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Summary. In the article the equations have been 

worked making it possible to model the motion of free-

running grain mixture flow on a flat sloping vibrating 

sieve within the framework of shallow water theory. 

Free-running grain mixture is considered as a 

heterogeneous system consisting of two phases, one of 

which represents solid particles and the other one gas. 

The mixture is brought into a state of fluidity by means 

of high-frequency vibration imposition.  Coefficients of 

internal and external friction and dynamic-viscosity 

decrease by exponential law as the fluctuation intensity 

is increased. 

When considering grain mixture dynamics, the 

following assumptions are put forward: we ignore the 

air presence in space between particles, we consider the 

density of particles to be constant, the free-running 

mixture is similar to Newtonian liquid. 

The basic system of equations of grain mixture 

dynamics is due to the laws of continuum mechanics. 

The equation of continuity is issued from the law of 

conservation of mass, and the dynamic equations are 

issued from the law of variation of momentum.  

 The stress tensor equals to the sum of the 

equilibrium tensor and the dissipative tensor. The 

equilibrium part of the stress tensor is represented by 

the spherical tensor, which is found to conform to 

Pascal law for liquids, and the dissipative part, which is 

responsible for viscous force effect and defined by 

Navier-Stokes law.  

Boundary conditions on the surfaces (restricting the 

capacity of the free-running grain mixture) have been 

researched. The distributions of apparent density and 

velocity field are assigned at the inlet and outlet flow 

sections of the mixture. The normal velocity component 

of the grain mixture on the side frames and on the sieve 

becomes zero, which meets the no-fluid-loss condition 

of the medium through the frame. Beyond that point at 

this time we satisfy dynamic conditions, which 

characterize the mixture sliding down the hard frame, 

motion flow resistance force is represented as average 

velocity linear dependence. A kinematic condition and 

two dynamic ones are stipulated on the free surface 

layer. One of the conditions states mass flow continuity 

across the free surface, the other one states the stress 

continuity while passing through the free surface. 

The basic premise of planned motion equations is 

the condition of small size of flow depth in comparison 

with its width. With the use of shallow water theory the 

basic principles of the equations of flow dynamics are 

simplified and for their solving a Cauchy problem can 

be set. 

Key words: shallow water theory, planned flow 

motion, free-running mixture, stress tensor, strain 

velocity, viscous friction. 

 

 

INTRODUCTION 

 

Grain separators feeding including supplying and 

distribution of the material being processed across the 

sieve working surface is one of the factors providing the 

quality and productivity of the separation process. The 

existing grain separators do not provide with uniform 

distribution of the grain mixture across the working 

surface. The deviation from grain supplying average 

value across the sieve width approaches 20 %. To solve 

this problem it is vital to research the mixture dynamics 

on the sieve. Consequently, mathematical modeling of 

FM flow motion is a priority task. 

 

 

THE ANALYSIS OF RECENT RESEARCHES 

AND PUBLICATIONS 

 

The grain material distribution across the width of 

separating parts and the influence of the non-uniform 
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distribution on the efficiency of separation have been 

analyzed in the papers [1, 2]. 

For loading improvement A.N. Ziulin, 

Y.I. Bazhenov [3-5] developed the flat sieve shape 

providing the material uniform distribution across the 

entire area under separation. 

Ye. S. Goncharov [6] has made a study of the 

nature of unstable motion of the mixture in the segment 

of the sieve loading. He has also developed 

recommendations on the decrease of the mixture's 

unstable motion impact on the process of the sieves’ 

loading. 

D.F. Deberdeyev’s research showed that the 

preparative surface applying at the sieve starting point 

increases the distribution of free-running material.  

V.P. Olshanski [8] researched the regularities of 

flow mixture velocity change across the sieve length 

while non-uniform supplying. It is stated that under the 

harmonic pulsation supply the length of the non-

uniform motion area increases with the frequency 

decrease and with the vibration amplitude increase of 

mixture velocity supply onto the sieve. 

The sieve working surface loading is characterized 

with the material distribution throughout the whole 

layer volume which demands the consideration of 

spatial movement of FM. However, in the stated papers 

FM movement has been considered in one plane. 

In the paper [9] the quick motion of granulated 

media theory has been applied for describing FM flow 

dynamics. A mathematical model of FM flow motion in 

three-dimensional space has been worked out. 

However, the obtained equation system is rather 

difficult, there are no completed solution algorithms 

and similarly solved problems do not exist.  

In L.N. Tischenko's scientific works  

hydrodynamic equations have been applied for 

describing the free-running grain mixture dynamics. 

The obtained results conform to the experiment to a 

great extent which raises the possibility of using the 

shallow water theory in research of FM flow motion on 

the vibrating sieve. 

 

 

OBJECTIVE 

 

The work aimed at formulating the planned motion 

equations of free-running grain mixture flow on the 

vibrating sieve. 

 

 
THE MAIN RESULTS OF THE RESEARCH 

 

Let us consider the sieve in the shape of a pan 

angled at 
θ
 angle in relation to the horizon (Fig. 1). 

Constructively, the pan is divided into segments with 

the help of partitions A, B, C, D; A
1
, B

1
, C

1
, D

1
; A

2
, B

2
, 

C
2
, D

2
, located parallel to each other, oriented down the 

sieve slope and perpendicular to the pan bottom. The 

quantity of the corresponding segments may be 

optional. 

 

 

Fig. 1. Flat pan 

 

We choose the coordinate system so that its origin 

lies in the plane CDD
2
C

2
. Let us direct the axis Ox 

down the sieve slope parallel to partitions, dividing the 

sieve into segments. Let us denote the distance between 

the partitions via l
1
. The axis Ox is considered to be 

lying in the middle between the partitions ABCD and 

A
1
B
1
C

1
D

1
. The direction of the other axes is 

understandable from Fig. 1. Since the partitions 

completely isolate grain flows in the segments from 

each other, FM movement is sufficient to be considered 

in one of the segments. 

Grain flow comes on the sieve through the inlet 

section  2 2

CDD C
, corresponding 

0x =

, and comes out 

of the pan when 
x l=

. 

Let us consider the problem of FM dynamics 

reviewed in the paper [9]. In accordance with the quick 

motion of granulated media theory, the stress tensor has 

non-linear dependence on the strain velocity tensor 

which complicates the problem solving to a great 

degree. Let us hold the opinion of FM being similar to 

Newtonian liquid [12, 13]. In this case the equilibrium 

part of stress tensor 
ˆ
r

σ

 

appears to be a spherical tensor 

which corresponds to the fulfilling of Pascal law for 

liquids 

 

r

ik ik

pσ δ= −

, (1) 

 

and non-equilibrium part 
ˆ
d

σ  which is responsible for 

viscous force actions is defined by Navier-Stokes law 

 

1 2 3

1 2 3

2 v v v v v

3

d k i

ik ik

i k

x x x x x

σ λ µ δ µ

   ∂ ∂ ∂ ∂ ∂ 
= − + + + +    

∂ ∂ ∂ ∂ ∂    

, (2) 

 

where: p - pressure; δ – second-rank identity tensor; λ, μ 

– dynamic coefficients of volume and shearing 

viscosity; x
1
=x, x

2
=y, x

3
=z – cartesian reference system 

coordinates; v
1
=u, v

2
=v, v

3
=w – velocity vector 

movement components of continuous medium. 

For many media it is considered that  
2 / 3λ µ=

.  

Then FM dynamics equations coincide with the 

viscous compressible medium equations. If you direct 

the gravitation force down at an angle 
θ
 relative to the 

vertical line, that is to define components of a unit 
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vector pointing the direction of the gravitation force 

(sin , 0, cos )
i

ζ θ θ= −

, we shall have the continuity 

equation and motion equations as follows: 

 

( ) 0=ρw

z

+v

y

ρ+vρ

y

+u

x

ρ+uρ

x

+ρ

t ∂

∂

∂

∂















∂

∂

∂

∂













∂

∂

∂

∂  (3) 

 
( ) 0,sin =θρgσ

z

σ

y

σ

x

u

z

w+u

y

v+u

x

u+u

t

ρ

xzxyxx

−

∂

∂

−

∂

∂

−

∂

∂

−

−














∂

∂

∂

∂

∂

∂

∂

∂

 (4) 

 
0,=σ

z

σ

y

σ

x

v

z

w+v

y

v+v

x

u+v

t

ρ

yzyyxy

∂

∂

−

∂

∂

−

∂

∂

−

−














∂

∂

∂

∂

∂

∂

∂
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 (5) 

 
( ) 0,cos =θρg+σ

z

σ

y

σ

x

w

z

w+w

y

v+w

x

u+w

t

ρ

zzyzxz

∂

∂

−

∂

∂

−

∂

∂

−

−














∂

∂

∂

∂

∂

∂

∂

∂

 (6) 

 

where: 

ρ=γν – medium density with account of interstitial 

spaces; γ – particle density of the mixture;  

ν - volumetric particle density; t - time. 

Stress tensor components 
σ̂
   

 ˆ

xx xy xz

xy yy yz

xz yz zz

σ σ σ

σ σ σ σ

σ σ σ

 

 
=
 

 

 

,
 

(7)
 

coincide with matrix elements of the degree 
(3 3)×

 

 

 

v

2

v v v

2

v

2

u u u w

p

x y x z x

u w

p

y x y z y

u w w w

p

z x z y z

µ µ µ

µ µ µ

µ µ µ

  ∂ ∂ ∂ ∂ ∂ 
− + + +   

∂ ∂ ∂ ∂ ∂   

 
   ∂ ∂ ∂ ∂ ∂

 + − + +
   
∂ ∂ ∂ ∂ ∂    

 

 ∂ ∂ ∂ ∂ ∂  
+ + − +

    
∂ ∂ ∂ ∂ ∂    

.
 
(8)

 

 

The FM layer takes up the area V, restricted by a 

flat bottom Σ
0
 (АА

1
D

1
D), side panels Σ

1
 (А

1
B
1
C

1
D) and 

Σ
2
 (АBCD) of the segment, by the inlet Σ

3
 (AA

1
B
1
B) and 

outlet Σ
4
 (CC

1
D

1
D) sections . At the top the FM layer is 

restricted by the surface Г which changes its shape and 

moves according to the FM movement when the 

medium is in motion. The surfaces of that kind are 

called “free” in hydrodynamics and their form is 

defined in process of the problem solving. It should be 

noted that the presence of the medium free surface 

complicates the mathematical problem setting, the 

problem becomes non-linear and its solving is to be 

defined in the area unknown beforehand. 

 

Fig. 2. Side frame of the sieve segment 

 

Let us denote the layer depth counted along the 

normal to the pan bottom up to the free surface by 

h=h(t,x,y,z), l the pan length, l
1
 the segment width. 

Then the areas stated in the previous passage can be 

defined by the further relations

 

 

{ }

{ }

{ }

{ }

{ }

{ }

{ }

1 1

0 1 1

1 1 1

2 1 1

1 1

3 1 1

4 1 1

0 , / 2 / 2, 0

0 , / 2 / 2, 0 ( 0)

0 , / 2, 0 ( / 2)

0 , / 2, 0 ( / 2)

0 , / 2 / 2, (z )

0, / 2 / 2, 0 (x 0)

, / 2 / 2, 0

V x l l y l z h

x l l y l z z

x l y l z h y l

x l y l z h y l

x l l y l z h h

x l y l z h

x l l y l z h

= < < − < < < <

Σ = < < − < < = =

Σ = < < = − < < = −

Σ = < < = < < =

Γ = < < − < < = =

Σ = = − < < < < =

Σ = = − < < < < (x )l=

 

(9)

 

To find the single-valued solution of the equation 

system (3-6) it is necessary to use the boundary and 

initial conditions. 

The normal velocity component of FM on the side 

panels and the sieve equals to null. It conforms to the 

medium no-fluid-loss condition through the frame.
 

 

v 0
n
Σ

=

 
(10) 

where: V
n
 appears to be the normal velocity component 

of FM on the panel. 

 

Beyond that point at this time we satisfy the 

dynamic conditions, which characterize FM sliding 

down the hard smooth frame. In hydraulics, when 

researching the liquid motion along the river stream, the 

resisting force T

r

 is taken into consideration forcing on 

the wet perimeter of the stream cross section in the 

form of its linear dependence on the stream average 

velocity m

u

r

 [14]:
 

 
m

T Cu= −

r

r

. (11) 

 

The stated relation may be given as follows: 

Let us consider that 

( ) ( )
z

n,n,nn,n,nn
yx

==

321

r

 represents the unit 

external normal relative to volume V to the surface Σ, 

and 
{ }

1 2 3

, ,τ τ τ τ=

r

 - unspecified unitary vector tangent 

to Σ. In this case the tangential stress
p
τ

r

 onto Σ is 

defined in accordance with Cauchy relation [15, 16]:
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v
k ki i i s k k i i

p n e C e
τ

σ τ τ τ= = −

r r r

 
(12) 

 

where: C
s
 – phenomenological coefficient, analogous to 

Chezy's velocity factor; i

e

r

 - of the coordinate basis 

vector of the cartesian reference system. 

In the projections of the last vector equation on the 

tangent direction which is defined by the vector 
τ

r

: 

 

 

v
k ki i s k k i

n Cσ τ τ τ= −

.
 

(13) 

 

It is compulsory to meet the inequation 

 

 

0
n k ki i

p n nσ≡ <

,
 

(14) 

 

implying that the normal stress on the panel should be 

compressing. 

Distributions are assigned at the inlet section of the 

sieve: 

 

0

( ,0, , ),t y zρ ρ=

0

( ,0, , ),u u t y z=

0

v v( ,0, , ),t y z=

  

 
0

( ,0, , ),w w t y z=

0

( ,0, )h h t y=

.
 

(15) 

 

The corresponding characteristics are sampled 

either from the experimental data or supplementary 

theoretical research. 

Similar conditions are necessary to be assigned at 

the outlet section Σ
4
. The number of these conditions on 

this boundary depends on the equation type describing 

the flow dynamics [17]. Since the dynamics equations 

possess second derived velocity fields across spatial 

variables, it is necessary at least to assign conditions for 

the velocity field at x=l. The corresponding conditions 

are to be assigned here as carried out in computational 

method problems for viscous liquid dynamics [18, 19]: 

 

( , , , ) v( , , , ) ( , , , )

0, 0, 0

x l x l x l

u t x y z t x y z w t x y z

x x x
= = =

∂ ∂ ∂

= = =

∂ ∂ ∂ .(16) 

 

Two types of boundary conditions are set on the 

free surface of the grain layer Г – kinematic and 

dynamic ones. The first one is stated as following: let us 

assume that the equation of the free surface takes the 

form of:
 

 

( , , ) 0z h t x y− =

.
 

(17) 

Let us consider the medium velocity field to be known 

and x, y, z are coordinates of a medium particle. 

Hence: 

w

dt

dz

,

dt

dy

,u

dt

dx

=== v

. 

Differentiating both equation parts on time (17), we will 

acquire the wanted kinematic condition:

 

 

v

h h h

u w

t x y

∂ ∂ ∂

+ + =

∂ ∂ ∂
.
 

(18) 

There are two types of dynamic conditions on Г: 

the first one follows the law of conservation of mass 

and reflects mass flow continuity through Г: 

( ) 0v
n

=−Wρ
, 

where: W- normal velocity movement component of the 

surface breaking medium Г; v
n
 - normal velocity 

particle component on Г, angular brackets denote the 

corresponding function jump on Г [15]. 

The Г surface is a surface of contact breaking for 

which the values of normal velocity component are 

v ,v
n n

+ −

 above and below the Г surface equal W. 

Consequently, the specified condition is satisfied by 

itself. 

Another dynamic condition implies stress 

continuity when going through Г and follows from 

motion equations. This condition consists of three 

scalar relations:

 

 

( )
1 1

2 2

k ki i k ki i

k ki i k ki i

k ki i k ki i

n n n n

n n

n n

σ σ

σ τ σ τ

σ τ σ τ

− +

− +

− +

=



= Γ


=



. 
(19)

 

Here 
( )21,m

mi
=τ

 unitary noncollinear tangents to 

the surface of Г vector, index ‘-‘ means that the values 

of the function are selected on the surface on the side of 

the area from which the normal  ‘+’ is directed – for the 

values of the function on the surface points from that 

side where the normal is directed. 

Over the surface Г the free-running medium is not 

present but there is a certain perfect medium (gas) for 

which Pascal law is applicable:
 

 
0

ˆ
ˆ Pσ δ

+

= −

,
 

(20) 

where: 0

P
- pressure, exerted on the layer surface of the 

FM by this medium, along with this there should 

be 0

0P >

 to eliminate the tension strains in the layer; 

ˆ

ik i k

e eδ δ=

r r

 - unit tensor; ik

δ
 - Kronecker symbols. 

Lowering the superior index ‘-‘ in relations (19), 

we shall rewrite them as following: 

 

0

0

2

1

0

=

=

−=

ikik

ikik

ikik

n

n

Pnn

τσ

τσ

σ

. (21) 

The Г surface is represented as two-dimensional 

two-parameter variety in the three-dimensional space,  

assigned by the vector equation [20]:
 

 

( , , ) ( , , ( , , ))r r t x y x y h t x y= =

r r

.
 

(22) 

In case of holding the variable y fixed, we shall receive 

the first coordinate line on Г, in case of holding x fixed 

we will obtain the second coordinate line on Г. The 

vectors:

 

 

1, 0, , 0,1,
x y

r h r h

E E

x x y y

 ∂ ∂ ∂ ∂ 
= = = =

   
∂ ∂ ∂ ∂   

r r

r r

 
(23) 

are the basis on Г and they are tangentials to coordinate 

lines on it. The condition of their normalising gives the 

expressions for unit tangents to Г vectors: 
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1 2

,

y
x

x y

EE

E E

τ τ= =

r
r

r r

r r

.
 

(24) 

Vector N

r

 normal to Г equals to:

 

 

, ,1
x y

h h

N E E

x y

 ∂ ∂
= × = − −

 
∂ ∂ 

r r r

,
 

(25) 

and correspondingly a unit normal equals to: 

2
2

1

, ,1 , 1

N h h h h

n N

x y x yN N

   ∂ ∂ ∂ ∂ 
= = − − = + +

    
∂ ∂ ∂ ∂    

r

r

r

r r

.(26) 

From this point on we shall deal with the motion of 

the FM thin layer across smooth solid surfaces. In this 

case 
( / , / )

xy

h h x h y∇ = ∂ ∂ ∂ ∂
 is a vector the modulus of 

which is less than one and therefore the second-order 

terms are much less than the first-order terms 

( )
2

h o h∇ = ∇
. From this point on we ignore the stated 

terms. 

Thereafter the dynamic conditions (21) after 

apparent simplications can be written as following:

 

 

0

2 2 0
xz yz zz

h h

x y

Pσ σ σ

 ∂ ∂ 
− − +

   
  

+

∂ 

=

∂ ,
 
(27)

 

 

0
xx xy xz zz

h h h

x y x

σ σ σ σ

 ∂ ∂ ∂ 
− − + + =
   
∂ ∂ ∂   

,
 
(28)

 

 

0
xy yy zz yz

h h h

x y y

σ σ σ σ

   ∂ ∂ ∂ 
− − + +
     
∂ ∂ ∂    

=


,(29) 

 

( )( , , )z h t x y=

. 

The pan bottom 0

:Σ
 

The external normal: 

(0,0, 1)n = −

r

. 

Tangent vectors: 

1 2

(1,0,0), (0,1,0)τ τ= =

r r

. 

Stress tangents: 
xzx

ˆn στστ −=⋅⋅=

1

rr

, 

yzy

ˆn στστ −=⋅⋅=

2

rr

. 

Therefore the conditions (13) for 0

Σ
acquire the form:

 

 

xz s

C uσ =

,
 

(30)
 

 

v
yz s

Cσ =

.
 

(31) 

The right panel 1

Σ
: 

1 2

n (0, 1,0), (1,0,0), (0,0,1)τ τ= − = =

r r r

 
xyx

στ −=

, 

yzz
στ −=

. 

Conditions on 1

Σ
 

 
v 0=

, (32)
 

 

0
xy s

C uσ − =

,
 

(33)
 

 

0
xz s

C wσ − =

.
 

(34) 

The left panel 2

Σ

: 

1 2

(0,1,0), (1,0,0), (0,0,1)n τ τ= = =

r r r

. 
xyx

στ =

, 

yzz
στ =

. 

Conditions 2

Σ
: 

 
v 0=

, (35) 

 
0=+ uC

sxy
σ

, 

 
0=+ wC

syz
σ

. (36) 

On the inlet section 3

Σ

 
let us set the distribution of 

velocities, density and layer depth: 

( ) ( )z,y,tUz,y,,tu
0

0 =

, 
( ) ( )z,y,tVz,y,,t

0

0v =

, 

( ) ( )z,y,tWz,y,,tw
0

0 =

, 
( ) ( )z,y,tNz,y,,t

0

0 =ρ
, 

 
( ) ( )y,tHy,,th

0

0 =

. (37) 

Volume flow rate of FM through the inlet section 

equals to:

 

 

1

1

/2(t,0, )

0

0 /2

( ) U (t, , )

lh y

l

Q Q t y z dydz

−

= = ∫ ∫
. (38)

 

This ratio allows to reconcile the characteristics of 

0

U  with the flow Q. 

Initial conditions. For differential equations 

possessing the first-order term time derivatives the 

number of initial conditions equals to the number of 

unknown quantities and defined by the value of these 

unknown quantities at the start time  (
0t =
). In this case 

we have: 

( ) ( )z,y,xz,y,x,

0

0 ρρ =

, 

( ) ( )z,y,xuz,y,x,u

0

0 =

, 

( ) ( )z,y,x
0

vzy,x,0,v =

, 

 

( ) ( )z,y,xwz,y,x,w

0

0 =

. (39) 

The problems in which flow velocity field is 

defined to an accuracy of only average velocities on the 

verticals are called planned problems of flow motion. 

The basic premise of planned motion equations is the 

condition of  small size of flow depth in comparison 

with its width. The theory describing the planned 

motion is called the shallow water theory. 

The basic principles of the shallow water theory: 
1. The layer depth is small in comparison with 

linear dimensions in the flow plane. The free surface is 

smooth. 

2. The normal component of the medium velocity 

relative to the pan bottom is small 
( )0=w

. The liquid 

particles acceleration in the same direction is small 

/ 0dw dt =

. 

3. The change of velocity components u, v and 

density in the direction of the axis Oz is small 

( )/ 0, v/ 0, / 0u z z zρ∂ ∂ = ∂ ∂ = ∂ ∂ =

. 

4. The pressure distribution p along Oz is linear and 

corresponds to the hydrostatic one: 

 
( ) ( ) ( )( )

( ) ( ) ,y,x,thzy,x,tp

y,x,thzy,x,tpz,y,x,tp

1

0
1

+

+−=

 (40) 
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where: p
0
 – pressure at the layer bottom; p

1
 – pressure 

at the corresponding point of the free surface. 

5. Normal stresses on the areas with a normal 

which is directed along the axis Oz exceed its tangent 

stress
yzxzzz

, σσσ >

. 

Under the made assumptions the dynamic 

equations are simplified, the equation (6) becomes a 

relation:

 

 

( )cos 0p g

z

ρ θ

∂

+ =

∂
. (41) 

This equation can be integrated:

 

 
( )

0

1

( , , , ) ( , , ) ( , , ) cos( )z

p ( , , ) ( , , ) cos( ) ( , , ) )

p t x y z p t x y t x y g

t x y t x y g h t x y z

ρ θ

ρ θ

= − =

= + −
.(42)

 

The boundary conditions (21) on the free surface 

express:
 

 

[ ]
0

, , , ( , , )p t x y h t x y P=

, (43) 
( )

xyzzxxxz
h

y

h

x

σσσσ















∂

∂

+











∂

∂

−=
, 

 
( )

xyzzyyyz
h

x

h

y

σσσσ 











∂

∂

+














∂

∂

−=
. (44) 

The equalities (44) provide support for the 

assumption 5) correctness, and the expression (43) 

allows to define the single-valued pressure:
 

 

[ ]
0

( , , , ) cos( ) ( , , )p t x y z P g h t x y zρ θ= + −

.
 
(45) 

To obtain the planned flow equations let us 

integrate the equations (3-5) along the variable z within 

[ ]0, ( , , )h t x y
. Let us use the known in mathematical 

analysis expression for differentiation of an integral 

having a parameter with a respect to a parameter [21]: 
( )

( )

( )

∫
=

ξ

ξ

ξ

ξ

b

a

dzzF

d

d

,  

( ) ( )[ ]
( )

( )[ ]
( )

( )

( )

∫
−+

∂

∂

=

ξ

ξ

ξ

ξ

ξξ

ξ

ξ

ξξξ

ξ

b

a

d

da

aF

d

db

bFdzzF ,,,

. 

In our case the formula is slightly simplified: 

( )

( )

( ) ( )[ ]
( )

( )

∫

∫

∂

∂

+

∂

∂

=

=

∂

∂

yxth

yxth

x

yxth

yxthyxtFdzzyxtF

x

dzzyxtF

x

,,

0

,,

0

,,

,,,,,,,,

,,,

,

 

( )

( )

( ) ( )[ ]
( )

( )

∫

∫

∂

∂

+

∂

∂

=

=

∂

∂

yxth

yxth

y

yxth

yxthyxtFdzzyxtF

y

dzzyxtF

y

,,

0

,,

0

,,

,,,,,,,,

,,,

.(46)

 

Let us assume: 

( ) ( )

( )

dzz,y,x,ty,x,t

y,x,th

∫==

0

ργγ
, 

( ) ( )

( )












+===∏ ∏ ∫ θγ cosPhdzz,y,x,tpy,x,t

y,x,th

2

1

0

0

,(47) 

( )
∫

∂

∂

=−=

h

xxxx

x

u

hdzpT

0

2µσ

,

 

  

∫ 













∂

∂

+

∂

∂

==

h

xyxy

xy

u

hdzT

0

v

µσ
, (48) 

( )
∫

∂

∂

−=

h

yyyy

y

dzpT

0

v

2 µσ
. 

Let us integrate the equation (3) over z. We shall 

obtain: 

0v

vv

=














−

∂

∂

+

∂

∂

+

∂

∂

−

−

∂

∂

+

∂

∂

+

∂

∂

+

∂

∂

+

∂

∂

= hz

wh

y

h

x

uh

t

y

u

xyx

u

t

ρ

γγγγγ

.

 

On account of the boundary condition (18) the latter 

additive component goes to zero. We come to the first 

dynamic equation of the thin layer: 

 

v v 0u u

t x y x y

γ γ γ γ γ

∂ ∂ ∂ ∂ ∂

+ + + + =

∂ ∂ ∂ ∂ ∂
.

 

(49)

 

Integrating the equation (4) and taking into 

consideration the condition (30), we shall obtain the 

relation: 

.uCh

x

Psing

T

y

T

xx

u

y

u

x

uu

t

s

xyxx

0

v

0
=+

∂

∂

−−

−

∂

∂

−

∂

∂

−∏

∂

∂

+














∂

∂

+

∂

∂

+

∂

∂

θγ

γ

 

Or in expanded form taking into account (47, 48) we 

come to the second dynamic equation: 

.singu

C

x

h

yy

u

y

h

y

u

x

h

x

u

y

h

u

x

h

x

coshg

h

x

cosg

u

y

u

x

uu

t

s

0v

22

22

v

2

2

2

2

=−+











∂

∂

∂

∂

−

∂

∂

∂

∂
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−

∂

∂
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∂

−

∂
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∂
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−

∂

∂

+

∂

∂

+

∂

∂

+

∂

∂

+

∂

∂

θ

γ

µ

γ

µ

γ

µ

γ

µ

γ

µ

γ

γ

θθ

 

(50) 

 

Analogous actions with the relation (5) lead to the 

third equation: 

0.vv

2

vv

2

v

2

cos

2

gcos

vvvv

2

2

2

2

=+














∂

∂

∂

∂

−

∂

∂

∂

∂

−

−

∂

∂
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∂

−

∂

∂

−

∂

∂

−

−

∂

∂

+

∂

∂

+

∂

∂

+

∂

∂

+

∂

∂

γγ

µ

γ

µ

γ

µ

γ

µ

γ

µ

γ

γ

θθ

s

C

u

y

h

xy

h

y

x

h

xy

h

x

h

y

hg

h

yyx

u

t

(51) 

Three equations (49-51) possess four unknown 

functions 
, , ,vh uγ

. To close the given equation system 

let us invoke the kinematic boundary condition (18) 

(here 
0w =

):
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v 0

h h h

u

t x y

∂ ∂ ∂

+ + =

∂ ∂ ∂
.

 

(52)

 

 
Boundary conditions 

As it is clear from formulated thin layer dynamic 

equations, the field of definition of the unknown 

functions is 
{ }

0 1 1

0 , / 2 / 2x l l y lΣ = < < − < <

. The 

boundary of the stated field consists of 

lines
{ }

1 1

0 , / 2L x l y l= < < = −

, 

{ }
2 1

0 , / 2L x l y l= < < =

, 

{ }
3 1 1

0, l / 2 / 2L x y l= = − < <

,  

{ }
4 1 1

, l / 2 / 2L x l y l= = − < <

. 

On the boundary 3

L

 the distributions are predetermined 

(37): 

 
( ) ( )y,tHy,,th

0

0 =

, 
( ) ( )y,tGy,,t

0

0 =γ

, 
 ( ) ( )y,tUy,,tu

0

0 =

, ( ) ( )y,tVy,,t
0

0v =

. (53) 

On the lines 1 2

,L L

 the conditions are met:

 

 
11

1

/2/2

v( , , / 2) 0, 0
s

y ly l

u C

t x l u

y µ
=−=−

∂

− = − =

∂ , (54)
 

 
11

1

/2/2

v( , , / 2) 0, 0
s

y ly l

u C

t x l u

y µ
==

∂

= + =

∂ . (55) 

If we temporarily consider that functions 
, , vuγ

 are 

set then the equation (52) becomes the first-order 

equation in partial derivatives relative to the function h. 

For that kind of equations there has been developed a 

mathematical model [17]. For them we have the notion 

“characteristic” - a line in four-dimensional space of 

variables 
, , ,t x y h

 which is defined by the system of 

ordinary differential equations: 

 

 

1, ( , , ), v( , , ), 0

dt dx dy dh

u t x y t x y

ds ds ds ds

= = = =

.(56) 

 

where: 
s
 - parameter. 

 

When establishing the initial condition: 

 

 

0 0 0 0

0 0 0 0

( ) , ( ) , ( ) , ( )t s t x s x y s y h s h= = = =

,(57) 

 
and fulfilling the equations tractability conditions the 

latter ones lead to the single-valued solution – the 

characteristic. For the equation (52) we may set a 

Cauchy problem: to find the solution of the equation 

(52), which is geometrically represented as the surface 

in the space of variables 
, , ,t x y h

, passing through the 

curve 
{ }

0 0 0 0

0

( ), ( ), ( ), ( )L t r x r y r h r=

. It is proved that 

if the tangent to a curve 0

L
 is not a tangent to any other 

characteristic of the equation (52), the Cauchy problem 

is to be solved. In these conditions the integral surface 

Σ
0
 consists of the characteristics passing through the 

points of the curve L
0
. The last equation of the system 

(56) shows that h is maintained along the characteristic. 

Excluding the parameter s and choosing x as an 

explanatory variable we can write the equation for the 

characteristic projection on the plane x0y:
 

 

vdy

dx u

= . (58)
 

If the character of the flow is such that 
0u >
, and 

v 0=
 where 

2
1
/ly ±=

, then the possible character 

of projection characteristics on x0y is represented on 

fig.3. 
 

 

Fig. 3 The character of the projections of characteristics 

 on x0y 
 

The unique characteristic corresponds to each point 

of line L
3
. Moreover, the lines L

1
, L

2
, corresponding to 

the side panels of the pan segment, where v=0 are the 

characteristics. 

Similar reasoning can be given for the equation 

(49). From this it follows that the conditions for the 

functions h, γ are to be set only on the line L
3
. 

 

 

CONCLUSION 

 

The system of planned motion equations of free-

running grain mixture flow on the vibrating sieve has 

been achieved. 
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Аннотация. В статье составлены уравнения, 

позволяющие в рамках теории мелкой воды 

моделировать движение потока сыпучей зерновой 

смеси на плоском наклонном виброрешете. 

Сыпучая зерновая смесь рассматривается как 

гетерогенная система состоящая из двух фаз, одна 

из которых представляет твердые частицы, а другая 

газ. В состояние псевдоожижения смесь приводится 

посредством наложения высокочастотных 

вибраций. Коэффициенты внутреннего и внешнего 

трения, динамической вязкости уменьшаются по 

экспоненциальному закону при увеличении 

интенсивности колебаний. 

При рассмотрении динамики сыпучей смеси 

(СС) выдвинуты следующие предположения: 

влиянием воздуха на динамику смеси 

пренебрегают, плотность частиц считается 

постоянной, сыпучая смесь подобна ньютоновской 

жидкости. 

Основная система уравнений динамики СС 

является следствием законов механики сплошных 

сред. Уравнение неразрывности вытекает из закона 

сохранения массы, а уравнения динамики следует 

из закона изменения количества движения. Тензор 

напряжений равен сумме равновесного и 

диссипативного тензоров. Равновесная часть 

тензора напряжений представляется шаровым 

тензором, что соответствует выполнению закона 

Паскаля для жидкостей, а диссипативная часть, 

отвечающая за действие вязких сил, определяется 

законом Навье-Стокса. 

Рассмотрены граничные условия на 

поверхностях, ограничивающих объем сыпучей 

зерновой смеси. На входном и выходном сечениях 

потока смеси задаются распределения объемной 

плотности и поля скоростей. На боковых стенках и 

решете нормальная составляющая скорости СС 

равняется нулю, что соответствует условию 

непротекания среды через стенку. Помимо этого 

здесь выполняется динамическое условие, 

характеризующее проскальзывание смеси по 

твердой стенке, а сила сопротивления движению 

потока представлена в виде линейной зависимости 

от средней скорости. На свободной поверхности 

слоя устанавливается кинематическое условие и два 

динамических. Одно из них выражает 
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непрерывность потока массы через свободную 

поверхность, другое выражает собой непрерывность 

напряжений при переходе через свободную 

поверхность. 

Главной предпосылкой уравнений планового 

движения является условие незначительных 

размеров глубины потока по сравнению с его 

шириной. При использовании основных положений 

теории мелкой воды уравнения динамики потока 

упрощаются, и для их решения может быть 

поставлена задача Коши. 

Ключевые слова: теория мелкой воды, плановое 

движение потока, сыпучая смесь, тензор 

напряжений, скорость деформаций, вязкое трение.

 


