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1. Introduction

The special section in the current volume of the Bulletin of

the Polish Academy of Sciences, entitled “Fractional Signals

and Systems”, includes selected papers from the FSS17 In-

ternational Conference, which was held in Łódź, Poland on

October 9–11, 2017. The founder of the conference is Manuel

Duarte Ortigueira from the New University of Lisbon, Portu-

gal. The FSS17 is yet another in a series of conferences, which

had previously taken place in:

1. Caparica, Portugal, 2009

2. Coimbra, Portugal, 2011

3. Ghent, Belgium, 2013

4. Cluj-Napoca, Romania, 2015.

The FSS17 conference addressed a broad spectrum of the

Fractional Calculus (FC) applications in technical sciences.

Main topics included the fractional-order continuous-, and

discrete-time linear or non-linear fractional-order control, dy-

namic system identification via fractional models, fractional

order filtering, as well as image processing using fraction-

al methods. The conference’s main organizers included the

Institute of Applied Computer Science (Instytut Informaty-

ki Stosowanej Politechniki Łódzkiej), the Lodz University of

Technology (Politechnika Łódzka) and the Polish Information

Processing Society – Łódź Branch (Polskie Towarzystwo In-

formatyczne – Oddział Łódzki).

2. Fractional calculus

The FC is a generalization of the conventional calculus that

emerged was raised in 1695 from an idea by Leibniz, to be

found first in an exchange of letters between him and Bernoul-

li [1]. Although not as accessible as the standard calculus, the

FC leads to similar concepts and tools, but it enjoys wider gen-

erality and applicability. Because it allows integral/derivative

operations of arbitrary order (real or complex one), it consists

of an upgrade similar to the generalization from the integer

to real or complex numbers. In the almost 200 years that

have passed since Liouville had published his works [2], the

fractional derivative was considered a curious, interesting yet

abstract mathematical concept. The main developments of the

FC were accomplished by mathematicians without finding any

real world applications. During this period several definitions

of derivative and integral operators were formulated, not nec-

essarily compatible in the sense of giving of always yielding

the same results, which created difficulties when trying to

extend specific tools based on the traditional integer order to

the more general arbitrary order context. Since early 1990s,

scientists and engineers, with the perspective of practical ap-

plications in mind, have been working with those different

forms and obtaining novel interesting results [3]. However,

this progress does not exclude the need for converging on

formalisms [4]. We must remark that these developments

were reached in an analogical domain. The first discrete for-

mulations appeared as a result of numerical approximations

to continuous variables [5, 6]. Recently, several advances in

fractional discrete-time techniques were proposed [7–11]. The

above-mentioned referred fractional operators are left or right,

which can be considered causal or anti-causal when the inde-

pendent variable is time. However, this is not mandatory, as

Riesz showed when he proposed what is usually considered as

“Riesz potential”, i.e. a two-sided operator [12]. The same is

applicable to happens with the Riesz-Feller potential. Versions

of the two-sided derivatives based on fractional incremental

ratia were proposed in [13, 14]. These are equivalent to the

Riesz and Riesz-Feller potentials.

When speaking in signals and systems, we are consider-

ing a very important set of tools responsible for many of the

realizations of our modern life, such as in the areas of commu-

nication, bio-medicine and biology, electrical and mechanical

engineering, economy and finance, and many others. We are

considering analysis, modelling, and, very importantly, syn-

thesis of systems. There are many integer order tools that need

to be extended to the fractional framework while maintaining,

but keeping a backward compatibility. In the set of operators

we include the impulse, step and frequency responses. Appar-

ently, not all proposed formulations for fractional derivatives

and integrals are suitable for doing this correctly.

2.1. Fractional calculus – short historical review. In 1695,

Gottfried Leibniz raised the question about generalizing the

orders of derivatives and integrals to non-integer values. In
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the four centuries that followed many important mathemati-

cians contributed to the theoretical development of FC (see

Fig. 1 for a time line) for the time line of FC. In most re-

cent decades practical implementations emerged and FC is

now recognized as an important tool for describing phenome-

na that the integer-order calculus overlooks. The evolution of

FC under the light of indices such as the number of books

published is an assertive measure of scientific and techno-

logical progress. The data collected up to the year 2016 are

represented in Fig. 2.

Fig. 1. FC timeline (1650–2016)

Fig. 2. Number of books per authors in 1965–2016

3. Fractional signals

The presence of fractional behavior in nature and in many

man-made systems is unquestionable. Many signals caught

when observing such systems have spectra that exhibit in-

creasing/decreasing slopes in Bode diagrams that are not mul-

tiples of 20 dB per decade. This can be found, for example,

in ECG, speech, electronic noise in junctions, network traffic,

and others [15]. Designations such as 1/f noise, long range

dependence, fractional Gaussian noise and fractional Brown-

ian motion (fBm) appear many times in scientific literature.

Fractional Gaussian noise is the output of a causal Liouville

derivative [2,4] excited by Gaussian white noise. The integral

of this noise is the fBm [16, 17].

A digital image can be treated as a two-dimensional

discrete-space signal. In the processing of such signals we

can also apply FC, for image edge detection and filtering.

Here we apply the fractional-order differences [11]. In the

edge detection the masks are more sophisticated then when

using the classical approach [18, 19].

4. Fractional systems

There is a belief in the literature that fractional calculus is

adequate only in a description of dynamical systems with so-

called “memory”. Here we can mention electricity (with elec-

trical circuits with supercapacitors and inductive phenom-

ena based on the skin effect), mechanics (with relaxation-

oscillation problems and viscoelasticity), thermal engineering

(with heat transfer phenomena), fluid dynamics (with anom-

alous diffusion), biology, etc. Similarity between different

types of dynamical systems is mentioned in Table 1.

Table 1

Physical phenomena equivalence

System
type

Flow
variable

Effort
variable

Compliance Inductance Resistance

Mechanical velocity force spring

factor

mass damper

factor

Electrical current voltage capacitance inductance resistance

Thermal heat

flow rate

temperature

change

thermal

capaci-

tance

thermal

induc-

tance

heat con-

duction

Fluid volume

flow rate

pressure tank mass valve

The Table above permits to state that the known systems

with a “memory” have their equivalence in other types of

systems. Moreover, all dynamical systems that are considered

classical can also be described by the fractional-order linear

or non-linear differential equations. Such equations take into

account hidden physical phenomena such as inductive and ca-

pacitive couplings between the electrical circuit elements and

friction in mechanical ones. At this point, let us foretell that in

the future fractional calculus is highly likely to supersede the

so-called classical one with only integer derivatives and mul-

tiple integrals. The latter will be treated as an approximation

or a special case of fractional calculus.
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4.1. Continuous-time fractional systems. All real dynami-

cal plants in closed-loop control systems are continuous-time.

Classical approach to all control systems shall encompass:

1. Identification of the plant (mathematical modeling) by the

fractional-order linear or non-linear differential equations,

and fractional-order state space models.

2. Analysis of the closed-loop system (stability, observabili-

ty, reachability, controllability, system response, frequency

characteristics).

3. Control supported by the fractional calculus algorithms,

PID control, robust control, CRONE control.

4.2. Discrete-time fractional systems. Long-term global

trends in control theory and general practise point to the huge

dominance of discrete-time systems. Discrete-time fractional

systems exist independently of their continuous counterpart

and are generalizations of the classical approach represent-

ed by difference equations [9]. However, they acquire rele-

vance in approximating continuous-time systems for digital

implementations. In fact, their applications in control strate-

gies realization and continuous signal measurement and ac-

quisition become easier. Yet, similarly to the continuous-time

closed-loop control system mentioned above, problems arise

in a discrete-time case. To quote but a few here:

1. Approximation of the fractional-order derivative by means

of the fractional-order difference with a finite sampling pe-

riod.

2. Limited accuracy of microprocessor calculations, liquidat-

ed made partly obsolete by sophisticated calculation algo-

rithms.

3. The so-called “finite calculation tail”, caused by the finite

sampling period of the discrete-time system.
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