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FRACTIONAL SYSTEMS

Fractional variable order anti-windup control strategy
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Abstract. In this paper, a novel anti-windup strategy is presented. It is based on using fractional variable order integrator instead of integer

order one in PID controller. It is shown that among four different types of variable order derivative definitions, only one gives satisfactory

results – comparable, and even slightly better than the classical back-calculation anti-windup algorithm. Results are also presented in the

form of simulation plots.
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1. Introduction

Nowadays, to control processes, PID controllers are common-

ly used. Due to many limitations in control signal values, mod-

ified and additional structures of PID controllers have to be

applied. The most popular methods improving control process

use so-called anti-windup algorithms. The idea is to oppose

increasing integration signal in presence of saturated control

signal. There are many types of anti-windup algorithms, with

back-calculation and reset integration being the most popu-

lar [1, 2].

Despite of the variety of anti-windup structures, the devel-

opment of new methods is still in progress. Fractional calcu-

lus has been recently intensively used for creating anti-windup

methods [3–7].

In this paper, we propose an alternative anti-windup strat-

egy, inspired by fractional variable order calculus.

Recently, the case when order is time-varying, begun to

be studied extensively. The fractional variable order behav-

ior can be encountered for example in chemistry when sys-

tem’s properties are changing due to chemical reactions. Ex-

perimental studies of an electrochemical example of physical

fractional variable order system have been presented in [8].

The variable order equations have been used to describe time

evolution of drag expression in [9]. Numerical implementa-

tions of fractional variable order integrators and differentia-

tors can be found in, e.g., [10, 11]. The fractional variable

order calculus can also be used to describe variable order

fractional noise [12]. In [13], the variable order interpretation

of the analog realization of fractional order integrators, re-

alized as domino ladders, has been considered. Applications

of variable order derivatives and integrals arise also in con-

trol [14–16].

In [17,18], three general types of variable order derivative

definitions have been given. Alternative definitions of variable

order derivatives were introduced in [19, 20].
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To the best of our knowledge, the variable order opera-

tors have not been used yet for developing anti-windup algo-

rithms. In our approach, we use changing of integration order

to reduce windup phenomena. The choice of suitable variable

order definition is a crucial issue.

The paper is organized as follows. At the beginning, in

Sec. 2, fractional variable order derivatives are recalled, to-

gether with their discrete approximations. In Sec. 3 both clas-

sical back-calculation and the proposed novel structure is in-

troduced. In Sec. 4 simulation results of the proposed method

for different types of variable order derivatives are presented.

Finally, in Sec. 5 the main results are summarized.

2. Fractional variable order operators

Below, we recall the already known different types of frac-

tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators. The follow-

ing fractional constant order difference of Grünwald-Letnikov

type will be used as a base of generalization onto variable

order

∆αxl =
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)
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where α ∈ R, l = 0, . . . , k, and h > 0 is a sample time.

We will consider the following four types of fraction-

al variable order derivatives and their discrete approxima-

tions (differences). We assume the order changes in time, i.e.,

α(t) ∈ R for t > 0; and in discrete-time domain αl ∈ R for

l = 0, . . . , k, where k ∈ N.
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The B-type variable-order derivative and its discrete approxi-

mation is given, respectively, by

B

0 D
α(t)
t x(t) = lim

h→0

η
∑

j=0

(−1)j

hα(t−jh)

(

α(t − jh)

j

)

x(t − jh)

and

B∆αlxl =

l
∑

j=0

(−1)j

hαl−j

(

αl−j

j

)

xl−j .

The D-type variable-order derivative and its discrete approxi-

mation is given, respectively, by
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The E -type variable-order derivative and its discrete approxi-

mation is given, respectively, by
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The main motivation of considering the above definitions

of fractional variable order derivatives is the fact that they

are widely presented in literature and can be applied in phys-

ical systems. In [21], the A -type of fractional variable order

derivative was successfully used to design the variable order

PD controller in robot arm control. In [22], the heat trans-

fer process in specific grid-holes media whose geometry is

changed in time, was modeled by a new D-type definition.

Moreover, these definitions have mutual duality properties de-

scribed in [23], which can be adapted to solving the fractional

variable order differential equations (see [24]).

2.2. Examples of derivatives. Let us consider the following

variable (switched) order

α(t) =

{

α1 for t ∈ [0, 10),

α2 for t ∈ [10, 20].
(2)

In Figs. 1 and 2 plots were obtained for integer orders,

however, in Figs. 3 and 4 fractional order results are present-

ed. Since, in the proposed anti-windup algorithm, orders of

the integral part will be often switched from and to zero, in

this subsection we will analyze different types of derivatives

behavior for such switches.

Fig. 1. Variable order derivatives of Heaviside step function for

switched orders α1 = 0 and α2 = −1

Fig. 2. Variable order derivatives of Heaviside step function for

switched orders α1 = −1 and α2 = 0

Fig. 3. Variable order derivatives of Heaviside step function for

switched orders α1 = 0 and α2 = −0.5

Fig. 4. Variable order derivatives of Heaviside step function for

switched orders α1 = −0.5 and α2 = 0
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As it can be seen in Figs. 1 and 3, the plots of A -type

definitions after order switch also switch to the values that

the derivative would have for constant order integral. Such

a behavior could be not efficient for the proposed algorithm,

because the control signal could be switched to the same as

for non-anti-windup case. It can also be seen that for a case

when order is changed to zero, only A - and D-type defini-

tions have a clear proportional behavior.

3. Anti-windup schemes

The windup behavior can occur for the systems with limit

in control signal. It appears when the control signal passes

the limit and the control error is not zero. In such a situa-

tion, the integral part of controller integrate error in order to

increase the control signal (because of linear control strate-

gy). In this way, the integrator can integrate to huge values,

which will have to be reduced by opposite value of control er-

ror. This implies that for a real plant, obtained control results

will contain much bigger and longer overshoot, and generally

decrease control performance.

3.1. Typical anti-windup scheme for fractional order con-

troller. In order to reduce the windup effect many additional

controller structures are applied [3–7]. The most popular anti-

windup scheme for integer and fractional order controllers is

presented in Fig. 5. In this algorithm, an additional signal for

integrator is included to avoid unnecessary integration action

by decreasing the input signal of the integrator.

Fig. 5. Back-calculation anti-windup scheme for fractional order con-

troller

Throughout the paper we assume that the controlled plant

is given by the following transfer function:

G(s) =
1

s2 + 3s + 2
, (3)

and is governed by PI controller. There is also a limit in con-

trol signal u(t) ∈ [−2.3, 2.3].
The controller for integer and fractional order cases have

parameters: kp = 1 and kI = 2.

As it can be noticed in Fig. 6, for kaw = 2 the best result

is obtained for this particular control problem.

In Figs. 7 and 8 the control signal after limiter and inte-

grator signal are presented, respectively. As it can be seen, for

a case without anti-windup, the integrator signal increases af-

ter reaching a maximum by control signal. This implies much

higher and much longer overshoot, because these integrated

values have to be reduced by control error with opposite sign.

Fig. 6. Results of back-calculation anti-windup algorithm for differ-

ent values of kaw with integer order integrator

Fig. 7. Comparison of control signal u
sat(t) without anti-windup

and with anti-windup for kaw = 2

Fig. 8. Comparison of integrator signal without anti-windup and with

anti-windup for kaw = 2

Fig. 9. Results of back-calculation anti-windup algorithm for differ-

ent values of kaw with fractional order integrator
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Similar to results presented in Fig. 6, for fractional order

controller the best results of anti-windup algorithm is obtained

also for kaw = 2. The order of fractional order controller was

chosen as α = 1.2.

3.2. Proposed variable order anti-windup scheme. There

are numerous manners of limiting the action of the integrator

in presence of control signal saturation. Inspired by variable

order derivatives, in this section we propose a new, to the best

of our knowledge, anti-windup algorithm. According to this

method, presented in Fig. 10, the action of the integrator is

governed by changing (switching) order of integration. Pre-

cisely, we can distinguish between two situations: if a control

signal is not saturated, the integrator reaches some nominal

order value (integer or fractional); otherwise, if control signal

achieves saturation limit, the order of integration switches to

the zero value, serving, in consequence, as gain action. How-

ever, the stability issue for variable order system in general is

an open problem; in this case it seems to be necessary that

the sum of proportional and integral gains is at least below

gain margin.

Fig. 10. Variable order anti-windup scheme

What is essential in this method is choosing an appropri-

ate type of variable order integrator definition. In Figs. 11–14

plots of output signals are presented for different types of vari-

able order integrator. It can be seen that only in the case of

D-type integrator the results are satisfactory, comparable with

the classical back-calculation anti-windup algorithm. What is

more, it seems to yield even better result, which is seen in the

control signal depicted in Fig. 15. It is achieved with a pretty

different integrator signal (see Fig. 16).

Fig. 11. Results for anti-windup fractional variable order A -type and

integer order controller

Fig. 12. Results for anti-windup fractional variable order B-type and

integer order controller

Fig. 13. Results for anti-windup fractional variable order D-type and

integer order controller

Fig. 14. Results for anti-windup fractional variable order E -type and

integer order controller

Fig. 15. Comparison of control signal u
sat(t) without anti-windup,

with anti-windup for kaw = 2, and with proposed method
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Fig. 16. Comparison of integrator signal without anti-windup, with

anti-windup for kaw = 2, and with proposed method

4. Anti-windup examples

In this section we will present and analyze results of the pro-

posed method for different types of variable order derivative

definitions. Based on these results, it will be possible to ana-

lyze which type of derivative will be the most suitable. First,

we will present results for integer order controller, and then

the for fractional order controller will be presented.

Example 1. Integer order controllers and anti-windup

variable order algorithm for different types of variable

order definitions.

In this example, the proposed variable order anti-windup

algorithm will be analyzed for different types of variable order

derivatives. As it was presented in Subsec. 2.2, different types

of definitions have different behavior, especially for switching

order to zero and from zero. That is why we can expect also

different results in control applications. Results are presented

in Figs. 11–14.

As it can be seen in Fig. 11, results for A -type derivative

(the most popular in literature definition) are not acceptable,

because they do not provide the zero steady error. Also, the

dynamics of the response is worse than in the traditional anti-

windup algorithm.

Also, results for B-type derivative, presented in Fig. 12,

show that the steady error is zero, but the dynamics is much

worse than for traditional algorithm.

In Fig. 13, results for D-type derivative are presented, and

it can be noticed that this version of algorithm produces very

similar results to the traditional anti-windup method. Zero

steady error is obtained, as well as similar dynamic behavior.

Figure 14 presents results for application of E -type deriva-

tive, and as it can be seen, the results obtained are comparable

with those based on algorithm with B-type derivative. This

means that the dynamics is much worse than in the traditional

algorithm.

Example 2. Comparison of control and integrator signals

for D-type definition of the proposed variable order anti-

windup algorithm.

Similar results to those shown in Figs. 7 and 8 are present-

ed in Figs. 15 and 16, but including results for the proposed

fractional variable order anti-windup algorithm. As it can be

easily noticed, for this case, proposed algorithm is even slight-

ly better than back-calculation anti-windup algorithm.

Example 3. Fractional order controllers and anti-windup

fractional variable order algorithm for different types of

variable order definitions.

In this example, results for fractional order controller with

order α = 1.2 will be presented. As it can be noticed in

Figs. 17–20, the results for the D-type derivative (Fig. 19)

are comparable to and even better than results for typical

back-calculation anti-windup method. Moreover, it can also

be seen that for other types of definitions, the results obtained

are not acceptable, which clearly explains that choosing vari-

able order definitions in control application has to be done

very carefully.

Fig. 17. Results for anti-windup fractional variable order A -type and

fractional order controller

Fig. 18. Results for anti-windup fractional variable order B-type and

fractional order controller

Fig. 19. Results for anti-windup fractional variable order D-type and

fractional order controller
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Fig. 20. Results for anti-windup fractional variable order E -type and

fractional order controller

5. Conclusions

In the paper, a new anti-windup strategy has been proposed.

The novelty of the proposed method is based on applying vari-

able order integrator in a PID controller. It has been shown

that using recursive D-type integrator and changing order be-

tween some nominal value and zero, yields similar, or even

slightly better, results than using typical back-calculation anti-

windup method. Moreover, the proposed method has an ad-

vantage over the classic one – it does not require any pa-

rameters to be adjusted, as in the back-calculation method.

The analysis also presents important difference between dif-

ferent types of variable order integrators in control applica-

tions; results obtained for other types definitions than D-type

are significantly worse. The analysis presented in this paper

also includes an issue that is worth further investigations –

the stability of variable order systems.
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