are
presented in Figure 9 and it indicates that the SOC gains higher values, when load demand is at
a lower level and its vice-versa. Also, the values of the SOC rise at each interval in sub-sequent
cases with the increasing value of initial energy. A curve between the increase in initial energy and
system operational cost is depicted in Figure 10, which describes that after 20% initial capacity,
the cost does not decrease significantly, because of load is fully met at the BES with 20% initial
energy of the BES. Further, the OEM is performed to analyze the robustness of the SMG for
mean solar and wind data of the selected weather profile as presented in Figures 1(b) and 2(b),
respectively. Figure 11 illustrates the economic load sharing by sources and the BES with 40%

Fig. 8. The bar chart of unserved demand at best
cost for Case-I, II and III

Fig. 9. The load and optimized values of the
SOC for Case-II, III and IV

Fig. 10. Effect on cost of SMG with increasing
the BES initial capacity

Fig. 11. Optimal energy scheduling in SMG for
mean wind and solar data
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initial capacity to meet the demand using ABC technique. And, the value of optimal cost for these
data is 983.23 €ct.

6. Conclusions

Four operational cases based on BES having different initial energy capacity in OEM of an
SMG are deliberated for the moderate solar and wind resources data in this paper. The results show
that load demand is partially or fully met, when the BES with or without initial energy is included
in the system compared to the system without the BES. The system operational cost is reduced
with the addition of the BES in the system. The unserved demand and its cost, and LOLP are
reduced drastically in the system with the BES. Hence, it is concluded that BES in an SMG plays
an efficient role by optimally managing its charging or discharging or idle operations in OEM and
maintaining the reliable power supply under the chosen weather profile and weather uncertainties.
Also, the results for all cases present that an ABC performed better to solve the MINLP compared
to PSO and GA approaches. The best, mean and worst costs results describe that the ABC always
provides a solution near to the optimal values than to PSO and GA techniques. Hence, the ABC
technique is more reliable and feasible. In future, OEM in the system can be performed including
some controllable load demand and probabilistic uncertainty factors of weather, and reducing the
nonlinearity in the system due to the startup/shutdown cost of a MT and FC using alternative
formulation with a slack variable, which will help to relieve computational burden.
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