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Abstract. A new method for determination of positive realizations of given transfer matrices of linear continuous-time linear systems is proposed. 
Necessary and sufficient conditions for the existence of positive realizations of transfer matrices are presented. A procedure for computation of 
the positive realizations is proposed and illustrated by an example.
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of n×m real matrices with nonnegative entries and ℜ+
n = ℜ+

n×1, 
Mn – the set of n×n Metzler matrices (real matrices with non-
negative off-diagonal entries), In – the n×n identity matrix.

2.	 Preliminaries

Consider the continuous-time linear system

	 x ̇ (t) = Ax(t) + Bu(t),� (1a)

	 y(t) = Cx(t) + Du(t),� (1b)

where x(t) 2 ℜn, u(t) 2 ℜm, y(t) 2 ℜ p are the state, input and 
output vectors and A 2 ℜn×n, B 2 ℜn×m, C 2 ℜp×n, D 2 ℜp×m.

Definition 1. [1, 2] System (1) is called (internally) positive 
if x(t) 2 ℜ+

n and y(t) 2 ℜ+
p, t ¸ 0 for any initial conditions 

x(0) 2 ℜ+
n and all inputs u(t) 2 ℜ+

m, t ¸ 0.

Theorem 1. [1, 2] System (1) is positive if and only if

	 A 2 Mn, B 2 ℜ+
n×m, C 2 ℜ+

p×n, D 2 ℜ+
p×m.� (2)

The transfer matrix of the system (1) is given by

	 T(s) = C[Ins ¡ A]–1B + D .� (3)

The transfer matrix is called proper if

	 lim
s→1

T(s) = D 2 ℜ+
p×m� (4)

and it is called strictly proper if D = 0.

Definition 2. [6, 7] Matrices (2) are called a positive realization 
of T(s) if they satisfy equality (3).

Definition 3. [6, 7] Matrices (2) are called asymptotically stable 
if matrix A is an asymptotically stable Metzler matrix (Hurwitz 
Metzler matrix).

1.	 Introduction

A dynamical system is called positive if its trajectory starting 
from any nonnegative initial state remains forever in the posi-
tive orthant for all nonnegative inputs. An overview of state of 
the art in positive systems theory is given in the monographs 
[1, 2]. Variety of models having positive behavior can be found 
in engineering, economics, social sciences, biology and med-
icine, etc. [1, 2].

The determination of the matrices A, B, C, D of the state 
equations of linear systems for given transfer matrices is called 
the realization problem. The realization problem is a classical 
problem of analysis of linear systems, which has been consid-
ered in many books and papers [3‒7]. A tutorial on the positive 
realization problem has been given in paper [8] and in books 
[1, 2]. The minimal realization problem has been analyzed in 
[9, 10] and the positive minimal realization problem in [11‒13]. 
The realization problem for linear systems with delays has been 
analyzed in [2, 14‒17] and the positive stable realizations in 
[18‒21]. For fractional linear systems the realization problem 
has been considered in [5, 6, 13, 22‒24]. Realization of singular 
systems via Markov parameters has been introduced in [25] and 
Digraphs minimal realizations of state matrices for fractional 
positive systems in [26].

In this paper, a new method for determination of positive 
realizations of linear continuous-time systems is proposed.

The paper is organized as follows. In Section 2 some defi-
nitions and theorems concerning the positive continuous-time 
linear systems are recalled. A new method for determination of 
positive realizations for single-input single-output linear systems 
is proposed in Section 3 and for multi-input multi-output sys-
tems in Section 4. Concluding remarks are given in Section 5.

The following notation will be used: ℜ – the set of real 
numbers, ℜn×m – the set of n×m real matrices, ℜ+

n×m – the set 
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Theorem 2. [6, 7] Positive realization (2) is asymptotically 
stable if and only if all coefficients of the polynomial

	pA(s) = det[Ins ¡ A] = sn + an ¡ 1sn ¡ 1 + … + a1s + a0� (5)

are positive, i.e. ai > 0 for i = 0, 1, …, n ¡ 1.
The positive realization problem can be stated as follows. 

Given a proper transfer matrix T(s) find its positive realiza-
tion (2).

Theorem 3. [6] If (2) is a positive realization of (3) then the 
matrices

	 A
– = PAP –1, B– = PB, C– = CP –1, D– = D� (6)

are also a positive realization of (3) if and only if the matrix 
P 2 ℜ+

n×n is a monomial matrix (in each row and in each column 
only one entry is positive and the remaining entries are zero).

3.	 Positive realizations of transfer functions

In this section necessary and sufficient conditions will be given 
for the existence of positive realizations (A, B, C, D) of the 
given transfer function

	 T(s) = 
mnsn + mn ¡ 1sn ¡ 1 + … + m1s + m0

sn + dn ¡ 1sn ¡ 1 + … + d1s + d0
.� (7)

Using (4) we obtain

	 D =  lim
s→1

T(s) = mn� (8)

and

	
T–(s) = T(s) ¡ D

m–n  ¡ 1sn ¡ 1 + … + m–1s + m–0

sn + dn ¡ 1sn ¡ 1 + … + d1s + d0
 =

T–(s) = C[Ins ¡ A]–1B

� (9a)

where

	 m–k = mk ¡ mndk  for k = 0, 1, …, n ¡ 1.� (9b)

Theorem 4. There exists the positive realization

A = 

	–s1	 0	 0	 …	 0	 0

	 1	 –s2	 0	 …	 0	 0

	 	 	 	 	 	

	 0	 0	 0	 …	 –sn ¡ 1	 0

	 0	 0	 0	 …	 1	 –sn

, B = 

b1

b2

bn

,

C = [0  …  0  1],  D = mn

� (10)

of transfer function (7) if and only if the following conditions 
are satisfied:

1)  mn ¸ 0� (11a)

2)  S –1M 2 ℜ+
n ,� (11b)

where sk, k = 1, …, n are the zeros of the denominator

	
d(s) = sn + dn ¡ 1sn ¡ 1 + … + d1s + d0 =
d(s) = (s + s1)(s + s2) … (s + sn)

� (11c)

and

S = 

	1	 s1	 s1s2	 …	 s1s2 … sn ¡ 1

	0	 1	 s1 + s2	 …	 s1 + s2 + … + sn ¡ 1

	 	 	 	 	

	0	 0	 0	 …	 1

,

M = 

m–0

m–1

m–n ¡ 1

,  m–0 > 0.

� (11d)

Proof. It is easy to check that

	

C[Ins ¡ A]–1 = 

=  C

	s + s1	 0	 0	 …	 0	 0

	 –1	 s + s2	 0	 …	 0	 0

	 	 	 	 	 	

	 0	 0	 0	 …	 s + sn ¡ 1	 0

	 0	 0	 0	 …	 –1	 s + sn

 =

= 
C[Ins ¡ A]ad

d(s)

�(12a)

where product of the matrix C and the adjoint matrix [Ins ¡ A]ad  
has the form

	
C[Ins ¡ A]ad  = [1  s + s1  (s + s1)(s + s2) …

C[Ins ¡ A]ad  … (s + s1)(s + s2) … (s + sn ¡ 1)]
� (12b)

Using (12) and (10) we obtain
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and the matrices S, B and M are related by the equation

	 SB = M.� (14)

The matrix B 2 ℜ+
n if and only if the condition (11b) is sat-

isfied.
Note that the realization (10) is positive if and only if the 

conditions (11a) and (11b) are satisfied. □

Remark 1. The positive realization (10) of (7) is asymptotically 
stable if and only if dk > 0 for k = 0, 1, …, n ¡ 1.

Proof. By Theorem 2 the zeros sk of the polynomial d(s) satisfy 
the condition Resk < 0 for k = 1, …, n if and only if dk > 0 for 
k = 0, 1, …, n ¡ 1. □

Example 1. Find the positive realization (10) of the transfer 
function

	

T(s) = 
m3s3 + m2s2 + m1s + m0

s3 + d2s2 + d1s + d0
 =

T(s) = 
2s3 + 15s2 + 32s + 24

s3 + 6s2 + 11s + 6
.

� (15)

Using (14), (8) and (9a) we obtain

	 D =  lim
s→1

T(s) =  lim
s→1

2s3 + 15s2 + 32s + 24

s3 + 6s2 + 11s + 6
 = 2� (16)

and

	

T–(s) = T(s) ¡ D = 
3s2 + 10s + 12

s3 + 6s2 + 11s + 6
 =

T–(s) = T(s) ¡ D = 
m–2s2 + m–1s + m–0

s3 + d2s2 + d1s + d0
,

� (17)

where m–2 = m2 ¡ m3d2 = 3,  m–1 = m1 ¡ m3d1 = 10, 
m–0 = m0 ¡ m3d0 = 12.

The polynomial

	
d(s) = s3 + 6s2 + 11s + 6 =
d(s) = (s + 1)(s + 2)(s + 3)

� (18)

has the zeros: s1 = –1, s2 = –2, s3 = –3 and the matrix A is 
Hurwitz and has the form

	 A = 

	– s1	 0	 0

	 1	 – s2	 0

	 0	 1	 – s3

 = 

	– 1	 0	 0

	 1	 – 2	 0

	 0	 1	 – 3

.� (19)

Using (11d) and (17) we obtain

	

B = 

1	 s1	 s1s2

0	 1	 s1 + s2

0	 0	 1

–1
m–0

m–1

m–2

  =

B = 

1	 1	 2

0	 1	 3

0	 0	 0

–1
12

10

3

 = 

5

1

3

 

and C = [0  0  1].

� (20)

The positive asymptotically stable realization of the transfer 
function (15) is given by (19), (20) and (16).

Remark 2. For the transfer function

	 T(s) = 
m0

sn + dn ¡ 1sn ¡ 1 + … + d1s + d0
, m0 > 0� (21)

there always exists the positive realization

C[Ins ¡ A]–1B = 
C[Ins ¡ A]ad B

d(s)
 = 

1

d(s)
[1  s + s1  (s + s1)(s + s2) … (s + s1)(s + s2) … (s + sn ¡ 1)]

b1

b2

bn

 =

= 
1

d(s)
[b1 + b2(s + s1) + b3(s + s1)(s + s2) + … + bn(s + s1)(s + s2) … (s + sn ¡ 1)] k=

= 
b1 + b2s1 + b3s1s2 + … + bn s1s2 … sn ¡ 1 + [b2 + b3(s1 + s2) + … + bn(s1 + s2 + …+ sn ¡ 1)]s + …+ bnsn ¡ 1

d(s)
 =

= 
m–n  ¡ 1sn ¡ 1 + … + m–1s + m–0

d(s)
 =  T–(s).

� (13)
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A = 

	–s1	 0	 0	 …	 0	 –s2

	 1	 –s2	 0	 …	 0	 0

	 0	 1	 –s3	 …	 0	 0

	 	 	 	 	 	

	 0	 0	 0	 …	 1	 –sn

,  B = 

m0

0

0

,

C = [0  …  0  1],  D = 0 .

� (22)

where sk, k = 1, …, n are the zeros of (21).
The positive realization is asymptotically stable if and only 

if dk > 0 for k = 0, 1, …, n ¡ 1.

Theorem 5. There exists the positive realization

	
A
– = 

	–s1	 1	 0	 …	 0	 0

	 0	 –s2	 0	 …	 0	 0

	 	 	 	 	 	

	 0	 0	 0	 …	 –sn ¡ 1	 1

	 0	 0	 0	 …	 1	 –sn

,  B– = 

0

0

1

,

C– = [c1  c2  …  cn ] ,  D = mn

� (23)

of the transfer function (7) if and only if the conditions (11a) 
and (11b) are satisfied, where sk, k = 1, …, n are the zeros of 
(11c), S and M are defined by (11d).

Proof. The proof is similar (dual) to the proof of Theorem 4.

Example 2. (Continuation of Example 1) Find the positive re-
alization (23) of the transfer function (14) using Theorem 5.

The matrix D and the transfer function (16) we compute in 
the same way as in Example 1. Using the zeros s1 = –1, s2 = –2, 
s3 = –3 of the polynomial (18) we obtain the matrix

	 A
– = 

	–s1	 1	 0

	 0	 –s2	 1

	 0	 0	 –s3

 = 

	–1	 1	 0

	 0	 –2	 1

	 0	 0	 –3

.� (24)

In this case we have

	

1	 s1	 s1s2

0	 1	 s1 + s2

0	 0	 1

c1

c2

c3

  = 

m–0

m–1

m–2

� (25)

and

	

c1

c2

c3

  = 

1	 s1	 s1s2

0	 1	 s1 + s2

0	 0	 1

–1
m–0

m–1

m–2

  =

  = 

1	 1	 2

0	 1	 3

0	 0	 0

–1
12

10

3

 = 

5

1

3

.

� (26)

Therefore, the matrices B and C have the forms

	 B– = 

0

0

1

 and C– = [c1  c2  …  c3] = [5  1  3].� (27)

The positive asymptotically stable realization of the transfer 
function (15) is also given by (24), (27) and (16).

4.	 Positive realizations for multi-input  
multi-output systems

In this section the method presented in Section 3 will be ex-
tended to multi-input multi-output (MIMO) linear systems. 
To avoid the loss of generality and to simplify the notation, 
two-input two-output systems will be considered.

The problem under the considerations can be stated as fol-
lows. For given proper transfer matrix

T(s) = 
T11(s)� T12(s)

T21(s)� T22(s)
,

Tik(s) = 
miknsn + … + mik1s + mik0

sn + dikn ¡ 1sn ¡ 1 + … + dik1s + dik0
, i, k = 1, 2

�(28)

find the positive realization (A, B, C, D) such that

	 T(s) = C[Ins ¡ A]–1B + D .� (29)

Using

	 D =  lim
s→1

T(s)� (30)

we may find the matrix D and the strictly proper transfer matrix

	

T–(s) = T(s) ¡ D = C[Ins ¡ A]–1B =

T–(s) = 

m–11(s)
d1(s)

� m–12(s)
d1(s)

m–21(s)
d2(s)

� m–22(s)
d2(s)

,
� (31)
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where 

	 di(s) = sn + din ¡ 1sn ¡ 1 + … + di1s + di0, i = 1, 2� (32a)

is the common least denominator of Ti1(s) for i = 1, 2 and 
si1, si2, …, sin, i = 1, 2 are its zeros, i.e.

	 di(s) = (s + si1)(s + si2) … (s + sin), i = 1, 2� (32b)

and

	
m–ik(s) = m–ikn ¡ 1sn ¡ 1 + … + m–ik1s + m–ik1 + m–ik0,
i = 1, 2

� (33)

The matrices Ai of the positive realizations have the form

Ai = 

	–si1	 0	 0	 …	 0	 0

	 1	 –si2	 0	 …	 0	 0

	 	 	 	 	 	

	 0	 0	 0	 …	 –sin ¡ 1	 0

	 0	 0	 0	 …	 1	 –sin

,  i = 1, 2� (34)

and

	 A = blockdiag[A1  A2] = 
	A1	 0

	0	 A2
.� (35)

The matrices B and C have the forms

	 B = 
	B11	 B12

	B21	 B22
, Bik = 

bik1

bik2

bikni ¡ 1

 2 ℜ+
ni , i, k = 1, 2� (36)

and

	
C = blockdiag [C1  C2 ],

Ci = [0  …  0  1 ] 2 ℜ+
1×ni, i = 1, 2 .

� (37)

The entries of Bik, i, k = 1, 2 are calculated in the same way as 
the entries of B in Section 3 using the equation (36).

Therefore, we have the following theorem.

Theorem 6. There exists the positive realization given by (30), 
(35), (36) and (37) of the transfer matrix (28) if and only if the 
following conditions are satisfied:

1)  D 2 ℜ+
2×2 (defined by (30))� (38)

2)  Si
–1Mi 2 ℜ+

ni , i = 1, 2 ,� (39a)

where

Si = 

	1	 si1	 si1si2	 …	 si1si2 … sin ¡ 1

	0	 1	 si1 + si2	 …	 si1 + si2 + … + sin ¡ 1

	 	 	 	 	

	0	 0	 0	 …	 1

,

i = 1, 2 ,

� (39b)

	 Mik = 

m–ik0

m–ik1

m–ikni ¡ 1

,  i, k = 1, 2.� (39c)

Proof. The realization is positive if and only if the condition 
(38) is satisfied. The matrix A defined by (35) and (34) is a Met-
zler matrix and it is Hurwitz (asymptotically stable) if Resk < 0 
for i = 1, 2 and k = 1, …, n. The matrix B 2 ℜ+

(n1 + n2)×2 if and 
only if the conditions (39) are satisfied. The matrix C defined by 
(37) is always nonnegative. Therefore, the realization given by 
(30), (35), (36) and (37) is positive if and only if the conditions 
(38) and (39) are satisfied. □

From the above considerations we have the following pro-
cedure for computation of the positive realization (A, B, C, D) 
for given transfer matrix (28).

Procedure 1.
Step 1. �Knowing T(s) and using (30) and (31) compute the 

matrix D and the strictly proper transfer matrix T–(s).
Step 2. �Compute the zeros sij, i = 1, 2, j = 1, …, n of polyno-

mial (33) and matrices (34) and (35).
Step 3. �Using (39b) and (39c) compute the matrices Si and Mik, 

i, k = 1, 2 and check the conditions (39a). If the condi-
tions (39a) are satisfied then there exists B 2 ℜ+

(n1 + n2)×2 
and the positive realization of the matrix (28).

Step 4. �The desired positive realization is given by (35), (36), 
(37) and (38).

Example 3. Find the positive realization of the transfer matrix

	 T(s) = 

s2 + 5s + 5
s2 + 3s + 2

2s + 7
s + 3

.� (40)

Using Procedure 1 we obtain the following:
Step 1. �Using (30), (31) and (40) we obtain

	 D =  lim
s→1

T(s) =  lim
s→1

s2 + 5s + 5
s2 + 3s + 2

2s + 7
s + 3

 =  1
2

.� (41)
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Step 1. �and

	 T–(s) = T(s) ¡ D = 

2s + 3
s2 + 3s + 2

1
s + 3

  .� (42)

Step 2. �The zeros of the polynomial

	 d1(s) = s2 + 3s + 2� (43)

Step 2. are s11 = –1, s12 = –2 and the polynomial

	 d2(s) = s + 3� (44)

Step 2. has only one zero s21 = –3.
Step 2. In this case the matrix (35) has the form

	 A = 
	A1	 0

	0	 A2
  = 

	– 1	 0	 0

	 1	 – 2	 0

	 0	 1	 – 3

.� (45)

Step 3. �Taking into account that in this case

	 B = 
B1

B2
,  B1 = 

b11

b12
,  B2 = 

£
b13
¤

� (46)

Step 3. �and using equation (14) we obtain

	 B1 = 
	1	 –s11

	0	 1

–1
m–10

m–11
 = 

	1	 –1

	0	 1

3

2
 = 

1

2
� (47a)

Step 3. �and

	 B2 = 
£
b13
¤
 =  1.� (47b)

Step 3. �Therefore, matrix B has the form

	 B = 
B1

B2
  = 

1

2

1

� (48)

Step 3. �and the matrix

	 C = 
	C1	 0

	0	 C2
 = 

	0	 1	 0

	0	 0	 1
.� (49)

Step 4. �The desired positive realization of (40) is given by (45), 
(48), (49) and (41).

It is easy to check that the matrices

	

A
– = 

	– 1	 0	 0

	 1	 – 2	 0

	 0	 1	 – 3

,	 B– = 

0

1

1

,

C– = 
	1	 2	 0

	0	 0	 1
,	 D = 

1

2

� (50)

are also the (dual) positive realization of transfer matrix (40).

Remark 3. To the presented method the dual method based 
on the common denominator for each column of T(s) can be 
applied.

Remark 4. By Theorem 3 if the matrices A, B, C, D are a pos-
itive realization of T(s) then the matrices PAP –1, PB, CP –1, 
D are also its positive realization for any monomial matrix P.

5.	 Concluding remarks

A new method for determination of positive realizations of 
transfer matrices of linear continuous-time systems has been 
proposed. Necessary and sufficient conditions for the existence 
of the positive realizations have been established (Theorems 4, 5 
and 6). A procedure for computation of the positive realizations 
has been proposed and illustrated by an example (Example 3). 
The presented method can be extended to linear discrete-time 
systems and to linear fractional systems.
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