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Summary. In the article the equations have been
worked making it possible to model the motion of free-
running grain mixture flow on a flat sloping vibrating
sieve within the framework of shallow water theory.

Free-running grain mixture is considered as a
heterogeneous system consisting of two phases, one of
which represents solid particles and the other one gas.
The mixture is brought into a state of fluidity by means
of high-frequency vibration imposition. Coefficients of
internal and external friction and dynamic-viscosity
decrease by exponential law as the fluctuation intensity
is increased.

When considering grain mixture dynamics, the
following assumptions are put forward: we ignore the
air presence in space between particles, we consider the
density of particles to be constant, the free-running
mixture is similar to Newtonian liquid.

The basic system of equations of grain mixture
dynamics is due to the laws of continuum mechanics.
The equation of continuity is issued from the law of
conservation of mass, and the dynamic equations are
issued from the law of variation of momentum.

The stress tensor equals to the sum of the
equilibrium tensor and the dissipative tensor. The
equilibrium part of the stress tensor is represented by
the spherical tensor, which is found to conform to
Pascal law for liquids, and the dissipative part, which is
responsible for viscous force effect and defined by
Navier-Stokes law.

Boundary conditions on the surfaces (restricting the
capacity of the free-running grain mixture) have been
researched. The distributions of apparent density and
velocity field are assigned at the inlet and outlet flow
sections of the mixture. The normal velocity component
of the grain mixture on the side frames and on the sieve
becomes zero, which meets the no-fluid-loss condition
of the medium through the frame. Beyond that point at
this time we satisfy dynamic conditions, which

characterize the mixture sliding down the hard frame,
motion flow resistance force is represented as average
velocity linear dependence. A kinematic condition and
two dynamic ones are stipulated on the free surface
layer. One of the conditions states mass flow continuity
across the free surface, the other one states the stress
continuity while passing through the free surface.

The basic premise of planned motion equations is
the condition of small size of flow depth in comparison
with its width. With the use of shallow water theory the
basic principles of the equations of flow dynamics are
simplified and for their solving a Cauchy problem can
be set.

Key words: shallow water theory, planned flow
motion, free-running mixture, stress tensor, strain
velocity, viscous friction.

INTRODUCTION

Grain separators feeding including supplying and
distribution of the material being processed across the
sieve working surface is one of the factors providing the
quality and productivity of the separation process. The
existing grain separators do not provide with uniform
distribution of the grain mixture across the working
surface. The deviation from grain supplying average
value across the sieve width approaches 20 %. To solve
this problem it is vital to research the mixture dynamics
on the sieve. Consequently, mathematical modeling of
FM flow motion is a priority task.

THE ANALYSIS OF RECENT RESEARCHES
AND PUBLICATIONS

The grain material distribution across the width of
separating parts and the influence of the non-uniform
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distribution on the efficiency of separation have been
analyzed in the papers [1, 2].

For loading improvement AN. Ziulin,
Y.I. Bazhenov [3-5] developed the flat sieve shape
providing the material uniform distribution across the
entire area under separation.

Ye. S. Goncharov [6] has made a study of the
nature of unstable motion of the mixture in the segment
of the sieve loading. He has also developed
recommendations on the decrease of the mixture's
unstable motion impact on the process of the sieves’
loading.

D.F. Deberdeyev’s research showed that the
preparative surface applying at the sieve starting point
increases the distribution of free-running material.

V.P. Olshanski [8] researched the regularities of
flow mixture velocity change across the sieve length
while non-uniform supplying. It is stated that under the
harmonic pulsation supply the length of the non-
uniform motion area increases with the frequency
decrease and with the vibration amplitude increase of
mixture velocity supply onto the sieve.

The sieve working surface loading is characterized
with the material distribution throughout the whole
layer volume which demands the consideration of
spatial movement of FM. However, in the stated papers
FM movement has been considered in one plane.

In the paper [9] the quick motion of granulated
media theory has been applied for describing FM flow
dynamics. A mathematical model of FM flow motion in
three-dimensional space has been worked out.
However, the obtained equation system is rather
difficult, there are no completed solution algorithms
and similarly solved problems do not exist.

In L.N. Tischenko's scientific works
hydrodynamic equations have been applied for
describing the free-running grain mixture dynamics.
The obtained results conform to the experiment to a
great extent which raises the possibility of using the
shallow water theory in research of FM flow motion on
the vibrating sieve.

OBJECTIVE

The work aimed at formulating the planned motion
equations of free-running grain mixture flow on the
vibrating sieve.

THE MAIN RESULTS OF THE RESEARCH

Let us consider the sieve in the shape of a pan
angled at ¢ angle in relation to the horizon (Fig. 1).
Constructively, the pan is divided into segments with
the help of partitions A, B, C, D, A], B], C], D], Ag, Bg,
C,, D,, located parallel to each other, oriented down the
sieve slope and perpendicular to the pan bottom. The
quantity of the corresponding segments may be
optional.

Fig. 1. Flat pan

We choose the coordinate system so that its origin
lies in the plane CDD,C,. Let us direct the axis Ox
down the sieve slope parallel to partitions, dividing the
sieve into segments. Let us denote the distance between
the partitions via /. The axis Ox is considered to be
lying in the middle between the partitions ABCD and
AB,C,D,. The direction of the other axes is
understandable from Fig. 1. Since the partitions
completely isolate grain flows in the segments from
each other, FM movement is sufficient to be considered
in one of the segments.

Grain flow comes on the sieve through the inlet

CDD,C,

section , corresponding ¥ =0 and comes out

of the pan when X =/

Let us consider the problem of FM dynamics
reviewed in the paper [9]. In accordance with the quick
motion of granulated media theory, the stress tensor has
non-linear dependence on the strain velocity tensor
which complicates the problem solving to a great
degree. Let us hold the opinion of FM being similar to
Newtonian liquid [12, 13]. In this case the equilibrium

part of stress tensor G’ appears to be a spherical tensor
which corresponds to the fulfilling of Pascal law for
liquids

Oy ==POy, )

. rd .
and non-equilibrium part O which is responsible for
viscous force actions is defined by Navier-Stokes law

2 ov, 0v, OV ov, 0Ov
o-d=(l—— j Ly 22485 | 4L
g 39\ e T, e ) T e T, )@

where: p - pressure; 6 — second-rank identity tensor; A, u
— dynamic coefficients of volume and shearing
viscosity; x;=x, x,=y, x3=z — cartesian reference system
coordinates; v,;=u, Vv,=v, v;=w — velocity vector
movement components of continuous medium.

For many media it is considered that A=2/3p,

Then FM dynamics equations coincide with the
viscous compressible medium equations. If you direct

the gravitation force down at an angle ¢ relative to the
vertical line, that is to define components of a unit
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vector pointing the direction of the gravitation force

¢, =(sind,0,~cos0) e shall have the continuity
equation and motion equations as follows:

;p+(§xpju+psxu+[§)}p]v+p§yv+jz(pw)=0 3)

0 0 0 0
pl —utu—utv—utw—u |-
a  x oy &

3 3 “
_ao-xx _50-)5}/ a_o-xz _pgSln(e): O’
[ )
pl —vtu—v+tv—yvt+tw—v |-
ot ox y 4

(5)
0 0 0
T A Y%y T A Yy A Z_O’
ox oy oz "
R
pl —wtu—wt+tv—wt+tw—w |-
0 ox z
0 0 ©
A Y __O-VA —=0 +ngOS(0) O’
ox oy -

where:
p=yv — medium density with account of interstitial

spaces; y — particle density of the mixture;
v - volumetric particle density; 7 - time.
Stress tensor components @
O-xx O-xy O-xz
o= GK}' G,W Gyz , (7)
O-xz O-y; O-zz
(3x3)

coincide with matrix elements of the degree

LI U (%+%j
PPty Mo x) “E T

(52) +od A2
oy O oy oz oy (8)

(%_’_@j ov ow) 42 ow
#82 ox ﬂaz ay P ﬂaz

The FM layer takes up the area V, restricted by a
flat bottom X, (44,D;D), side panels X, (4,B,C;D) and
%, (ABCD) of the segment, by the inlet X5 (44;B;B) and
outlet X, (CC;D;D) sections . At the top the FM layer is
restricted by the surface I' which changes its shape and
moves according to the FM movement when the
medium is in motion. The surfaces of that kind are
called “free” in hydrodynamics and their form is
defined in process of the problem solving. It should be
noted that the presence of the medium free surface
complicates the mathematical problem setting, the

problem becomes non-linear and its solving is to be
defined in the area unknown beforehand.

Fig. 2. Side frame of the sieve segment

Let us denote the layer depth counted along the
normal to the pan bottom up to the free surface by
h=h(tx,y,z), | the pan length, /; the segment width.
Then the areas stated in the previous passage can be
defined by the further relations

V={0<x<l,-1/2<y<l/2,0<z<h}
T,={0<x<l,-1/2<y<l/2,z=0} (z=0)
5, ={0<x<l,y=-1/2,0<z<h} y=-112)
s, = (v=1,/2)

0<x<l, ©)

r —1/2<y<l/2,z=h} (z=h)
L= /2<y<l/2,0<z<h} (x=0)
{x=1,—ll/2<y<ll/2,0<z<h} x=1)
To find the single-valued solution of the equation
system (3-6) it is necessary to use the boundary and
initial conditions.
The normal velocity component of FM on the side

panels and the sieve equals to null. It conforms to the
medium no-fluid-loss condition through the frame.

{

{
,={0<x<l,y=1/2,0<z<h}

{

{x=

Z;
)

(10)
where: V,, appears to be the normal velocity component
of FM on the panel.

Beyond that point at this time we satisfy the
dynamic conditions, which characterize FM sliding
down the hard smooth frame. In hydraulics, when
researching the liquid motion along the river stream, the

resisting force 7 is taken into consideration forcing on
the wet perimeter of the stream cross section in the
form of its linear dependence on the stream average
velocity “m [14]:
r=-Cu, (11)
The stated relation may be given as follows:
Let us consider

n= (nl,nz,n3) (n SOTUS ) represents the unit
external normal relative to volume ¥ to the surface X,

that

and 7 ={7773} _ unspecified unitary vector tangent

to X. In this case the tangential stress P: onto T is
defined in accordance with Cauchy relation [15, 16]:



www.czasopisma.pan.pl P
Y

N www journals.pan.pl

66 M. PIVEN

pr = nko-klrlel = _C‘v Vk Tthez

(12)

where: C; — phenomenological coefficient, analogous to
Chezy's velocity factor; % - of the coordinate basis
vector of the cartesian reference system.

In the projections of the last vector equation on the
tangent direction which is defined by the vector 7 -

0,7, ==C, Vv, 7,7, ) (13)
It is compulsory to meet the inequation
P, =nmoun < 0 (14)

implying that the normal stress on the panel should be
compressing.

Distributions are assigned at the inlet section of the
sieve:

P =p(t,0,y,2), uy =u(t,0,y,z), v, = v(t,0,,2),
Wy =w(t,0,3,2), By =h(£,0,3) (15

The corresponding characteristics are sampled
either from the experimental data or supplementary
theoretical research.

Similar conditions are necessary to be assigned at
the outlet section X,. The number of these conditions on
this boundary depends on the equation type describing
the flow dynamics [17]. Since the dynamics equations
possess second derived velocity fields across spatial
variables, it is necessary at least to assign conditions for
the velocity field at x=/. The corresponding conditions
are to be assigned here as carried out in computational
method problems for viscous liquid dynamics [18, 19]:

autxy.2) _,

ovtxy2)| _, Otxp2)
a | A . &

x= (16)

Two types of boundary conditions are set on the
free surface of the grain layer I' — kinematic and
dynamic ones. The first one is stated as following: let us
assume that the equation of the free surface takes the
form of:

z=h(t,%,y)=0 an

Let us consider the medium velocity field to be known
and x, y, z are coordinates of a medium particle.
Hence:

dx dy dz

—=u, —=V, —=Ww

dt dt dt :
Differentiating both equation parts on time (17), we will
acquire the wanted kinematic condition:

h O,
o ox oy - (18)

There are two types of dynamic conditions on I
the first one follows the law of conservation of mass
and reflects mass flow continuity through I":

<,0(Vn _W)>: 0 S
where: W- normal velocity movement component of the
surface breaking medium I'; v, - normal velocity
particle component on I', angular brackets denote the
corresponding function jump on I [15].

The T surface is a surface of contact breaking for
which the values of normal velocity component are

V.-V, above and below the T surface equal W.
Consequently, the specified condition is satisfied by
itself.

Another dynamic condition implies stress
continuity when going through I' and follows from
motion equations. This condition consists of three
scalar relations:

- +
moun, =mouhn,

nko-/:ITlI = nko-/:;'Tli (F) (19)

- _ +
nko-le2l - nkaklrm

Here Zmi (m = 1’2) unitary noncollinear tangents to
the surface of T" vector, index ‘-¢ means that the values
of the function are selected on the surface on the side of
the area from which the normal ‘+’ is directed — for the
values of the function on the surface points from that
side where the normal is directed.

Over the surface I" the free-running medium is not
present but there is a certain perfect medium (gas) for
which Pascal law is applicable:

o ==k, (20)

where: £o- pressure, exerted on the layer surface of the
FM by this medium, along with this there should

befo >0 to eliminate the tension strains in the layer;

6 =0,€¢, - unit tensor; S - Kronecker symbols.
Lowering the superior index ‘-* in relations (19),
we shall rewrite them as following:
ngon; = -
n0 T =0 #3))
N0 Ty =0
The T surface is represented as two-dimensional
two-parameter variety in the three-dimensional space,
assigned by the vector equation [20]:
;:=7(t>xsy)=(xayah(taxay)). (22)

In case of holding the variable y fixed, we shall receive
the first coordinate line on I', in case of holding x fixed
we will obtain the second coordinate line on I'. The
vectors:

BT 1,0,@ , E _T_ 0,1,@
Y ox ox Yoy o) @3

are the basis on I" and they are tangentials to coordinate
lines on it. The condition of their normalising gives the
expressions for unit tangents to I" vectors:
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= Ex ,Z: _ E)"
17 & 2 " T= | 24
_ = ‘Ey‘ @4
Vector NV normal to T equals to:
N=ExE =|-2 -0, s
x’ oy ) (25)

and correspondingly a unit normal equals to:
N (& oo )1 onY (onY
NnN=r—= ——,——,1 =T ‘N‘= 1+ — | +| — (26)
M & o ) \»)
From this point on we shall deal with the motion of
the FM thin layer across smooth solid surfaces. In this

case Vult=(Oh/2x,0h13Y) i 4 vector the modulus of
which is less than one and therefore the second-order
terms are much less than the first-order terms

|Vh|2 = 0(|Vh|) . From this point on we ignore the stated
terms.

Thereafter the dynamic conditions (21) after
apparent simplications can be written as following:

—2(ih)0'xz -2 ih c,+0,+F =0
ox oy )

0 0 0
- =—h - —h —h=0
(8x jaxx an jaw Tt Ouy ,(28)
0 0 0
_(ahjaxy —[5hj o, + Eahj o.+0,.=0 (29)
(z =h(t,x,y))

The pan bottom Xy
The external normal:

7 =(0,0,-1)

@7

>

Tangent vectors:
z_:1 = (19 05 0)3 Z_:z = (0515 0)

Stress tangents:

Ty = =0, 5

ST
Qs
N

z-y: O -

N
[\S]

= —Gyz .

Therefore the conditions (13) for z"0 acquire the form:

on =Cou, (30)
7 =GV, 31)
The right panel Z:1 :
n=(0,-1,0), 7,=(,0,0), 7,=(0,0,1)
T,=-0,
T.=-0,
Conditions on 21

V= O’ (32)
GW—C_Yu=0, (33)
c,-C,w=0 (34)

The left panel 2, :
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n=(0,1,0), 7,=(1,0,0), 7,=(0,0,1)
T, =0, ,
7.,=0,
Conditions z“2:
VZO, (35)
0y +Cu=0
O'yz+CSW=0' (36)

On the inlet section 3 let us set the distribution of
velocities, density and layer depth:

u(t,O,y,z)z Uo(t,y,z)’ V(t,O,y,z)z Vo(t,y,z)’
w(t,O,y,z)= Wo(t,y,z), p(t,O,y,:)= No(t,y,z),

h(e.0,y)=H"(@t,y) (37)
Volume flow rate of FM through the inlet section

equals to:
h(t,0,y) 4/2

U, v,z)dydz
0 _;[2 . (38)
This ratio allows to reconcile the characteristics of

U’ with the flow 0.

Initial conditions. For differential equations
possessing the first-order term time derivatives the
number of initial conditions equals to the number of
unknown quantities and defined by the value of these

0=0(0=

unknown quantities at the start time (/= 0). In this case
we have:

p(O,x,y,:)= po(x,y,:)’
u(O,x,y,z)= uo(xxy,f),
V(O: X, y,Z)Z Vo(x’y’z);

w(O,x,y,z)sz(x,y,z)_ (39)

The problems in which flow velocity field is
defined to an accuracy of only average velocities on the
verticals are called planned problems of flow motion.
The basic premise of planned motion equations is the
condition of small size of flow depth in comparison
with its width. The theory describing the planned
motion is called the shallow water theory.

The basic principles of the shallow water theory:

1. The layer depth is small in comparison with
linear dimensions in the flow plane. The free surface is
smooth.

2. The normal component of the medium velocity

relative to the pan bottom is small (w - 0). The liquid
particles acceleration in the same direction is small
|aw / dt| =0

3. The change of velocity components #, v and
density in the direction of the axis Oz is small
(8u/az=O,6V/62=0,6p/az=0)

4. The pressure distribution p along Oz is linear and
corresponds to the hydrostatic one:

plt.x.y.2)= polt.x, y\1 - z/hlt, x, y))+

+ (6 x, )z/h(t,x, y), (40)



www.czasopisma.pan.pl P N www.journals.pan.pl

N
68 M. PIVEN
where: p, — pressure at the layer bottom; p; — pressure H{t.x,) 1
at the corresponding point of the free surfac?e. 1= H(t, X, y): J' p(t, XY, Z}JZZ ;{ Py +— ycosgj (47)
5. Normal stresses on the areas with a normal 0 2
which is directed along the axis Oz exceed its tangent h
ou
stress|7 = 1> 1o Lo e | T, = J(va - p)dz = Z#ha_x
Under the made assumptions the dynamic 0
equations are simplified, the equation (6) becomes a h ou @&
relation: T = -(')‘O-W = ph 54- ox )° (48)

0
5p+pgcos(c9)=0' @n

This equation can be integrated:
p(t9x9yaz) = po(taxay) - P(f,an/)gCOS(e)Z =

=p,(t,x,y) + p(1,x, ) g cos(8) (h(t,x,y) - 2)) (42)
The boundary conditions (21) on the free surface
express:

plt.x, y,h(t,x,y)] = Po

O-xzz(a-xx_a-zz{ihj (_hJ

Ox oy >
0 0

Oy = (G,W - 0-22{511]"' (Ehjaxy . (44

The equalities (44) provide support for the

assumption 5) correctness, and the expression (43)
allows to define the single-valued pressure:

pt.x,,2) =P, + pgcos(O)[ h(t,x,y) - Z]. (45)

To obtain the planned flow equations let us
integrate the equations (3-5) along the variable z within

[O,h(l,x,y )]. Let us use the known in mathematical
analysis expression for differentiation of an integral
having a parameter with a respect to a parameter [21]:

b(:)
J‘F(f,” z)dz =

a(s)

(43)

b(¢)

_ _F(f z)dz—i—F[f b(é:)]
a([:)af

db(é) da(¢)
Fle,ale )]7

In our case the formula is slightly simplified:
h(f x.)

jF(t b y,z)dz =

h(t,x,y) 5 8/1(1‘ )
- .[ — F(ex.y.2)dz + Flt,x,y, e x,y)| 222
d Ox ox

8 h(t,x,y)
5 ‘([F(t,x,y,z)dz =

h(t,x, y)

0
Let us assume:

%F(t, x,y,z)dz+ Flt,x,y, ht.x, )| Oh(t,x,y) (46)

h(t,x,y)
[ pltx,y.2)z

0

y=r(t.xy)=

Let us integrate the equation (3) over z. We shall
obtain:

R R RO
ot axy oy ox oy

—p{a—h+uih+vih—wJ =0
oy

ot ox

z=h

On account of the boundary condition (18) the latter
additive component goes to zero. We come to the first
dynamic equation of the thin layer:

2 ¥+ ui +vVv—y+ 7/2 u+ 6 =0
ol T TV TR T Y T ()
Integrating the equation (4) and taking into

consideration the condition (30), we shall obtain the
relation:

N (IPUUE PN I I R L
ot ox ady ox ox oy

—}/gsinH—Poaih+Csu=O‘
X

Or in expanded form taking into account (47, 48) we
come to the second dynamic equation:

0 0 gcos@ 0
—utu—u+v—u+=>=———h+
ot Ox oy 2 Ox

2uh @ g om0 0
y &y oy ox ox

—ﬁihiu—ﬁi(ha j+C—u gsinf =0.
yoy o  yoy\ x 4

hgcos® 0 8
2y 8x

(50)

Analogous actions with the relation (5) lead to the
third equation:

0 0 gcos @ 0 hgcos@ 0O
—V4+U—V+V—V+ZF——h+ > —y -
ot ox oy 2 Oy 2y Oy
ph @ 2uh 3 w0, 0
7 ox® 7y oy? y Ox Ox (€1))
_Z_ﬂihiv_ﬁi[hiuJ+&V=0_
y oy oy yox\ oy Y

Three equations (49-51) possess four unknown

functions h.y UV To close the given equation system
let us invoke the kinematic boundary condition (18)

(here W= 0):
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oh  oh  oh

—+u—+v—=0
ot ox oy -

(52)

Boundary conditions
As it is clear from formulated thin layer dynamic
equations, the field of definition of the unknown
0<x<lL—L/2<y<h/2} pe

field of

functions is 20 = {
boundary of the stated
lines L1 ={0<x<l,y=- /2},

L={0<x<ly=1/2}
L={x=0,-1/2<y<[/2}
L4={x=l,—ll/2<y<ll/2}.

consists

On the boundary L; the distributions are predetermined
37):

h(0.y)= 1@ y) 7(0.y)=G"Cy),
u(@0,y)=0U"@.y) v(0.y)=v"(y) (s3

On the lines L, L, the conditions are met:
v(t,x,—1,/2)=0, 6_u < =0 54
Voo H Ly OP
v(t,x,0,/2)=0, % +Qu =0
y=1,/2 L - 35
y,u,v

If we temporarily consider that functions are
set then the equation (52) becomes the first-order
equation in partial derivatives relative to the function .
For that kind of equations there has been developed a
mathematical model [17]. For them we have the notion
“characteristic” - a line in four-dimensional space of

variables [»%Y h which is defined by the system of
ordinary differential equations:
ar _
ds

dh

dx _ P _ dh _
15 dS _u(taxsy)a dS _V(taxay)a ds _0(56)

where: S - parameter.

When establishing the initial condition:
1(s,) = £, x(s,) = x’, V(sy) = y', h(s,) = n (57)

and fulfilling the equations tractability conditions the
latter ones lead to the single-valued solution — the
characteristic. For the equation (52) we may set a
Cauchy problem: to find the solution of the equation
(52), which is geometrically represented as the surface

h

in the space of variables L,x,y,
curve Lo ={to(r)’xo(”)syo(”)aho(”)}. It is proved that

if the tangent to a curve Ly isnot a tangent to any other
characteristic of the equation (52), the Cauchy problem
is to be solved. In these conditions the integral surface
Y, consists of the characteristics passing through the

, passing through the
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points of the curve L,. The last equation of the system
(56) shows that / is maintained along the characteristic.
Excluding the parameter s and choosing x as an
explanatory variable we can write the equation for the
characteristic projection on the plane x0y:

ay v
g_¥ 58
o (58)

If the character of the flow is such that ”>0, and

V=0 where ¥ =%h/2 , then the possible character
of projection characteristics on x0y is represented on
fig.3.

v L,
O X
L3 (SO) L4
L
Fig. 3 The character of the projections of characteristics
on x0y

The unique characteristic corresponds to each point
of line L;. Moreover, the lines L, L,, corresponding to
the side panels of the pan segment, where v=0 are the
characteristics.

Similar reasoning can be given for the equation
(49). From this it follows that the conditions for the
functions 4, y are to be set only on the line L;.

CONCLUSION

The system of planned motion equations of free-
running grain mixture flow on the vibrating sieve has
been achieved.
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AHHOTanusi. B craThe cocTaBiieHbl ypaBHEHWS,
MO3BOJISIIOIIME B pamMKax TEOPUM MENKOil  BOIbI
MOJENMPOBaTh IBWKEHHWE TMOTOKA CHIMy4Yeil 3epHOBOM
CMeCH Ha IUIOCKOM HaKJIOHHOM BHOpopelleTe.

Celly4asi 3epHOBasi CMeCh paccMaTpuBaeTcs Kak
reTeporeHHas cucTema cocrodilas M3 ABYX (a3, oIHa
W3 KOTOPBIX MPEACTABNSAET TBEPAbIE YACTHLBI, a Ipyras
ras. B cocrosiHue NMCeBIOOXMKEHUS CMeCh MPUBOAUTCS
MOCPENCTBOM HaJIO)KeHUS BBICOKOYAaCTOTHBIX
BubOpanmii. Kos(humeHTsl BHYTPEHHETO U BHELTHErO
TpeHUsl, AWHAMHYECKON BA3KOCTH YMEHBINAIOTCA MO
JKCIIOHEHLMAIbHOMY ~ 3aKOHY  TNpH  YBEeJIHMYEHHUH
WHTEHCHBHOCTH KOJIe0aHuiA.

[lpu paccMOTpeHMM IOWHAMHMKH ChIMTy4ell cMech

(CC) BBIABMHYTBI  ClleAylOLIME  MPEATONOKEHUS:
BJIUSTHUEM BO3IyXa Ha JUHAMUKY cMecHu
MpeHeOperaroT,  MJIOTHOCTh ~ YacTHLl  CUMTaeTcs

TIOCTOSTHHOM, CHITy4asi CMeCh TM0J00HA HBIOTOHOBCKOM
JKHIKOCTH.

OcHoBHast cucrtema ypaBHeHud auHamukun CC
SIBJIIETCS CIIEACTBHEM 3aKOHOB MEXAaHHKH CILIOIIHBIX
cpell. YpaBHEHUE HEPA3PbIBHOCTH BBITEKAET U3 3aKOHA
COXpaHEHHsT MacChl, a YPaBHEHUS NWHAMHUKH CJIEIyeT
W3 3aKOHAa W3MEHEHHUs KOJIMYECTBA IBHWXKEHUS. TeH30p

HaHpH)KCHI/Iﬁ paBeH CymMMe PaBHOBECHOI'O nu
JUCCHUIIaTUBHOI'O TEH30pPOB. PaBHOBecHas 4acTb
TEH30pa HaHpH)KCHI/II‘/'I NpeacTaBIsA€TCA  IAPOBLIM

TEH30pPOM, 4YTO COOTBETCTBYET BBIMOJHEHHIO 3aKOHA
[Nackana naas KUOKOCTeH, a OUCCUMATHBHAs 4YacTb,
OTBEYAOLIas 3a JAEHCTBHE BA3KMX CWI, OMpenensercs
3akoHoM Hasbe-Crokca.

PaccmoTpeHs! TpaHUYHbIE YCIIOBUS Ha
MOBEPXHOCTSX, OTPAHWYMBAIOIINX O0BEM  ChIMydeil
3epHOBOI1 cMecu. Ha BXOZHOM M BBIXOJHOM CEUEHUSX
MOTOKAa CMECH 3aJaloTcsl pachpenesieHus 0oO0beMHOMN
IUIOTHOCTH U TOJiA ckopocTeil. Ha OOKOBBIX CTEHKax U
peuiere HopMaibHas cocTaBistomas ckopoctu CC
paBHSETCS HYJIIO, YTO COOTBETCTBYET YCIIOBHIO
HENpOTEeKaHUs cpelapl uyepe3 CTEeHKy. [loMumo 3Toro
3l€Ch  BBINOJIHAETCS  JUHAMHYECKOE  YCIIOBHE,
XapakTepu3yrollee  MNpOCKajdb3blBAaHUE  CMECH IO
TBEPION CTEHKE, a CHja CONMPOTHUBIEHHS [BIXKEHUIO
MOTOKa MpeJCTaBJeHa B BUAE JIMHEMHON 3aBUCHMOCTH
oT cpenHeit ckopocth. Ha cBOOOIHONW MOBEpPXHOCTU
CJI0Sl YCTaHaBIMBAETCS KNHEMATUYECKOe YCIOBUE U JIBA
JUHAMUYECKHUX. OpnHo u3 HUX BbIpaxaeT
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HENpephIBHOCTh TOTOKAa MAacchl 4Yepe3 CBOOOIHYIO
MOBEPXHOCTh, IPyroe BhIpaxkaeT co00i HEMPEPHIBHOCTh
HampsUKeHUH TpU  TMepexole  uyepe3  CBOOOIHYHO
TTIOBEPXHOCTb.

['maBHO mNpeAnoCHIIKONM YpPaBHEHWA IJIAHOBOTO
OBWKEHHA  SBJIAETCS  YCJIOBHE  HE3HAYMTENbHBIX
pa3sMepoB TIyOWHBI TOTOKAa MO CPaBHEHUIO C €ro

wupuHOi. [Ipy MCMONB30BaHUU OCHOBHBIX MOJIOXKEHUI
TEOPUM MEJKOW BOJAbl YPAaBHEHUS AMHAMHUKHU IOTOKa
YHOpOINAIOTC, W Ul HUX pEIIeHUus] MOXKeT ObITh
rocTaBiieHa 3aga4da Komm.

KnrodeBble cjioBa: TeopHs MENKOH BOIBI, IUIAHOBOE
JBIOKCHME  ITOTOKAa,  Cblllydyas  CMECb,  TEH30pD
HalpspKeHNH, CKOpOCTh nedopmaimii, BI3KOe TpeHHe.



